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The single-item stochastic lot-sizing problem is to find an inventory replenishment policy in the presence of discrete
stochastic demands under periodic review and finite time horizon. A closely related problem is the single-period newsvendor
model. It is well known that the newsvendor problem admits a closed formula for the optimal order quantity whenever
the revenue and salvage values are linear increasing functions and the procurement (ordering) cost is fixed plus linear. The
optimal policy for the single-item lot-sizing model is also well known under similar assumptions.

In this paper we show that the classical (single-period) newsvendor model with fixed plus linear ordering cost can-
not be approximated to any degree of accuracy when either the demand distribution or the cost functions are given by
an oracle. We provide a fully polynomial time approximation scheme for the nonlinear single-item stochastic lot-sizing
problem, when demand distribution is given by an oracle, procurement costs are provided as nondecreasing oracles, hold-
ing/backlogging/disposal costs are linear, and lead time is positive. Similar results exist for the nonlinear newsvendor
problem. These approximation schemes are designed by extending the technique of K-approximation sets and functions.
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1. Introduction

Inventory control plays a significant role in operations man-
agement. In a typical inventory system, a facility, e.g.,
a retail outlet or a warehouse, maintains an inventory of a
particular product. Because demand is random, the facility
only has information regarding its distribution. The facil-
ity’s objective is to decide at what point to reorder a new
batch of products, and how much to order so as to mini-
mize the expected cost of ordering and holding inventory.
In many such systems, ordering costs consist of two com-
ponents: a fixed amount, independent of the size of the
order, e.g., the cost of sending a vehicle from the supplier to
the facility, and a variable amount that is linearly dependent
on the number of products ordered. Inventory holding cost,
typically linear with the amount of inventory kept at the
end of each time period, is incurred at every time period.

1.1. Newsvendor Problem (NV)

A fundamental single-period problem in stochastic inven-
tory theory is the newsvendor problem (NV). A vendor
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needs to decide how many units x of an item with short life
cycle (such as newspapers, fashion items, and electrical cir-
cuits) to order based on the known demand distribution, the
costs of ordering, and the revenues from sales and salvage.
Let the cost of ordering x units of the item in the beginning
of the period be ¢(x), the revenue of selling x units through-
out the period be r(x), and the salvage value of returning
x units in the end of the period be s(x), where all these
functions are nonnegative and nondecreasing. The stochas-
tic demand D for the item is a discrete random variable with
support that is contained in [0, ..., M] for a given M, and
is described by the cumulative distribution function (CDF)
F(y) = Fp(y) =Prob(D < y). Having x units of inventory
in the beginning of the period, the vendor decides on the
number y of items to order to maximize her profit, i.e.,

7(x) = m}z}x Ep[r(min(D, x 4+ y))
+ s(max(x+y—D,0)) —c(y)], (1)

where the expectation is with respect to the random variable
D. Arrow et al. (1951) showed some 60 years ago that if
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all costs and revenues are linear, i.e., c(x) = cx, r(x) =rx,
and s(x) = sx (clearly, these cost parameters must satisfy
r > ¢ > s, otherwise the problem can trivially be solved),
then this problem permits a simple solution: Determine
the maximum value S such that F,(S) = Prob(D < §) <
(r —¢)/(r —s) and order enough (i.e., max{0, S — x}) to
bring the stock level to S, the so-called base stock policy.
See also Simchi-Levi et al. (2005, p. 120) or any basic book
on inventory management. Interest in the NV has greatly
increased over the past 50 years. This interest stems from
the fact that the problem serves as a building block in many
inventory models as well as its relevance to practice.

1.2. Nonlinear Newsvendor Problem (NNV)

Assuming that the ordering cost c¢(-), revenue r(-), and
salvage value s(-) are all linear functions in the number
of units is often not realistic, e.g., when the ordering cost
includes a setup cost and quantity discounts. Indeed, during
the last half century a large body of work has been focused
on the structure of the optimal policy as a function of the
initial inventory level, under various assumptions. In the
following paragraph we give a few examples. Please refer
to the excellent extensive survey of Porteus (1990) and the
references therein for more detail.

We first address the case of convex revenues and holding
costs.! It is well known that then a base stock policy is opti-
mal. In the case of quadratic revenues and holding costs,
base stock policy is known to be optimal, where S equals
the mean demand. If in addition there are order setup costs,
then (s,S) policy is optimal, i.e., one orders enough to
bring the stock level up to S if the initial stock level is bel-
low s, and does not order otherwise. When there are min-
imum and maximum order quantities and piecewise-linear
order costs then the optimal order level is a piecewise-linear
function of the initial stock level. If the order costs are
convex, then generalized base stock policy is optimal, i.e.,
the stock level after ordering is an increasing function of
the initial stock level, and the optimal amount ordered is a
decreasing function of the initial stock level; if in addition
the ordering cost is also piecewise linear, a finite gener-
alized base stock policy is optimal, i.e., there is a finite
number of distinct base stock levels. In the case of con-
cave order costs, a generalized (s, S) policy is optimal, i.e.,
the level y(x) up to which one orders, as a function of the
initial inventory level x has the following form: there are
two parameters, s and S, such that y(x) =0 if x > s, and
y(z) Zy(x) =S > s for z<x<s. When x < s, then a pos-
itive order is made. The lower the initial level of inventory,
the higher the level of inventory after ordering. If, on the
other hand, the order costs are piecewise linear and con-
cave, a finite generalized (s, S) policy is optimal, i.e., there
exist 5, <5 <--- <5, <5, <--- <5, < S such that the
optimal policy, as a function of the initial inventory level x
is to order up to S, if x < s, order up to S, if 5, <x <s,,
and so on, order up to S, if 5,_, < x < s,, and do not order
otherwise. We note that in the general case where all these

functions are arbitrarily nondecreasing, an optimal policy
does not have any structure. Perhaps for this reason there
is almost no research about the general case.

1.3. Single-ltem Stochastic Lot-Sizing
Problem (SLS)

We also address the single-item stochastic economic lot-
sizing problem (SLS). This problem can be described as
follows. Let T be the length of the planning horizon.
At the beginning of each period +—e.g., each week or every
month—the inventory of a certain item at a warehouse is
reviewed, the inventory level is noted, and an order of x,
units is placed. If x, > 0, the order arrives after L time
periods, i.e., there is a lead time of L time periods. Just
after the replenishment decision is made, the demand D,
is observed. The demand is either immediately satisfied or
(partially) backlogged, depending on the inventory on hand.
Backlogging is represented as a negative inventory level.
Last, a disposal decision is made. The holding/backlogging
cost is accounted for at the end of the time period. The
random variables D, ..., D, are independent, and are not
necessarily identically distributed. We assume without loss
of generality that there is no demand in the last L 4 1 time
periods, i.e., Dy =--- = D;_;, = 0. We summarize below
the functions and variables involved (t=1,...,T):

X,—procurement quantity in time period ¢ (if L > 0 then
xo=--=x_, =0);

I,—inventory level at the beginning of time period ¢, just
before the arrival of an order;

¢,(x)—procurement cost in time period ¢, given an order
of size x > 0;

y,—disposal quantity in time period ¢;

d,(y)—disposal cost in time period ¢, given a disposal
of size y > 0;

h,(x)—holding cost in time period f, given positive
inventory level x at the end of the time period;

b,(x)—backlogging cost in time period ¢, given negative
inventory level —x at the end of the time period.

(For ease of notation we define ¢,(0) = d,(0) = b,(0) =
h,(0) =0 and h,(x) = b,(—x) for x < 0.) We assume
functions ¢,(-),d,(-), h,(-),b,(-) are all nonnegative
rational valued, and are computed in polynomial time.
We denote by D the random vector of demands, i.e., D =
(D, ..., Ds). The procurement and disposal cost functions
¢,(+),d,(+) are nondecreasing nonnegative over Z*, and
the holding cost function 4,(-) is nonnegative and uni-
modal over Z and attains a minimum at x = 0.

The objective is to minimize the total expected cost. The
problem can be formulated as finding

T
(1) =minEy( S () +4,0)

t=1

+ht([t+xt—L_yt_Dt))’ (2)
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where the expectation is taken with respect to the joint dis-
tribution of D,, ..., D,, and subject to the system dynamics
L,=L+x_,—y,—D, t=1,...,T. 3)
The action space requirement is x,,y, € Z* fort=1,..., T
and the initial inventory level is /,. The boundary condi-
tion is that the values of hy(x), by(x) are very high for
positive x. Because the demand in the last L + 1 periods is
zero, this condition implies that any optimal solution will
end time period T with zero inventory.

In the case of fixed plus linear procurement costs and lin-
ear holding and backlogging costs it is well known that
the optimal policy is (s,,S,), i.e., in time period f, if
the observed inventory level is below the reorder level s,,
then an order is placed so that the inventory level will
reach the base-stock level S,, otherwise nothing is done.
See Simchi-Levi et al. (2005), Porteus (2002), and Zipkin
(2000) for an in-depth coverage of the topic. We note that
although the structure of the optimal policy is known, it
is #P-hard to calculate the reorder points and base-stock
levels even in the special case where the cost functions
are all linear (Halman et al. 2009b). The hardness proof of
Halman et al. (2009b) relies on the hardness of evaluating
CDF of convolutions of discrete random variables. We also
note that the NP-hardness of the deterministic lot-sizing
problem, proved some three decades ago by Florian et al.
(1980) (even for the special case of zero holding costs,
fixed plus linear production costs, and capacity limits, i.e.,
c,(x)=8,.0c, +c/x, ¢}, ¢/ € Z* for production quantity x
up to the capacity limit for period ¢, and c,(x) = M for x
above that capacity limit and a sufficiently large integer M),
implies NP-hardness of SLS as well. (If in the determin-
istic lot-sizing problem backlogging is not allowed, we set
the backlogging costs in the corresponding SLS problem to
be arbitrary large.)

