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1 Introduction7

There are n independent jobs that need to be processed by a single machine. Each8

job Jj has basic processing time pj, j = 1, . . . , n. The jobs have a given common9

critical date d, after which they start to deteriorate and a common maximum de-10

teriorating date D (D > d) after which they deteriorate no further. The actual11

processing time aj(t) of Jj depends on its start time t in the following way:12

aj(t) =
{

pj, if t ≤ d,
pj + wj(min{t,D} − d), otherwise,13

where wj ≥ 0 is the deteriorating rate of Jj. If D < ∞, the deterioration is14

called bounded, which is the case handled by Kovalyov and Kubiak [5]; other-15

wise – as considered by Cai et al. [1], Kovalyov and Kubiak [4] it is called un-16

bounded. We assume that d,D, and all pj and wj are integral for j = 1, . . . , n. If17

we set L = maxj{pj,wj,D} (or L = maxj{pj,wj, d} in the unbounded case) to be18

the largest numerical parameter in the input, then the problem (binary) size is19

O(n log L). The problem is to schedule the jobs to minimize the makespan, i.e.,20

the completion time of the last job in the schedule. We shall denote this problem21

by Det. We shall assume that
∑n

j=1 pj > d. Otherwise all jobs can start by d22

and the problem becomes trivial. Furthermore, there is no machine idle time in23

any optimal schedule. Under these conditions, there is a unique job for any given24

schedule that starts by d and completes after d. We call such a job pivotal. Any25

job that ends by d is called early. Any job that starts after d and ends by (after) D26

is called tardy (respectively, suspended).27

Cai et al. [1] developed anO(n6
ϵ2 log

2 L) FPTAS for the unbounded case. Kovalyov28

and Kubiak [4] derived an O(n5
ϵ3 log

4 L) FPTAS for the unbounded case, which is29

faster than the FPTAS of [1] for n >> log2 L
ϵ . Note that the authors erroneously30
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claim their FPTAS for the bounded case (see [5, Sect. 4]). Kovalyov andKubiak [5]31

addressed the bounded case and developed an O(n6ϵ4 log
5 L) FPTAS.32

In this paper, we give a simple O
(
n4
ϵ2 log

3 L log n log L
ϵ

)
FPTAS for the unbounded33

case. Compared to the FPTAS by Cai et al. [1] it is faster by a factor of n2
log L , up34

to log terms (i.e., our algorithm is faster as long as L < 2n2). Compared to the35

FPTAS of Kovalyov and Kubiak [4], our FPTAS is faster by a factor of n log L
ϵ , up to36

log terms. For the bounded case, we give anO
(
n3 log2 L log(nL)

ϵ2 log n log(nL)
ϵ

)
FPTAS37

with a speedup of a factor of n3 log2 L
ϵ2 , up to log terms.38

2 K-approximation sets and functions39

In this section, we provide an overview of the technique of K-approximation sets40

and functions, the tool we use to construct an FPTAS for Det.41

Related research. Halman et al. [3] have introduced the technique of K-approx-42

imation sets and functions, and used it to develop an FPTAS for a certain stochas-43

tic inventory control problem. Halman et al. [2] have applied this tool to develop44

a framework for constructing FPTASes for three rather general classes of stochas-45

tic DPs. This technique has been used to yield FPTASes to various optimization46

problems (cf. [2]).47

Notation. For any pair of integersA ≤ B, let {A, . . . ,B} denote the set of integers48

betweenA andB. For a functionφ : {A, . . . ,B}→R that is not identically zero we49

denote φmin := minA≤x≤B{|φ(x)| : φ(x) ̸= 0}, and φmax := maxA≤x≤B{|φ(x)|}.50

Let tφ be the time needed to calculate φ(x), for any x.51

K-approximation sets and functions. Let K ≥ 1 and φ, φ̃ : {A, . . . ,B} → R+52

be arbitrary functions. We say that φ̃ is aK-approximation function ofφ ifφ(x) ≤53

φ̃(x) ≤ Kφ(x) for all x = A, . . . ,B. The following property (cf. [2, Prop. 5.1])54

provides a set of general computational rules of K-approximation functions.55

Property 1. ([2, Proposition 5.1]) Let Ki ≥ 1, let φi, φ̃i : {A, . . . ,B} → R+ and56

let φ̃i be a Ki-approximation of φi for i = 1, 2. Let ψ1 : {A′, . . . ,B′}→{A, . . . ,B}57

be an arbitrary function and α, β ∈ R+ be arbitrary positive reals. Then the follow-58

ing properties hold: (i) Linearity of approximation: α+βφ̃1 is a K1-approximation59

function of α+βφ1; (ii) Summation of approximation: φ̃1+ φ̃2 is amax{K1,K2}-60

approximation function of φ1 +φ2; (iii) Composition of approximation: φ̃1(ψ1) is61

a K1-approximation of φ(ψ1); (iv) Minimization of approximation: min{φ̃1, φ̃2}62

is a max{K1,K2}-approximation of min{φ1, φ2}; (v) Approximation of approxi-63

mation: if φ2 = φ̃1, then φ̃2 is a K1K2-approximation function of φ1.64



As Det has a non-increasing monotone structure over intervals of integers, we65

concentrate on definitions for K-approximation sets and functions specialized to66