1.4. Inventory Systems When Information Is
Given as an Oracle

To the best of our knowledge all past work about the
newsvendor problem assumed that either all functions are
given to the vendor explicitly as formulae, or that additional
structure about the revenue, salvage, and order cost func-
tions is known. But this is not always a realistic assumption.
For example, in some cases, the supplier does not reveal the
order cost function c(-) to the vendor, and instead gives
quotes c(x) for every query x submitted by the vendor. This
scenario applies, for example, when the vendor purchases
in the spot market, as well as situations where orders are
placed over the Internet. For instance, suppose the vendor
is a tourism agency that books a block of seats in a specific
flight. It is not realistic to assume that the airline provides
the vendor with the function c(-), revealing in this way the
number of seats it allocates in each of the various book-
ing classes. We believe the aforementioned quotes model is

more appropriate in these settings, i.e., the various functions
are given to the vendor as “black boxes” or oracle functions.

The same holds for demand forecast. Indeed, firms typi-
cally maintain a database that includes historical customer
demand information and update it with daily or weekly
point of sale (POS) data. In such an environment, there
may not be a function representing the demand distribution.
Rather, the database provides the probability that demand
(or more precisely, sales) is smaller than a certain value,
for any value inspected by the user.

Another reason to use oracle functions for represent-
ing nonlinear cost functions is that oracle functions do not
restrict the nonlinear function to be given in any particular
form. Thus, a fully polynomial time approximation scheme
(FPTAS) that relies on an oracle function will be an FPTAS
for any function that can be computed in polynomial time.
Oracle functions also permit strong negative results, such
as proving that an exponential number of steps are required
to solve a problem.

1.5. An Alternative Inventory Control Approach

In this paper we show that the optimal expected profit of the
NNV model cannot be approximated to within any given
constant factor. This begs the question, what can the firm
do to identify effective inventory control policies? Moti-
vated by common firm behavior in the market, we propose
to focus on two dimensions when maximizing business
performance: expected profit and profit-to-cost ratio. For
example, the expected profit-to-cost ratio of the newsvendor
problem when having x units of inventory in the beginning
of the period and ordering y units is

Ep[r(min(D, x +y)) + s(max(x +y — D, 0))]
c(y)

We claim that a reasonable strategy is to look for a pol-
icy that maximizes expected profit while providing a given
minimum (expected) profit-to-cost ratio. Indeed, this was
the case for IBM when the firm decided to sell its PC busi-
ness in 2004 to Lenovo—it was not because of lack of
profit; rather, it was because of low profit margins (low rel-
ative to margins in other IBM businesses). In other words,
many businesses avoid investments if the profit-to-cost ratio
is close to zero or negative. Rather, they only invest if the
profit-to-cost ratio is strictly positive, and possibly more
than some target level v. (The profit-to-cost ratio is often
referred to in the business literature as return on investment
or ROI. This ratio has a one-to-one correspondence with
the profit margin, i.e, the profit-to-revenue ratio.)

This idea is nicely illustrated in Figure 1 where we
present expected profit for the linear NV model as a
function of order quantity (A) or of profit-to-cost ratio
(B). As the reader observes, expected profit decreases
with profit-to-cost ratios. Thus, a minimum requirement on
(expected) profit-to-cost ratio corresponds to a specific level
of expected profit. Of course, the order quantity maximizing

—1.

v(y) =
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Figure 1.  Expected profit for NV with unit cost $10,
unit revenue $11, and D ~ N (u = 40K,
o =6K).
(a) Expected profit as function of order quantity
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expected profit is not the same as the order quantity maxi-
mizing expected profit-to-cost ratio, which in the case of the
linear NV is equal to ordering a single unit. In Figure 1(a),
the maximum expected profit is $29,200 and is achieved by
ordering 32,020 units thus returning an expected profit-to-
cost ratio of 9.13%. However, ordering only 29,000 units
achieves an expected profit of $28,130 (which is 97% of
maximal expected profit) but increases expected profit-to-
cost ratio to 9.7%: this is a cut in the gap between maximal
profit-to-cost ratio (10%) and the one associated with opti-
mal profit (9.13%) by 66%.

Following this discussion, we suggest that firms plot
their expected profit as a function of expected profit-to-cost
ratio (Figure 1(b)) and apply it to determine their strategy.
This approach allows us to overcome the challenge associ-
ated with the inability to approximate the optimal expected
profit of the NNV model as explained below.

1.6. Our Results

We establish that the nonlinear version of the NV problem
is provably hard, even in the case that the revenues are
linear, and the costs are fixed plus linear. In fact, we show
that determining whether there is a solution with positive
profit is hard. In such a case, there can be no polynomial
time approximation algorithm with a bounded error.

We show that even though the linear newsvendor prob-
lem is easy to solve—i.e., it is easy to compute the opti-
mal order quantity—calculating the expected profit takes an
exponential number of queries in the worst case under the
assumption that the demand probability distribution is given
as an oracle. This demonstrates that the gap between the
complexity of finding the argument (i.e., order quantity) of
the optimal solution and finding the value (i.e., profit) of
this solution is exponential. The proof of this result also
implies that the newsvendor problem with fixed plus lin-
ear costs requires exponential number of queries to deter-
mine the optimal order quantity and optimal expected profit.
The reverse is also true. That is, if the demand distribu-
tion is given explicitly, but at least one of the cost (or rev-
enue) functions is given as an oracle, then the problem is
intractable.

Not only inventory systems when information is given
as an oracle are intractable, we also show that these sys-
tems cannot be approximated to within any given constant.
We can still give positive results by following the alternative
approach previously discussed. Specifically, we develop an
FPTAS for NNV that approximates the function plotted in
Figure 1(b): For every positive €, 6, and v our algorithm
determines a solution with profit-to-cost ratio of at least v,
and with profit at least 1/(1+ €) times the profit of an opti-
mal solution that has profit-to-cost ratio of at least »(1+ 9).
The running time is polynomial in the size of the problem
and in 1/€ + 1/0 4+ 1/v. Our algorithm approximates all
nonlinear newsvendor problems so long as the purchase
costs are monotonically nondecreasing in the amount pur-
chased, and the revenues are monotonically nondecreasing
in the amount purchased. We show that in general it is not
possible to set either €, 6, or v to zero.

Using a similar approach we give an FPTAS for SLS
under a wide range of assumptions on the data. We assume
that ordering, holding, backlogging, and disposal costs are
all nonnegative and monotonically nondecreasing. We also
need a somewhat technical (but realistic) assumption on
the cost of carrying an excess unit of inventory (i.e., on its
holding and disposal costs). This allows us the relaxation of
the convexity assumption made in Halman et al. (2009b).
In addition, it enables us to give FPTASs for various SLS
models with a positive lead time.

1.7. Relevance to Existing Literature

To the best of our knowledge, no FPTAS has been reported
in the literature for NNV. Recently, Chubanov et al. (2006)
and Ng et al. (2010) have developed FPTASs for the
deterministic capacitated lot-sizing problem. Halman et al.
(2009b) provide an FPTAS for the special case of SLS
where the procurement cost is convex. To the best of our
knowledge, no FPTAS is known for SLS even for the spe-
cial case where the procurement cost is fixed plus linear.
Moreover, to the best of our knowledge no approximations
with worst-case guarantees for SLS with a positive lead
time exist in the literature. Last, we note in passing that
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approximations for stochastic inventory control problems
with bounded error are not common, see Levi et al. (2007,
2008) and Halman et al. (2009b) for a few examples.

1.8. Technique Used

To develop the approximation schemes for NNV and SLS
we build upon and extend the technique of K-approxi-
mation sets and functions, introduced by Halman et al.
(2009b). For every constant K > 1, the idea is to approxi-
mate a monotone nonnegative function f within a ratio K,
by a piecewise-constant function f with “small” number
of break points (i.e., polynomial in the size of the input
and log, (max f/min f)). The K-approximation piecewise-
constant function f can be minimized efficiently, e.g., by
enumerating over all the break points that belong to the
K-approximation set.

1.9. Our Contribution

This paper makes four contributions. First, we provide new
hardness results for finding the maximum expected profit
for various NNV models or approximating these values.
Second, we provide FPTASs for NNV models in the case
that the profit-to-cost ratio is bounded away from zero.
In fact, this is the first paper to relate expected profit to
profit-to-cost ratio as an approach to suggest an effective
strategy. Third, this is the first paper to focus on inventory
models where the data is given in a form of a query to
an oracle. Our use of oracle functions makes our approxi-
mations schemes valid for a wide range of cost functions,
revenue functions, and distributions. Fourth, we provide
more general conditions that guarantee the existence of an
FPTAS. Indeed, in Halman et al. (2008) the authors develop
a framework for deriving FPTASs for certain stochastic
dynamic programs with additive objective functions consist-
ing of monotone or convex nonnegative functions (e.g., min-
imizing costs or maximizing revenues). Here we extend it
to problems with additive functions of monotone or convex
(not necessarily nonnegative) functions, thus enabling us to
approximate maximization of profits. We also extend the
aforementioned framework to deal with implicitly defined
random variables. Thus, instead of requiring the random
variables to be represented explicitly as sequences of values
and probabilities, the extended framework can deal with
implicitly defined random variables such as Poisson or nor-
mal distributions.

1.10. Organization of the Paper

In §2 we present the hardness results. In §3 we first
review K-approximation sets and functions and then give
new results about approximations of cumulative distribu-
tion functions and subtraction of functions. Using the mate-
rial given in this section we provide an FPTAS for NNV
in §4. In §5 we review nonincreasing stochastic dynamic
programming, which we use in §6 to develop FPTASs for
various models of SLS with disposal. In §7 we deal with

several extensions such as SLS with a positive lead time,
implicitly described random variables and nonexact evalu-
ation of CDF and cost functions. We conclude the paper
with a discussion and open problems.

2. Hardness Results

In this section we show that NNV is intractable and does
not admit a constant-factor approximation algorithm in gen-
eral. Our hardness results rely on the following trivial
observation:

OBSERVATION 1. Finding a minimum of an arbitrary
integer-valued function f: [0, ..., N]—Z, or even deciding
whether such a minimum realizes in either [1,..., |[N/2]]
or [[N/2],..., N] requires N + 1 queries in the worst case.

Of course, if we have additional information about the
function, the number of queries needed may be reduced.
For example, if the function is monotone, only two queries
are needed. If the function is convex, only O(log N) queries
are needed. But if the function is unimodal with a unique
minimum (e.g., a function that is zero everywhere except
for one point), the number of queries needed is N.

THEOREM 1. The following problems regarding the non-
linear newsvendor problem require exponential number of
function evaluations:

1. Deciding whether there exists a profit that is strictly
positive, even if the revenue and salvage functions are lin-
ear and the demand is fixed.

2. Deciding whether there exists a profit-to-cost ratio
that is strictly positive, even if the revenue and salvage
functions are linear and the demand is fixed.

3. Calculating the expected optimal profit, even if the
ordering cost, revenue and salvage functions are all linear.

4. Calculating the order quantity that maximizes
expected profit, even if revenue and salvage functions are
linear and ordering cost is fixed plus linear.

Moreover, none of problems 1, 2, and 4 is approximable
within any given constant factor.

ProoF. Considering the first two problems, let the fixed
demand be D = N, the revenue for each item sold be one,
the salvage value is zero, and the cost of each item pur-
chased be one except items i* and i* 4+ 1. Item i* costs
zero, and item i* 4+ 1 costs two. The index i* (which min-
imizes the function f(x) = cost of item x) is unknown to
the newsvendor and must be determined by evaluations of
f(-). If i* < N and if one orders exactly i* items, then one
obtains a profit of one. Otherwise the optimum profit is
zero. Observation 1 tells us that deciding whether i* < N
requires }(N) queries in the worst case. Note that these
two problems cannot be approximated to any degree of
accuracy in polynomial time.

We next consider the following instance of the linear NV
problem. Let the per-unit cost and per-unit salvage value be
identical and equal to one. Let the per-unit revenue be two.
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The support of the demand D is {1,..., N} and its proba-
bility distribution function (PDF) is P(D =i) =2i/(N(N +
1)) for all indices i =1,..., N but i* — 1, i*, for which
P(D=i*)=0and P(D=i*"—1)=(2Q2i*—1))/(N(N +
1)). So the PDF of D over 1,..., N is minimized at i*
(with value zero) and is positive otherwise. Moreover, the
CDF is Fp(i) = (2X)_, j)/(N(N + 1)) for all i # i* — 1.
Note that finding i* via either the PDF or the CDF takes
the same number of oracle calls. Note also that the instance
input size is O(log N). In this case an optimal policy is to
order N units, and the resulting profit is

2 i 2 .\ 2N+1 2i*
—_— =1 )= — .
N(N+1)\‘ 3 N(N+1)

J=1

E(D) =

Therefore, computing the expected profit is equivalent to
finding *, which by Observation 1 requires O(N) queries
in the worst case.

We last look at the instance of the NV problem consid-
ered above, where the value of N is odd and with an order-
ing setup cost of (2N2+3N —2)/(3(N +1)). If i* < N /2,
then every optimal policy must place an order and results
in a strictly positive expected profit. Otherwise, the optimal
policy is to order nothing and it yields zero profit. This
implies that approximating the problem within any constant
ratio is equivalent to solving it, i.e., to deciding whether
i* is in either [1,..., [N/2]] or [[N/2], ..., N], which by
Observation 1 requires O(N) queries in the worst case. [

An alternative to using oracle functions is to require that
the nonlinear function be computable in polynomial time by
some Turing machine. This model is slightly less general
than the oracle model.

We conclude this section with showing that NNV does
not admit a constant-factor approximation algorithm in
general.

PrOBLEM Q. Instance: A Turing machine M that com-
putes a real-valued function f(x): [0,..., U]—R in poly-
nomial time for a given value of x in the domain [0, ..., U],
and an integer number L.

Question: Is f(x) # x for at least one x > L?

OBSERVATION 2. Problem Q is NP-hard.

Proor. Problem Q is easily shown to be in the class NP.
Suppose that we consider integers in binary. For each
binary integer x with exactly n bits (the leading bits may
be zero), we associate the following subset of {1,2, ..., n}.
SET(x) = {i | the ith bit of x is 1}.

We carry out a transformation from determining whether
there is an independent set of cardinality K on a graph
G = (V, E) with n vertices. Let f(x) =x—1 if SET(x) has
at least K vertices and is an independent set. Otherwise, let
f(x) = x. Note that f(x) can be computed in polynomial
time. We conclude the proof by noting that the independent
set problem instance has an affirmative answer if and only
if Problem Q with f as described above and U =2", L =0
has a positive answer. [

Using the observation above, we get the following result.

OBSERVATION 3. The problems stated in Theorem 1 are all
NP-hard whenever all cost functions and the CDF are all
computable in polynomial time.

ProOF. We give a proof for the first problem. Proofs for the
remaining problems are similar. Let f(x) be the function
defined in the proof of Observation 2. Note that f(x) can
be computed in polynomial time. Note also that f(x) is
monotonically nondecreasing.

Suppose that the demand is 2", and the revenue per
unit is one. Under these circumstances, the optimum profit
for the newsvendor problem is zero or one according to
whether f(x) =x over [0,...,2"] or not. O

REMARK 1. Computing the optimal order quantity of the
linear NV is already #P-hard if the population (i.e., the set
of Bernoulli random variables representing the demand of
each customer) is subdivided into n subpopulations and if
a piecewise-constant CDF is given for the total demand of
each of these subpopulations. The reason for this is that it is
#P-complete to determine the maximum value x such that
Prob(total demand < x) < d (Halman et al. 2009b). So, it
does not take much for newsvendor problems to become
difficult.

3. K-Approximation Sets and Functions
and Calculus of Approximation

Halman et al. (2009b) introduced the notions of K-approxi-
mation sets and functions explained in the Introduction.
They used these notions in order to solve a single-item
inventory control problem. Halman et al. (2009a) used these
notions in order to give an FPTAS for time-cost trade-
off problems in series-parallel project networks. Halman
et al. (2008) provide a set of general computational rules
of K-approximation functions, which they call the calculus
of K-approximation functions, and which we review next.
In addition to developing the calculus of approximation,
they develop a framework for deriving FPTASs for certain
stochastic dynamic programs and apply their framework on
several basic problems in inventory control, economics, and
finance. In this section we review K-approximation sets and
functions, as well as the calculus of K-approximation func-
tions, and expand the calculus to deal with cumulative dis-
tribution functions and subtraction of functions. To simplify
the discussion, we modify Halman et al. (2009b) definition
of the K-approximation function by restricting its domain
D to be an interval of integers.

Let K > 1 and let ¢: D—R* be a nonnegative function.
We say that ¢: D—R is a K-approximation function of ¢
(K-approximation of ¢, in short) if for all x € D we have
¢(x) < @(x) < Ko(x). The following proposition provides
a set of general computational rules of K-approximation
functions. Its validity follows directly from the definition
of K-approximation functions.

PropoSITION 1 (CALCULUS OF K-APPROXIMATION FUNC-
TIONS HALMAN ET AL. 2008). For i =1,2 let K; > 1, let
¢;: D—R* be an arbitrary function over domain D, and
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let ¢;: D—R be a K;-approximation of ¢;. Let {s;: D— D,
and let a, B € R*. The following properties hold:

1. ¢, is a l-approximation of itself;

2. (linearity of approximation) « + B¢, is a K-
approximation of a+ Be,;

3. (summation of approximation) ¢, + ¢, is a
max{K,, K, }-approximation of ¢, + ¢,;

4. (composition of approximation) @,(¥,) is a K-
approximation of ¢,(,);

5. (minimization of approximation) min{¢,, @,} is a
max{K,, K, }-approximation of min{e,, ¢,};

6. (maximization of approximation) max{@,, ¢,} is a
max{K,, K, }-approximation of max{¢,, ¢,};

7. (approximation of approximation) if ¢, = ¢, then @,
is a K,K,-approximation of ¢;.

Let K > 1. Let ¢: [L, U]—Z" be a monotone function
over the contiguous interval [L,U]={L,L+1,...,U —
1, U}. (Note that the minimal positive value of ¢ is one.)
We say that an ordered set S = {i; <--- <1i,} of integers is
a K-approximation set of ¢ if L,U e SC{L,...,U} and
for each k=1 to r — 1, if i, > i, + 1, then ¢(i;)/K <
@(irs1) < Kep(iy).

LEMMA 1 (HaLMaN ET AL. 2008). Let K > 1 and
¢: [L,U]—2Z" be a monotone function. There exists a
K-approximation set of ¢ with cardinality O(log, (1 +
")), where ™ =max{¢(L), ¢(U)}. Furthermore, this
set can be constructed in O((1 + 7(¢))logy ™ log(U —
L+ 1)) time, where 7(¢) is the amount of time required to
evaluate .

K-approximation sets are very useful for getting succinct
approximations for functions that have large domains:

THEOREM 2 (HALMAN ET AL. 2008). For i = 1,2 let

K;>1,L; 21 and let ¢;: D—>R' be a function over

domain D. Let §,;: D—R be a L;-approximation of ¢,. For

every fixed x € D, let ;: D x E— D be a function such that

@;(W,(x, +)) is monotone over the totally ordered domain E.

If S;(x) C E is a K;-approximation set of ¢;({;(x, -)), then
min  {¢,(,(x,y)) + & (¢, (x, y))}

YES(x)USy (x)

is a max{L,, L,, min{K,L,, K,L,}}-approximation of
min{e, (i, (x, ) + @2 (¥ (x. y))}-

Halman et al. (2009b) use K-approximation sets to con-
struct approximation functions in the following way:

DEFINITION 1 (HALMAN ET AL. 2009B). Let K > 1 and
let ¢: [L, U]—Z* be a monotone function. Let S be a K-
approximation set of ¢. A function ¢ defined as follows is
called the approximation of ¢ corresponding to S. For any
integer L < x < U and successive elements i, i, , € S with
I <x <ipyy let

o(x) ifxesS;

é(x) =
max{¢(i;), ¢(i,,)} otherwise.