non-increasing functions over intervals of integers (cf. [2]).67

Definition 2. ([2, Definition 4.4]) Let φ : {A, . . . ,B} → R be a non-increasing68

function. For any subset W ⊆ {A, . . . ,B} satisfying A,B ∈W, the approximation69

of φ induced byW is the function φ̂(x) = φ(maxy∈W{y ≤ x}), ∀x ∈ {A, . . . ,B}.70

Definition 3. ([2, Definition 4.2 and Proposition 4.5]) Let K ≥ 1 and let φ :71

{A, . . . ,B} → R+ be a non-increasing function. LetW ⊆ {A, . . . ,B} be such that72

A,B ∈ W and let φ̂ be the approximation of φ induced by W. We say that W is a73

K-approximation set of φ if for every x ∈ {A, . . . ,B}, we have φ̂(x) ≤ Kφ(x).74

The above two definitions tell us that the approximation of φ induced by a K-75

approximation set of φ is a K-approximation function of φ.76

Proposition 4. ([2, Proposition 4.6]) Let φ : {A, . . . ,B} → R+ be a non-increas-77

ing function. Then for every K > 1, it is possible to compute a K-approximation set78

of φ of size O(logK
φmax

φmin ) in O(tφ(1+ logK
φmax

φmin ) log(B− A)) time.79

A procedure for the construction of a K-approximation function for function80

φ : {A, . . . ,B}→R+ is stated as Algorithm 1, giving a pseudo-code of function81

Compress which returns a non-increasing K-approximation of φ.82

Algorithm 1 Function Compress(φ, {A, . . . ,B},K)
1: find a K-approximation setW of φ over domain {A, . . . ,B}
2: return the approximation of φ induced byW as an array {(x, φ̃) | x ∈W}

sorted in increasing order of x

By applying the calculus of approximation and the discussion above, we get the83

following result (see also [2, Proposition 4.5]).84

Proposition 5. Let K1,K2 ≥ 1 be real numbers and let φ : {A, . . . ,B}→R+ be a85

non-increasing function. Let φ̄ be a non-increasing K2-approximation function ofφ.86

Then Compress(φ̄, {A, . . . ,B},K1) returns in O(tφ(1 + logK1
φmax

φmin ) log(B − A))87

time a non-increasing step function φ̃ with O(logK1
φmax

φmin ) steps that K1K2-approxi-88

mates φ, and of which the query time is tφ̃ = O(log logK1
φmax

φmin ).89

3 A DP formulation90

Let Det(k, s), with d ≤ s ≤ d + pk, denote a Det problem in which the pivotal91

job is Jk and the start time of the earliest tardy job is s. Kovalyov and Kubiak [4]92

noticed that there exists 1 ≤ k∗ ≤ n and s∗, where sk∗V := max{d + 1, pk∗} ≤93



s∗ ≤ sk∗U := d + pk∗ , such that any optimal solution to Det(k∗, s∗) is an optimal94

solution to Det. Thus, Det reduces to solving N∗ :=
∑n

k=1(skU − sKV + 1) prob-95

lems Det(k, s), s = sKV, . . . , sKU, k = 1, . . . , n. Note that N∗ ∼ nd = O(nL) is96

pseudo-polynomial in the input size, so solving (or even approximating) all N∗97

Det(k, s) problems and taking the best solution results in a pseudo-polynomial98

algorithm. Therefore, Kovalyov andKubiak [4] turn to approximating only a num-99

ber of Det(k, s) problems that is logarithmic in N∗.100

Theorem 6. ([4, Lemma 2])The best solution in the family of (1+ ϵ
3)-approximate101

solutions for Det(k, d + (max{d + 1, pk} − d)(1 + ϵ
3)

ik), k = 1, . . . , n,102

ik = 1, . . . , 1+ 3 log pk
ϵ , is a (1+ ϵ)-approximate solution for Det.103

Thus, by Theorem 6, all we need to do in order to obtain an FPTAS for Det is104

to design an FPTAS for Det(k, s). Kovalyov and Kubiak [4, Theorem 1] design105

an FPTAS for Det(k, s) with running time O(n4 log
3 L
ϵ2 ), resulting in an FPTAS for106

Det with running time O(n5 log
4 L
ϵ3 ).107

To develop our FPTAS, we first show how to compute the makespan of a sched-108

ule, with pivotal job Jk and the earliest tardy job starting at s, using a set of simple109

recursive equations similar to the ones given in [4, page 291]. The equations will110

be developed for the indexing of jobs as follows. Let us index all jobs, except for111

the pivotal job J0, according to Smith’s rule so that p1
w1
≤ . . . ≤ pn−1

wn−1
(Smith [7]).112

Kubiak and van de Velde [6] observe that there exists an optimal schedule, where113

early jobs are sequenced arbitrarily followed by the pivotal job, which in turn is fol-114

lowed by tardy and suspended jobs, if any. The former are sequenced in increasing115

order of their indices, the latter’s order is arbitrary. We formulate our recursive116

equations forDet(k, s) as follows. LetM =
∑n−1

j=0 pj+(D−d)
∑n−1

j=1 wj = O(nL2)117

be an upper bound on the makespan of any schedule with no idle time in the118

bounded case, and let M = O(nLn) be such an upper bound in the unbounded119

case. Denote collectively the following definitions as (1):120

f0(y) = s, g0(y) = s− d, y = 0, . . . , s− p0,

fj(y) =
{

fj−1(y) + pj + wjgj−1(y), if 0 ≤ y < pj,
min{fj−1(y− pj), fj−1(y) + pj + wjgj−1(y)}, if y = pj, . . . , s− p0,

gj(y) = min{fj(y),D} − d, y = 0, . . . , s− p0.