Note that ¢ is a K-approximation of ¢. Suppose S is com-
puted according to Lemma 1. If we calculate the values of ¢
on § in advance and store them in a sorted array (x, ¢(x)),
then any query for the value of ¢(x), for any x, can be cal-
culated in O(log|S|) = O(loglog, (1 + ¢™*)) time. This is
done by performing binary search over S to find the con-
secutive elements i;, i, € S such that iy <x <i,.

3.1. On Approximating Cumulative
Distribution Functions

In this subsection we expand the calculus of K-approxi-
mation to deal with CDFs. One of the assumptions Halman
et al. (2008) make in their framework is that the CDF of
each random variable D is given explicitly as a set of ordered
pairs (d, Prob(D =d)). In this section we show a way of
using CDFs instead of discrete distributions in the analysis,
hence enabling us to handle random variables with finite
support of size exponential in the size of the remaining input
(i.e., not containing the description of the random variables).

Let D be a random variable whose support set con-
sists of nonnegative integers bounded by M, and let F(-)
be its CDF. We assume that we have access to an ora-
cle for F(-). Let () be a monotone nondecreasing real-
valued step function with breakpoints at a; < --- < a,,. Let
f(-, ) be a real-valued function, e.g., f(x, D)=x—D or
f(x, D) =min(x, D). We are interested in computing the
following function approximately

X(x) =Ep(h(f(x, D)) = >_(f(x,d))Prob(D = d)
d=0

=Y Y (f(x, d))(F(d)—F(d—1)).
d=0

It turns out that this becomes easier if one represents /(- )
in an unusual manner. We represent it as the sum of two-
step functions ¥;(-), where a two-step function has the
property that ;(x) =0 for x < a;, and ;(x) is constant
for x > a;. More specifically, we write

b = (),
where

P(a;) —P(a;,)

0 otherwise,

if x > a;

i (x) =

and where (a,) = 0. It turns out that this representation
is very useful for our purposes. Then

x(x) =Ep((f(x. D)) =3 ¢(f(x, d))Prob(D = d)

d=0

= 3 Y U (f (x, d)) Prob(D = d)

d=0i=1
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- Z(Z ¥,(f (x, d)) Prob(D = d)> “4)

= i(d’(a[) —(a;_,)) Prob(f(x, D) > a;).

If Prob(f(x, D) > a;) is monotone in x then we get that
x(x) is expressible as the sum of n functions, each of
which is a constant times a monotone function. So, to
get an approximated value for y, we first approximate
Prob(f(x, D) > a;), and then sum the n functions.

PROPOSITION 2. Let D be a nonnegative integer-valued
random variable and suppose Prob(f (x, D) > a;) is mono-
toneinx,i=1,...,n Let & [L, ..., U|—>Z" be a nonneg-
ative nondecreasing function. Let K, K, > 1, &(a,) =0,
and let S ={a, <--- <a,} be a K,-approximation set of §.
Finally, let m;(x) denote Prob(f(x, D) > a;) and let W;(-)
be a K,-approximation of n;,(-), i=1,...,n. Then

£)(1) = Y-(E(@) — ()i ()

is a K, K,-approximation of

Ep(¢(f(x, D))).

Moreover, if W;(-) are monotone, then so is §~0( -).

PrOOF. Let ¢y be the approximation of ¢ corresponding to
S (see Definition 1) and let y be defined as in (4). Then

Ep(£(f(x,D))) =3 &(f(x,d))Prob(D =d) < x(x)

d=0
< Y (E@) — £l )i (),

where the first inequality is due to ¢ being a K-
approximation of £, and the second inequality is due to (4),
7, being a K,-approximation of 7,, and because ¢ and ¢
coincide on S. On the other hand, by using similar argu-
ments we have

Ep(£(f(x,D))) =3 &(f(x,d))Prob(D=d) > KLIX(X)

d=0

> o L)~ £ )i,

We conclude the proof by noting that if 7; are all monotone,
then so is &,. O

By applying the above proposition with f(x, D) =x—D
and noting that Prob(x — D > a;) =Prob(D < x — a;) =
F(x—a;) we get
COROLLARY 1. Let D be a nonnegative integer-valued

random variable and let F be its cumulative distribu-
tion function. Let &: [L,...,U]l—Z" be a nonnegative

nondecreasing function. Let K\, K, > 1, £(a,) =0, and
let $={a; <---<a,} be a K-approximation set of §.
Finally, let F be a K,-approximation of F. Then

£() =Y (Ea) — £a, )F(x —a)

i=l

is a K,K,-approximation of

Ep(é(x—D)).

Moreover, if F(-) is nondecreasing, then so is él( -).

We conclude this section by applying Proposition 2 with
f(x,D) = min(x, D) and noting that Prob(min(x, D) >
a;) =Prob(D > a;)8,, = (1 —F(a; —1))0,,, (recall that
0, is one if the expression A is true and is zero otherwise)
we get

COROLLARY 2. Let D be a nonnegative integer-valued ran-
dom variable and let F be its cumulative distribution
function. Let &: [L,...,U]—>Z" be a nonnegative nonde-
creasing function. Let K, K, > 1, £(ay) =0, and let S =
{a, <---<a,} be a K -approximation set of €. Finally, let
F¢ bea K,-approximation of 1 — F. Then

EZ(X) = Z(f(ai) - §(ai—1))ﬁc(ai - 1)5x>a,
i=1
is a nondecreasing K,K,-approximation of

Ep(é(min(x, D))).

3.2. Subtraction of Approximation

In this section we expand the calculus of K-approximation
functions to deal with the substraction of functions. Let
z(x) denote the value of an optimal solution of an optimiza-
tion problem, starting at an initial state x, for every initial
state x (say, the inventory in the system). If such a function
is hard to compute, one aims at approximating it. Because
Halman et al. (2009b) deal with a minimization problem,
they define K-approximation functions so that the error is
one sided and is realized by a feasible policy: for every
K > 1 they construct a function Z that K-approximates z,
i.e., z(x) < Z(x) < Kz(x), for every x. Moreover, for every
initial state x they design a feasible policy P(x) that real-
izes the value given by Z. If one draws the graph of z and
Z, then 7z lies “above” z. To stress this point we will say
that z K-approximates z from above.

If we have a maximization problem on hand, we would
like to construct an approximation function Z so that the
error is still one sided, but of the other side. In other words,
Z is a K-approximation of z from below if (z/K) < 7 < z.
Clearly, if z K-approximates z from above then (z/K) K-
approximates z from below. Similarly, if 7 K-approximates
z from below then Kz K-approximates z from above.
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All the problems dealt by Halman et al. (2009b, 2008,
2009a) are either for minimizing costs or maximizing rev-
enues. If one wants to maximize profit, i.e., the difference
between revenues and costs having a rule in the calculus
of approximation that deals with subtraction is desirable.
Note that such a rule cannot be analogous to “summation of
approximation” (Property 1 in Proposition 1): Let K, K, >
0 be arbitrary small positive numbers and &; be a K;-
approximation of ¢;, i =1, 2. It is easy to see that although
the ratio between ¢, + ¢, and &, + @, is bounded by
max{K, K,}, it is not necessarily bounded between ¢, — ¢,
and ¢, — @, (e.g., whenever ¢, and ¢, are very close to
each other). The next easy proposition that we prove in
the appendix shows that by imposing the restriction that
¢, < ¢, for any given positive constant ¢ < 1/(K,K,), the
aforementioned ratio is bounded.

PROPOSITION 3 (SUBTRACTION OF APPROXIMATION FROM
BELOW). Let ¢;: D—R™ be a nonnegative function over
domain D and K; > 1 be arbitrary, i = 1,2. Let ¢,: D—R™"
be a K -approximation of ¢, from below, and ¢,: D—R™" be
a K,-approximation of ¢, from above. Let ¢ < 1/(K,K,) be
an arbitrary positive real number. If x € D satisfies ¢,(x) <
cor(x) then (&, — &,)(x) is a (1 — K,)/(1 — K, Ky)-
approximation of (¢, — @,)(x) from below.

Proor. For the ease of presentation let us fix x and write
¢; instead of ¢;(x), for i = 1,2. From the definition
of K-approximation functions and because ¢, < ce, we

get that

¢ -

= <@ <o,
1

SO

- c
0, <P, <Ky, @< E(@] — ),

O — & <@ — .
On the other hand,

- - (3 o —¢, KK,—1
‘P1_€Dz>?11_K2€02= IKI - IK] 2
>€01_€D2 I_C(Kle_l)

K, 1-c¢

1—-cK K,
=—= — . g
(1— 0K, (1 — @)

We note that whenever ¢, represents revenues and ¢,
represents costs, then the expression ¢, — ¢, represents
profit. In this case ¢ is an upper bound on the cost-to-
revenue ratio. This ratio has a one-to-one correspondence
with the profit-to-cost ratio v in the following way:

1
c= s
1+v
We can also deal with ¢, that is not necessarily nonnega-
tive. In this case instead of approximating ¢, we will use it

itself. The proof of the proposition below is similar to the
proof of Proposition 3:

1
and v=-—1. 5)
c

PROPOSITION 4 (SUBTRACTION OF APPROXIMATION FROM
BELOW). Let ¢;: D—R" be a nonnegative function over

domain D and K, > 1 be arbitrary. Let ¢,: D—R™ be
a K,-approximation of ¢, from below. Let ¢,: D—R be
an arbitrary function. Let ¢ < 1/K, be a nonnegative real
number. If x € D satisfies @,(x) < co, then (@, — @,)(x)
is a (1 —¢)K,)/(1 —cK,)-approximation of (¢, — ¢,)(x)
from below.

We note that when ¢ =0 we get that ¢,(-) <0, so the
proposition above coincides with summation of approxima-
tion in the calculus of K-approximation functions.

The following proposition is similar to Proposition 4,
is intended for getting approximations from above for min-
imization problems, and is used for approximating the
single-item lot-sizing problem.

PROPOSITION 5 (SUBTRACTION OF APPROXIMATION FROM
ABOVE). Let ¢: D—R* be a nonnegative function over
domain D and K, > 1 be arbitrary. Let ¢;: D—R™" be a
K, -approximation of ¢, from above. Let ¢,: D—R be an
arbitrary function, and let ¢ <1 be an arbitrary nonneg-
ative real number. If x € D satisfies ¢,(x) < c@,(x) then
@1 — ¢, is a (K, —c)/(1 —c)-approximation of (¢, — ¢,)(x)
from above.

We next prove the following theorem, which is the ana-

logue of Theorem 2 for maximization of a difference of
functions.

THEOREM 3. Let K; > 1,L; 2 1 and let ¢;;: D—R* be a
Sfunction over domain D, i =1,2. Let ¢;: D—R be an
L,-approximation of ¢, from below and ¢,: D—R be
an L,-approximation of ¢, from above. For every fixed
x €D, let Y D x E—~D be a function such that both
&, (Y, (x, ), &,(P,(x, -)) are monotone in the same direc-
tion over a totally ordered domain E. Let S;(x) CE be a
K -approximation set of ¢,({;(x,-)). Let ¢ < 1/(K,L,L,)
be an arbitrary positive real number. Then for every x € D,
the value of

l(x)= max G} X,
) yesmx)usz(x)wz(wz(x,y>><<>K1L1L2¢1<wl<x,y>>{ (i (x5)

_Qaz(l!/z(x»Y))} (6)

is at least (1 —cK,L,L,)/((1 —c)K,L,)-times the value of

{(x)= {@1(Yh1(x, ) — 2 (2 (x,¥)) )

™

max
VEE|@y (Y (x, y)) <oy (1 (x,Y))

Moreover, if y© is an argmax of { (x), then

@ (P (x, )’@)) — o2 (Y (x, y@)) >{(x), and
@2(‘#2()@)’@))
@1 (P (x,¥9))
PrOOF. Because of symmetry arguments we can assume

without loss of generality that both ¢, (¢, (x,")),
&,(P,(x,-)) are nondecreasing. Let x be fixed, let y*

<cK,L,L,.
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be the minimal argmax of {, and let x} = ¢;(x, y*), for
i=1,2. From the definition of K-approximation functions
and because ¢,(x3) < c@,(x}) we get that

% ~ -
L—IS% L@, <O <Ly,

! ) ®)
¢y(x3) < :(‘Pl(-xik) — @(x3)).
By the definition of S,(x) and S,(x), we have that y' =
max{y <y* |y € S,(x)US,(x)} satisfies
@1 (¢ (x,5%)) S @1 (¢ (x,y%)) _ @ (x7)

¢ X }/ > = - k]
l(l’[jl( ’ )) K] KIL] K]Ll

where the last inequality is due to (8). Because &, (i, (x, -))
is nondecreasing and by using (8) again we get

& (P (x, ) < @ (P (x,¥")) S Lyy (1, (x, 7)) =L,p,(x3).
(10)

We next show that y satisfies the constraint of the maxi-
mization in (6). Indeed,
@ (x3)

Sa(0)) Ki@rl) gy g 0a00) ey
EWy) S eGP ST
(11)

where the first inequality is because S,(x) US,(x) is a K-
approximation set of @,(¢,(x,-)) and due to the mono-
tonicity of ¢, (i, (x, -)). The second inequality is due to (8),
and the last inequality is due to the constraint of the maxi-
mization in (7). We conclude the first part of the proof by
using (8)—(10) to get

Z(x) 2 @1 (Y(x, ) = &, (r(x,¥)) =

@, (x7)
KL,

_ @1 (x7) — @2(x3) + <K1L —L2>€D2(x;)

KL,
> 1 +c(1—K1L1L2)
KL, (1—-0¢)K,L,
l—cK,L/L,
= ) 12
or Lt (12)
The (exact) value of the approximated solution is

901(‘#1(%)’@)) - %(ll’z(x,y@))
2 ¢ (¢ (x, y@)) — @ (P (x, y@))

> @1 (Y(x, ) — ¢2(,(x, )
1 cKlLleg(x)’

(1-0o)K,L,
where the first inequality is due to (8), and the third
inequality is due to (12). Moreover, its (exact) cost-to-
revenue ratio is

@ (P (x, ) < @ (P (x, )
e (x,¥9) @1 (i (x, ¥9))
where the first inequality is due to (8) and the second
inequality is because y® satisfies the constraint of the max-
imization in (6). O

— Lyp,(x3)

)60 = )

vV

< cK,L,L,,

4. An FPTAS for the Nonlinear
Newsvendor Problem

In this section we design a three-parameter FPTAS for
approximating profit functions as follows. Let v > 0 be a
lower threshold for the profit-to-cost ratio of the solution
obtained by the algorithm. Let 6 > O refer to a relative
deviation of the profit-to-cost ratio of the solution (to be
explained in more detail below). Let € > 0 refer to a relative
deviation of the profit. The algorithm produces a solution
whose profit-to-cost ratio is at least v. Moreover, the profit
of this solution is at least as large as 1/(1 + €) times the
maximum profit under the restriction that the profit-to-cost
ratio is at least v(1+ 6). In other words, the profit is almost
as large as the optimal profit for a slightly perturbed prob-
lem. Moreover, the running time is polynomial in the size
of the problem and in 1/e+1/6 4+ 1/v. We conclude this
section by showing that in general it is not possible to set
either v, € or 6 to zero.

THEOREM 4. Let M € Z be an arbitrary positive number
and let F(-) be the cumulative distribution function of a
discrete random variable D with support that is contained
in [0,M]. Let €,6,v > 0 be arbitrary positive parame-
ters. Let q* be the order quantity of a minimal-cost opti-
mal solution of the nonlinear newsvendor with stochastic
demand D and profit-to-cost ratio of at least v(1+ 8), and
let z(q*) be its value. Then for every v, 5, € > 0 one can
compute in O((log M log® r(M))/(min(e?, §*)v?)) time an
approximate solution with order quantity q' and expected
profit Z(q'), such that its value satisfies z(q*) > 72(q') =
(z(¢*) /(1 +€)) and its profit-to-cost ratio is at least v.

REMARK. It is interesting to note that whenever it is
known that there exists an optimal solution with a profit-
to-cost ratio greater than a given constant a > 0, then the
above three-parameter FPTAS collapses into an “ordinary”
FPTAS—with a single parameter e—by setting, e.g., v =
a/2 and 6 =0.1.

ProOF. For ease of exposition (i.e., in order to get rid of the
max term) we extend the domain of the salvage function
to negative numbers by setting s(x) =0 for all x < 0. Let
1 < K <2 be an arbitrary number (we will fix it soon). For
every 0 < € < 1 we approximate z(-) in (1) by applying
Theorem 3 with

@, (t) = Ep[r(min(D, 1)) +s(t = D)],  ¢(x,y)=x+,
@ (1) = c(1), L =K, =K, =K,
L,=1.

(x,y) =y,

We note that ¢,(-) and ¢,(-) are nondecreasing. We com-
pute for them approximations in the following way.
Because L, =1 we take ¢, = ¢, and @,(i,(x, y)) = c(y),
which is nondecreasing. Hence a K-approximation set S,
for it is well defined. As for ¢,, by linearity of expectation
we decompose it into two functions ¢, = f; + f,, where

Si(0) = Ep[r(min(D, 1)],  fo(t) = Ep[s(t — D)].
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Note that both f, and f, are nondecreasing. We next
approximate f; from below by applying Corollary 2 with
¢§=r,K, =K, and K, = 1. Note that the resulting f|
is a nondecreasing K-approximation of f; from below.
As for f,, we approximate it by applying Corollary 1 with
é=s5,K, =K, and K, =1, and therefore the resulted fz
is a nondecreasing K-approximation of f, from below. Let

fl + f2 By summation of approximation (third prop-
erty in Proposition 1) we get that ¢, is a nondecreasing K-
approximation of ¢, from below. Hence a K-approximation
set S, for it is well defined as well.

By applying Theorem 3 (with K, = K, = L, = K and
L, =1) we get that the value of the approximated solution
is at least (1 — cK?)/((1 — c)K?)-times the value of the
optimal solution z(x), and that the cost-to-revenue ratio of
the approximated solution is at most K?c. We need to fix
K and c such that all of the following statements hold:

1. The profit-to-cost ratio of a minimal-cost optimal
solution is at least v(1+ 6);

2. (regarding a condition in Theorem 3) ¢ < 1/K?;

3. (regarding the value of the approximated solution)
(1=cK?)/((1—0)K?) 2 1/(1 +e€);

4. the profit-to-cost ratio of the approximated solution is
at least v.

To satisfy 1, and by using (5), we set 1/c — 1 =v(1+9),
hence

1
14 v(149)

Note that ¢ < 1. We set

[ 1+e€

l4+ce
thus statement 2 holds as well. It is easy to check that
statement 3 holds for every nonnegative ¢ < 1, and that
statement 4 holds whenever € < 6.

It remains to analyze the running time of the algo-
rithm. Suppose first that € < 8. To find an optimal solu-
tion, because r(x) = c¢(x) > s(x), it suffices to set the
domain of the functions involved to be [0, M]. Also note
that the largest value computed throughout the algorithm
is r(M). In our algorithm we compute approximation sets
for r, s, c, and ¢,. By Lemma 1 each of these approxima-
tion sets is of cardinality O(logg r(M)), and is calculated
in time O((1 + 7;) logy r(M)log M), where 7, is the time
needed to perform a query of the corresponding function.
For the ease of presentation we assume the query time for
r,s,c, F is a constant, so the most time-consuming oper-
ation is to compute the approximation set for ¢;, which
takes O(logy r(M)log M) time, because by Corollaries 1
and 2 each evaluation of ¢, takes O(n) = O(logy r(M))

time. To work with logarithm of base 2 we recall that for
K =146 with 0 < 6 <1 we have 1/(logK) = 0(1/6).

_ev(1+98)
l+e+v(l+8)

(13)

Because of (13) logg r(M) = O(logr(M)/(ev)). If € > &
we set € = 8. Therefore the running time of the algorithm is

0(%).

min(e?, §2)v?