121

Theproblem is a knapsack-type problem, where the items considered to be placed122

in the knapsack are the jobs, the knapsack size is the time s− p0 to schedule early123

jobs, item i size is pi, the cost of placing an item in the knapsack is zero (it is124

an early job), and the cost of not placing an item in the knapsack is the time to125

process it as either a tardy or a suspended job. Then, fj(y) is the makespan of an126

optimal schedule of jobs 0, . . . , j, where at most y time is allocated to early jobs.127



If job j is scheduled early, then it does not change the makespan, but it decreases128

the time allocated for the remaining early jobs, i.e., fj(y) = fj−1(y − pj). Then,129

gj−1(y) is the delay of job j when its starting time is the makespan of an optimal130

schedule of jobs 0, . . . , j − 1 with at most y time allocated to early jobs. In this131

way, if job j is scheduled as either tardy or suspended, then it finishes at fj(y) =132

fj−1(y)+ pj+wjgj−1(y). Note that the makespan of Det(k, s) equals fn−1(s− p0).133

4 An FPTAS for the bounded case134

Now, based upon (1), we are ready to state and analyze the FPTAS for Det(k, s).135

Algorithm 2 Function SolveDet(k, s, ϵ)
1: Let K← n−1

√
1+ ϵ, f̃0(·) ≡ s

2: for j = 1 to n− 1 do

3: f̄j(y)←
{

f̃j−1(y) + pj + wj(min{̃fj−1(y),D} − d), if 0 ≤ y < pj,
min{̃fj−1(y− pj), f̃j−1(y) + pj + wj(min{̃fj−1(y),D} − d)}, if y ≥ pj,

4: f̃j(·)← Compress( f̄j(·), {0, . . . , s− p0},K) /* f̄j(·) as defined in line 3 */
5: return f̃n−1(s− p0)

Theorem 7. Function SolveDet(k, s, ϵ) computes a (1 + ϵ)-approximation for136

Det(k, s) in O
(
n2
ϵ log L log(nL) log n log(nL)

ϵ

)
time.137

Proof. We note first that all calls to Compress are well defined, because f̄j(·) are138

non-increasing functions.139

We start by analyzing the error bound. We show by induction that f̃j(·) is a Kj-140

approximation of fj(·), j = 0, . . . , n − 1. The base case for j = 0 holds true141

due to the initialization of (1) and Step 1 of Algorithm 2. We assume by induc-142

tion correctness for m − 1, i.e., f̃m−1(·) is a Km−1-approximation of fm−1(·), and143

prove that f̃m(·) is a Km-approximation of fm(·). When the value of the index of144

the for loop ism, we get by the induction hypothesis and the calculus of approxi-145

mation that f̄m(y) is a Km−1-approximation of fm(·). Calling Compress in Step 4,146

by Proposition 5 with parameters set to K1 = K and K2 = Km−1, we get that f̃j(·)147

is a Km-approximation of fj(·) as needed.148

Now, we analyze the running time. First, note that no actual computation is in-149

volved in Step 3, because we did not fix a value of y yet, but including this step in150

the algorithm helps us for the analysis. Due to Proposition 5, the running time151

of Step 4 is O
(
t̄fm logKM log(s − p0)

)
. By the definition in Step 3, we get that152

t̄fm = O(t̃fm) = O(log logKM), where the second equality is due to Proposition 5.153

Moving to base 2 logarithm, substitutingM with nL2 and s− po with L, using the154



equation logK = log n−1
√
1+ ϵ = O( ϵn) and taking into account that there are n155

iterations, the claimed running time follows.156

Remark. Regarding line 1 in Algorithm 2, we assume (by setting the rounding157

mode of the floating point unit to ”round down”, so we get an overestimate) the158

root operation takes constant time. Alternatively, we can set K = 1+ ϵ/2(n− 1)159

and proceed as in the proof of [2, Theorem 8.2].160

5 An FPTAS for the unbounded case161

In this case, the upper bound on the makespan of any schedule with no idle time162

turns to M = O(nLn), instead of M = O(nL2), so the log(nL) terms in the run-163

ning time of SolveDet for the bounded case turn to O(n log L). Therefore, we164

get for SolveDet the running time of O
(
n3
ϵ log2 L log n log L

ϵ

)
, and the resulting165

FPTAS for Det runs in O
(
n4
ϵ2 log

3 L log n log L
ϵ

)
time.166
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