We conclude this section by showing that Theorem 4 is in
a sense the strongest one can hope for:

OBSERVATION 4. One cannot relax the requirement of The-
orem 4 that each one of v, €, and 6 must be a strictly
positive real number.

Proor. We first show that we cannot have v = 0. Indeed,
considering the example in the proof for the two first prob-
lems in Theorem 1 and running the FPTAS with v =0 and
€ =6 =0.1 will result in a decision whether there exists a
positive profit.

We next show that we cannot allow 6 = 0. We change
the example in the proof for the two first problems in The-
orem 1 as follows. Let the fixed demand and the cost of
each item purchased remain the same, and the revenue for
each item sold be now two. Note that the profit-to-cost ratio
when ordering i* units is (*+1)/(i*—1) > 14+2/(N —1)
and is 100% for any other positive order quantity. In this
way, running the FPTAS with € = 0.1, 6 =0, and v =
1+ 1/N will reveal the value of i*.

Last, we show that we cannot have € = 0. We change
the example in the proof for the two first problems in The-
orem 1 as follows. Let the fixed demand remain N. Let
the revenue for each item be three and the salvage value
of each item be two. Let the cost of each item purchased
be two except for items i* and i* + 1. Item i* costs one, and
item i* + 1 costs three. Although the newsvendor knows
that 2N > i* > N, the exact value of index i* is unknown
to her and must be determined by function evaluations. The
optimal policy is to order N +i* (at a cost of 2(N +i*) — 1),
which results in a profit of N + 1. Note that ordering N
units yields a profit of only N. Note also that a minimal-
cost optimal solution has profit-to-cost ratio of at least 25%.
Hence, running the FPTAS with € =0 and 6 = v = 0.1
determines the value of i*. O

5. Nonincreasing Stochastic
Dynamic Programming

In this section, we review the model of decision making
under stochastic uncertainty over a finite number of time
periods that is studied by Halman et al. (2008). The model
has two principal features: (i) an underlying discrete time
dynamic system, and (ii) a cost function that is additive
over time. The system dynamics are of the form

t+l _f[(lt’-xpD) t:l,...,T, (14)

where

t = the discrete time index,
I, = the state of the system,
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x, = the action or decision to be selected in time period ¢,
, = a discrete random variable, and
the number of time periods.

~ O
I

The cost function, denoted by g,(1,, x,, D,), is additive in
the sense that the cost incurred in time period ¢ is accu-
mulated over time. Let /; be the initial state of the system.
Given a realization d, of D,, for t =1,..., T, the total
cost is

T
gT+1(IT+l) + Zgz(ln X5 d,),

t=1

where g, (I;,,) is the terminal cost incurred at the end
of the process. The problem is to determine

T
(1) = min Elsra (i) + Xaton )} 09
=

where the expectation is taken with respect to the joint dis-
tribution of the random variables involved. The optimiza-
tion is over the actions x,, ..., x;. Here, x, is selected with
the knowledge of the current state /, but before the realiza-
tion of D, takes place.

The state /, is an element of a given state space &,, the
action x, is constrained to take values in a given action space
oA,(1,), and the discrete random variable D, takes values in
a given set ¥,. The state space and the action space are one
dimensional. The following theorem states the well-known
DP (dynamic programming) recursion for this model:

THEOREM 5 (THE DP RECURSION (BELLMAN AND DREYFUS
1962)). For every initial state I,, the optimal cost 7*(1,) of
the DP is equal to z,(1;), where the function z, is given
by the last step of the following recursion, which proceeds
backward from period T to period 1:

ZT+1(IT+1) = 8T+1(IT+1),

Zt(lt) ZXIGIKZiI(II)EDI{g,(],,xt,Dt)—I-ZH_l(ft(It,x,,D,))},
t=1,...,T, (16)

where the expectation is taken with respect to the probabil-
ity distribution of D,.

The input data of the problem consists of the number
of time periods 7', the initial state /,, an oracle that eval-
uates gr,;, and oracles that evaluate function g, and func-

tion f,, for each time period t = 1,...,T. For each D,,
we are given n,, the number of different values it admits with
positive probability, and its support &, :={d, ,....d, , },

where d, ; < d, ; for i < j. We are also given positive ratio-
nal probabilities so that the discrete random variable D, is
given explicitly as a set of n, ordered pairs (d, Prob(D, =
d)). Halman et al. (2008) assume the following three
conditions hold:

ConpITION 1. F7y,F,,4,(I)CZ for I,e¥, and t=
1,...,T. For any set X among these sets, logmax ., (|]x+1|)

is bounded polynomially by the (binary) input size, and the
kth largest element in X can be identified in constant time
for any 1 < k < |X|. Moreover, &, CQ fort=1,...,T.

ConpITION 2. For every t =1,...,T + 1, the values of
function g, are nonnegative rational numbers, and their
binary size is polynomially bounded by the (binary) size of
the input.

ConNDITION 3 (NONINCREASING DP). Function g, is
nonincreasing. For every ¢t = 1,...,T, function f, is
nondecreasing in its first variable and monotone in
its second variable, and g, is monotone in its second
variable. Moreover, for each r = 1,..., T, either z, is
nonincreasing, or g, is nonincreasing in its first variable
and ,(I) C A, (I') forall I,I' € F, with I < I'.

The DP formulation (16) that satisfies Conditions 1-3 is
called nonincreasing.

THEOREM 6 (HALMAN ET AL. 2008). Every stochastic non-
increasing DP admits an FPTAS.

6. Single-ltem Stochastic Lot-Sizing
with Disposal

In this section we derive FPTASs for various versions of
SLS with disposal by transforming them into nonincreasing
DPs and applying the framework of Halman et al. (2008).

We transform SLS into a nonincreasing DP as follows.
We split period ¢ in the original problem into two peri-
ods in the transformed problem, denoted as periods 27 — 1
and 2¢. Period 2¢ — 1 corresponds to procurement decisions
and procurement costs in period ¢ of the original prob-
lem. Period 2¢ corresponds to disposal decisions and dis-
posal and holding costs in period ¢ of the original problem.
Whereas production in period 2¢ — 1 in the transformed
problem corresponds to procurement in period ¢ of the orig-
inal problem, production of —y units in period 2¢ in the
transformed problem corresponds to disposal of y units in
period ¢ of the original problem.

It is convenient to consider the stochastic network
flow (SNF) minimization problem corresponding to the
lot-sizing problem as follows. The network G = (V, E)
consists of 2T + 1 vertices labeled O,...,2T. Vertices
1,...,2T are connected in series, and vertex O is connected
to each of the vertices 1, ...,27T. For each odd-numbered
vertex 2¢ — 1 there is an ingoing edge e, ,,_; with cost func-
tion ¢ ,, () = ¢,(-) representing production. There is
also an ingoing edge e,, ,,_; and an outgoing edge e, ; 5.
both connecting to vertex 2¢ with no cost (i.e., ¢;,_; 5,(+) =
Cy2-1(-) =0). If > 1, then there is also an ingoing
edge e, 5, With cost function ¢,y 5,1 (-) =h,_;(-).
Each even-numbered vertex 2¢ > 0 has an outgoing edge
ey, o With cost function ¢, o(-) = d,(-) representing dis-
posal. If t < T, then it has also an ingoing edge e,,, | ,, with
cost function ¢,,; ,,(-) = b,(-) representing backlogging,
see Figure 2.
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Figure 2. Transforming SLS to SNF.
vy V) V3 vy
Let
A(l) = (A, ..., A27+1)

T
= (I—ZD,,DI,O, D2,0,...,DT,0>
=1
be a random vector consisting of the random variables
D,, ..., D;. The minimum stochastic cost flow problem is
the optimization model formulated as follows:

minimize E, , Y ¢ ;(x; ;) (17)
@i, j)eA
subject to
Z Xji— Z X =A;— 10y,
{j: (j. i)€E} {j: (i, j)eE}
i=0,1,...,2T,

where the expectation is taken over the joint distribution of
D,,...,D; and a dynamic flow policy P. A dynamic flow
policy is a decision rule for assigning nonnegative values
for the variables x; i that is determined with the gradual
realization of the random variables D, ..., D;. A policy
P first determines the value of x, ; (which is the number
of units to produce in time period 1). Then the value of
D, is revealed, and based upon this information, the policy
determines the values of x, ,, X, 1, X5 ¢, X5 3, X3 5, and X ;
(which determine the disposal amount in period 1 and the
production amount in period 2). In general, just after the
value of D, is revealed, the policy determines the values of
X 1,200 X21,20-1> X21,05 X2, 2041 X1, 20 AN X 5,4, I is easy
to see that each feasible solution for SLS with cost C is
transferred to a feasible solution for the corresponding SNF
with the same cost, and vice versa.

To formulate the SLS (2) as a monotone DP (16) we
set the time horizon of the transformed problem to consist
of 2T time periods and define the cost functions g,(-) as
follows (recall that if y <0 then 4,(y) = b,(—y)):

&1, x,D)=c,(x),
g2t(17x’D)Zdr(_x)+ht(1+x)9
&r1(1)=0.

t=1,...,T,

Var-1 Var

We define the transition functions f,(-) and the random
variables D1, ..., D), as follows:

fua,x, D)= f,(I, x,D)=1+x—D, D, =D,
D, =0, t=1,...,T.

Let D* be an upper bound (polynomially bounded by the
input size) on the maximum possible aggregated demand

over the entire time horizon. We define the state space and
action space as

Py =Sy =[=D", ..., D",
[~1,...,0]

&dzt—1(1) = [O’ R D*],

for I > 0;
&d2t(1) =
{0} otherwise.

Note that the transformed problem satisfies Conditions 1
and 2. Indeed, Condition 1 is satisfied because both the
state space and the action space are intervals of length at
most 2D*, for every time period. Condition 2 is satisfied
by the assumptions in the problem description.

As for Condition 3, we note that indeed f,,_,(-, -, D),
fo:(-, -, D) are nondecreasing in their first variable and
monotone in their second variable as needed. Moreover,
&,:-1(+, -, D) are nonnegative functions nonincreasing in
their first variable and nondecreasing in their second vari-
able. Furthermore, o(,,_,(I) =,,_,(I') forall I', I € &,,_,
with I’ < I. However, g,,(I,x,D) are not necessarily
monotone in their second variable and z, is not necessarily
nonincreasing. To satisfy Condition 3 we make additional
assumptions as stated in the next subsections.

6.1. Disposal at No Cost

In this section we deal with the case where disposal of
inventory is free of charge.

AssuMPTION 1 (FREE DIsPOSAL). Inventory can be disposed
at no cost at any time period.

THEOREM 7. The single-item stochastic lot-sizing problem
under the free disposal assumption (Assumption 1) admits
an FPTAS.
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PrOOF. Because of Theorem 6 and the discussion in the
end of the section above, it suffices to prove that g,,.(1, -, D)
are monotone and that the cost functions z,(-) are non-
increasing. We note that by the free disposal assumption
d,(-) =0. We also note that 4,(I + x) is nondecreasing
in x € 4,,(I) for every fixed I. Therefore, g, (I,-, D) are
nondecreasing.

We last prove by backward induction that z,(-) are non-
increasing. The base case of z,;,,(I) = gy, (I) =0 is
trivial. The induction hypothesis is that z,,,,(-) is nonin-
creasing. We distinguish between three cases: [ <0, > 0,
and 1 =0. If I <0 we have 3,, = {0} so

(D) =b(=1) + 25, (I) 2 b(=1 = 1) + 25, (I + 1)
=2y (I +1),
where the inequality is due to the monotonicity of the back-
logging cost function and the induction hypothesis. If, on
the other hand, / > O then
2o, (1) =min{h, (1) + 2311 (1), - .., 1,(0) + 25,4, (0) }
> min{hr(l + 1) +Z2t+1(1 + 1)’ ht(l)

+Z2t+1(1)’ e 1, (0) +221+1(0)} =z, (I +1).

Last, if 7/ =0 then

25,(0) = 25,41 (0) = min{A, (1) + 25,11 (1), 25,11 (0)} = 25,(1).

Hence z,,(-) is nonincreasing. It remains to show that
25,1 (+) is nonincreasing as well:

251 (1)
=min{z,, (I = D,), ¢,(1) +2,,(I +1=D,), ..., c,(D*)
+2,,(I+D*=D,)}
>min{z,,(I+1-D,),c,(1)+2,,(I+2—=D,),....c,(D*)
+2,(I+14D*=D)} =z, _,(I+1).

The inequality is due to the monotonicity of z,,. O

We note that the deterministic single-item capacitated lot-
sizing problem (DCLT) is an important special case of SLS
with disposal at no cost. DCLT admits two ad-hoc FPTASs
due to Chubanov et al. (2006), Ng et al. (2010) with running
time dependency in T, € of T''/€® and T7/€*, respectively.
DCLT can be cast as SLS with disposal at no cost because
one can view deterministic demands as stochastic demands
where the supports of the random variables are of cardi-
nality 1 and Prob(D,=d,)=1 for some d,,t=1,...,T.
Moreover, because we are dealing with a deterministic set-
ting, in an optimal policy there will be no disposal. Hence
the free disposal assumption applies. Lastly, we note that
the FPTAS in Theorem 6 has running time dependency in
T,e of T3/€%.

6.2. Disposal at a Cost

When disposal of inventory incurs a cost, we will make the
following three assumptions:

AssUMPTION 2 (BOUNDED DisposaL CosT). There exists a
positive constant k such that for every t =1,...,T, and
for every random vector D' = (D,, ..., Dy) and I € Z, and
for every feasible solution for the lot-sizing problem from
time period t onward, starting with initial inventory I, the
expected cost of that solution is at least k times the total
cost of disposing E(D,) — I,E(D,,,),...,E(Dy;) units
of inventory in time periods t,t + 1,..., T, respectively
(either directly, or indirectly by holding it a few more time
periods and then disposing it, i.e., the cost of disposing x
units in time period t is min{d,(x), h,(x)+d,,(x), h,(x)+
he(x)+d, (%), .., ST h(x) +dp(x))).

AssuMPTION 3 (LINEAR HOLDING AND DisPosaL COSTS).
For every time period, each of the holding, backlogging
and disposal costs is linear.

For each time period t =1,...,T, we denote the per-
unit disposal cost by d,, the per-unit holding cost by #,,
and the per-unit backlogging cost by b,.

Note that this assumption allows the procurement cost
functions to be nonlinear.

AssuMPTION 4 (No BACKWARD DisposaL). For every
time period t =2, ..., T, it is not beneficial to dispose of
inventory in the previous time period, i.e., b,_, +d,_, >
min{d,, h, +d, .\, b, +h +dpns o X B dy )

An easy special case where this assumption holds is
when the per-unit disposal costs are nonincreasing with
time (or even stationary).

We are now ready to give an FPTAS for SLS with dis-
posal costs. The idea is to first transform the stochastic
network flow minimization problem corresponding to the
lot-sizing problem to be monotone by adding a constant C
to any feasible solution. In this way the resulted transformed
problem is a monotone DP, and therefore by the framework
of Halman et al. (2008) admits an FPTAS. We retrieve the
value of the approximated original problem by subtracting
C from the value of the transformed problem. By appropri-
ate choices of C and K, and by using subtraction of approx-
imation this value is at most 1 4 € times the optimal value.

THEOREM 8. The single-item stochastic lot-sizing problem
with bounded disposal cost, linear holding and disposal
costs, and without backward disposal (Assumptions 2-4)
admits an FPTAS.

ProoF. We first note that due to Assumption 3, g,,(1, x, d)
are linear in x € 34,,(I), for every fixed I and d, and there-
fore are monotone.

We next transform (17), the stochastic network flow min-
imization problem corresponding to the lot-sizing prob-
lem, in the following way. We assign to each vertex
t =1,...,2T, a nonnegative number 7, that we call
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a potential. The assignment of potentials goes in back-
ward as follows. We first set m,; = 7,;_; = d. Assum-
ing ,,,, is determined, we set ,, = m,,_; = min{h, +
41, d,}. We continue iterating until setting all potentials
oy, ..., . (Note that all potentials assigned in this way
are indeed nonnegative.) By its construction, the potential
7, is the minimal total cost of disposing a unit of inventory
from vertex ¢ via some vertex j >t in the network, i.e.,

Ty = Ty

T-1
=min{d,,ht+d,+l,h,+ht+1+d,+2,..., Zh,.+dT}.

i=t

(18)

We set 7, =0 and I1 = (7, ..., myp).

We next change the cost functions as follows. We change
the cost of flow in each edge e, to be ¢,  (x) <
¢ ip1(x) + (7, — m;)x. We change the cost of flow in
each edge ¢, ; to be ¢ | ;(x) <= ¢y ;(x) — (7, — ) x.
We increase the cost of flow in edge ¢, 5, | t0 ¢ 5,_,(x) <
Co.21—1(x) + my_ x. Last, we decrease the cost of flow in
each edge e,, ( to ¢}, ((x) <= ¢y, o(x) — myx. In this way
the marginal cost of net inflow to vertex ¢ is increased by
m,, and the marginal cost of net outflow from vertex ¢ is
decreased by mr,.

We now show that the DP formulation corresponding to
the transformed stochastic network flow minimization prob-
lem is a nonincreasing DP. Because the state and action
spaces remain the same as in the original SLS problem,
Condition 1 is satisfied. As for Condition 2, the values
of the transformed functions differ from the original ones
by combinations of 7rs, so by (18) they remain polynomi-
ally bounded by the input size. It remains to show that the
single-period cost functions, which are sums of costs of
flows over edges are nonnegative. It is easy to verify that
the cost of flow from vertex 2t — 1 to vertex 2¢, and vice
versa, is zero. The cost of flow of x units from vertex 0
(which has potential 0) to vertex 2z — 1 is ¢,(x) + m,,_,x.
This cost is indeed nonnegative because c,(-) is a nonde-
creasing nonnegative function and ,,_; is a nonnegative
number. The per-unit cost of flow from vertex 2¢ to ver-
tex 2t 4+ 1 is h, 4+ 7,5, — m,,, so by the recursive defini-
tion of the potentials it is nonnegative. The per-unit cost
of flow from vertex 2¢ to vertex 0 is d, — m,,, which by
the definition of the potentials is a nonnegative number.
Lastly, the per-unit cost of flow from vertex 2741 to vertex
2t is b, + (my, — my, ). If 7y, = h, + m,,,, then this last
term is nonnegative as well. Otherwise m,, = d,, and by the
no backward disposal assumption (Assumption 4) and (18)
this term is again nonnegative.

It remains to show that Condition 3 is satisfied as well.
Because the transition functions in the transformed problem
are the same as in the original SLS problem, and because
we showed above that the single-period cost functions are

nonnegative nondecreasing functions in the amount of flow,
it suffices to prove that the transformed problem is nonin-
creasing in the amount of inventory. It suffices to show that
the choice of the potentials implies that for every vertex i,
the cost of flow to either vertex O (if edge e, , exists) or
vertex i+ 1 is zero. This implies that the transformed prob-
lem is nonincreasing—the more inventory we have on hand
the less expenses we have to satisfy the demand. (A for-
mal proof for this is via backward induction, similar to the
proof of Theorem 7.) Suppose first that i = 2¢f — 1. Then
the cost of flow of x units on edge e,,_; 5, is ¢, ; ,,(x) =
0+ (5, — my,_1)x = 0. If on the other hand i = 2¢, then
edge e,, , exists and with cost ¢}, ((x) = d,x — mx per
x units. If this cost is not zero, i.e., if m,, # d,, then we
must have m,, = h, + m,,,, i.e., Ty — T, = —h,. But
then the cost of flow of x units on edge ey, 5,11 18 ¢y, 5,4 =
h,x + (7, — m,,)x = 0. To summarize, the transformed
problem satisfies Conditions 1-3, and therefore is a nonin-
creasing DP. Because of Theorem 6, it admits an FPTAS.
Note that by the above transformation, for every random
vector D, initial inventory level I and policy P, we get that

(D =Epp ) Cz/',j(xi,j) =) Prob(w) > c;,j(xi,j)

(i, j))eE wel) (i, j)eE

= Z Prob(w)[ Z ¢ (x| o)+ (A(DHTI" | w):|

we) (i, ))eE

=Epp ), Ci,j(xi,j)+EDA(])HT

(i, j)eE

= (1) + EpA(DIT”,

where the second equality is from Ahuja et al. (1993,
Prop. 2.4, p. 43). This means that the difference between
Z*(I), i.e., the value of an optimal solution to the trans-
formed problem, and z*([), i.e., the value of an optimal
solution of the original problem, is fixed to be I1E,, AT ().
So if we can find the optimal value of the transformed
problem, then by subtracting from it E,A(I)II7 we get the
optimal value of the original problem. If we cannot effi-
ciently compute the exact value z*(7) of the transformed
problem, by the discussion above we can design for it an
FPTAS and K,-approximate it for every K, > 1. By the
bounded disposal cost assumption (Assumption 2), we get
that z*(I) > kE,A(DIIT, so z*(I) = z*(I) + E,A(DTIT >
(1 4+ k)E,A(I)IIT. By subtraction of approximation from
above (Proposition 5 applied with ¢ = 1/(1 4+ k), ¢, =
7%, ¢, = E,A(DIT" and K, =1+ (ke)/(1 4+ k)) we get a
(1 + e)-approximation for ¢, — ¢, =z*. O

7. Extensions

7.1. Implicitly Described Random Variables

In this section we show how to deal with a more general
setting of nonincreasing stochastic dynamic programming
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where the random variables are given implicitly by oracles
to their CDFs. In this way we can handle distributions with
support of exponential size (in the binary input size), such
as truncated Poisson with given rate A and upper bound
M, or truncated discrete normal with parameters w, o, and
lower and upper bounds m, M.

Considering SLS with implicitly described random vari-
ables D, ..., Dy, the DP recursion (16) specialized for this
problem reads

23,1 (1) =min{e,(¥) + Ep, 2,(I+x = D,)}, (19)
and
2o (D) =min{d, (=) + b, (I +0) + 20 T+ 20} 0)

Whereas (20) is a deterministic recursion that can be
approximated directly via Theorem 2, (19) is a stochas-
tic one. Because we assume the random variable is given
implicitly by its CDF, the way the stochastic DP model
studied in Halman et al. (2008) calculates expectations does
not apply. But we can bypass this difficulty by apply-
ing Corollary 1 in order to compute &,, that approximates
Ep 25,(I + x — D,). (Note that because we are given the
CDF as an oracle function, we apply this proposition with
K, =1.) We then approximate (19) via Theorem 2 by set-
ting ¢, = 52,, and iterate the recursion similarly to the way
it is done in Halman et al. (2008). This gives us an FPTAS
for SLS with implicitly described random variables.

7.2. Positive Lead Times

Under general lead times, the value function of SLS (with
explicitly described random variables) is multivariate. It is
well known that this dynamic program can be transformed
into a single-variable dynamic program (Zipkin 2000) (the
state corresponds to inventory position, which is defined as
the inventory on hand and all outstanding inventory). It is
easy to show that this transformation preserves the approx-
imation ratio and as a result it suffices to find an FPTAS
for this single variate dynamic program. If L > 0 is an arbi-
trary lead time, then the underlying demand distribution of
the transformed problem is D, = Z;;Lf' D;. The FPTAS in
Halman et al. (2009b) requires that we know Prob[D, =
d_,’,-], which is a convolution of L distributions. As a result,
computing these probabilities takes (n*) time, where n* is
the maximal cardinality of the supports of the various D;s.
If L is two or three (or any other constant value), then the
term (n*)% is polynomial, and the algorithm is an FPTAS.
If L is not constrained to be small (e.g., L = T/4), then
the running time is exponentially large. In the latter case,
the algorithm in Halman et al. (2009b) is not an FPTAS.
An open question was raised in Halman et al. (2009b)
whether one can modify the approach and create an FPTAS
for the problem in which the lead times are permitted to be
a fraction of T.

We give a positive answer to this question and design
an FPTAS in the following way. For 0 < j < L and
1<i<T—], let Fl-J'be the CDF of the convolution of
D;,...,D;,;, ie., F/(x) = Prob(D; + --- + D;;; < Xx).
We compute F,-j exactly for j=0,1,and 1 <i< T — . For
2<j<Land 1<i<T—jwebuilda K/~'-approximation
function £/ for F/ via K-approximation sets (see Lemma 1
and Definition 1) in a recursive way by using the calculus
of approximation and the equality

Fij(x) =P(D;+---+D;; < x)

= 2

y<x and y is in the support of D;

Prob(D; = y) L' (x — ).

(Because CDF is a monotone function, a K-approximation
set for it is well defined.) We then proceed as described in
§7.1 with the only difference that instead of having oracles
that compute the CDFs exactly, we use approximations, i.e.,
we apply Corollary 1 with K, = Kt71).

7.3. Nonexact Evaluation of CDF and
Cost Functions

In the problem formulation we require that there exist ora-
cles that compute the CDF and cost functions exactly.
We can weaken this requirement as follows.

ASSUMPTION 5. For every € >0, there exist cost functions
f€ and CDF functions F€ such that

FO-f@I__ IF@-Fl __
G I T R

for every x, and these functions can be evaluated in poly-
nomial time in the input size and 1/e.

This assumption is equivalent to the statement that the
cost functions and the CDF have an FPTAS. This assump-
tion is useful when the population is divided into n subpop-
ulations, each of which is provided with its CDF. This is
true because the sum of n discrete distributions can be com-
puted approximately. Also, any cost function that requires
simulation can be computed approximately with high prob-
ability when the lowest and greatest nonzero probability is
bounded away from zero and one. It can be shown that by
performing minor modifications all the results presented in
this paper hold under this assumption as well.

8. Conclusion and Future Research

In this paper we show that NNV requires exponential num-
ber of queries to solve and provide an FPTAS in the case
that the profit-to-cost ratio is bounded away from zero.
We can design FPTASs for variants of NNV in a similar
way. For instance, when there is a penalty p(-) for lost
sales, we will add p((D — (x +y))) to the right-hand side
of Equation (1). When there is a possibility for expedited
ordering and shipping at cost p(-), we will add p((D —
(x+y))) to the right-hand side of Equation (1), and replace
r(min(D, x +y)) with r(D).
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Previous researchers also designed worst-case approx-
imation algorithms for certain families of instances of
otherwise inapproximable optimization problems (see, e.g.,
Arora et al. 1999, Kleinberg et al. 2004, Feige et al. 2009).
Kleinberg et al. (2004) study a novel genre of optimiza-
tion problems that they call segmentation problems. They
analyze a greedy algorithm for the variable catalogue seg-
mentation problem when the number of catalogues is not
set in advance, and show lower and upper bounds on the
approximation ratio of the algorithm, which depends on the
profit-to-cost ratio of the minimal-cost optimal solution of
the specific instance. They also present a general greedy
scheme, which can be specialized to approximate any seg-
mentation problem. Feige et al. (2009) introduce a frame-
work for designing and analyzing algorithms. They design
guarantees for classes of instances, parameterized according
to properties of the optimal solution (which they call signa-
ture of the solution). They consider greedy algorithms as
well as LP-based algorithms to derive approximation algo-
rithms, some of which strictly improve over the previous
results of Kleinberg et al. (2004) concerning the approxi-
mation ratio of the greedy algorithm.

Kleinberg et al. (2004) and Feige et al. (2009) deal with
a constant-factor approximation without any guarantee on
the profit-to-cost ratio of the approximated solution. More-
over, it can be shown that the greedy algorithms stated in
their works may have an arbitrarily low profit-to-cost ratio.
Similarly to Kleinberg et al. (2004) and Feige et al. (2009)
we use the profit-to-cost ratio as a parameter in the anal-
ysis of the approximation ratio. But we deal with an arbi-
trarily good approximation (FPTAS) that has an arbitrarily
good guarantee on the profit-to-cost ratio of the approxi-
mated solution. It may be of interest, in the context of the
works of Kleinberg et al. (2004) and Feige et al. (2009), to
develop two-parameter (K, 8) algorithms that provide solu-
tions that approximate the values of the optimal solutions of
the problems they consider within a factor of K, and have
profit-to-cost ratios of at least 1 — 6 times the profit-to-cost
ratio of the minimal-cost optimal solutions.

In this paper we also extend previous results of Halman
et al. (2008, 2009a, b) in various ways. One of the assump-
tions they make in the analysis of their FPTASs is that the
probability distribution function of each random variable D
is given explicitly as a set of ordered pairs (d, Prob(D = d)).
In this paper we show a way of using CDFs instead of
discrete distributions in the analysis, hence enabling us to
handle random variables with support of size exponential
in the (binary) size of their description. This also extends
the framework of Halman et al. (2008) to models where
the random variables are given implicitly (e.g., truncated
Poisson with rate A and upper bound M). We also relax
the convexity assumption made by Halman et al. (2009Db).
This enables us to give FPTASs for SLS with a positive
lead time.

All the problems dealt by Halman et al. (2008, 2009a, b)
are either for minimizing costs, or maximizing revenues.

All these works used some set of general computational
rules of K-approximation functions, which Halman et al.
(2008) called the calculus of K-approximation functions.
If the objective is to maximize profit, i.e., the difference
between revenues and costs, having a rule in the calculus
of approximation that deals with subtraction is desirable.
In this paper we extend the calculus of approximation to
deal with subtraction of functions and use it to develop an
FPTAS for NNV and SLS.

A natural extension of our models and the approach
introduced in this paper is in the context of revenue man-
agement, where profit maximization is typically the objec-
tive. For example, in the stochastic inventory-pricing model
(Simchi-Levi et al. 2005, chap. 9), the objective is to coor-
dinate inventory replenishment and pricing decisions so as
to maximize expected profit. This extension is presented in
a follow up work Halman et al. (2011).

Endnote

1. For the ease of presentation we refer to the negative of
the salvage value, —s(-), as holding cost.
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