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Simple Stochastic Games, Parity Games,
Mean Payoff Games and Discounted Payoff Games

Are All LP-Type Problems1

Nir Halman2

Abstract. We show that a Simple Stochastic Game (SSG) can be formulated as an LP-type problem. Using
this formulation, and the known algorithm of Sharir and Welzl [SW] for LP-type problems, we obtain the
first strongly subexponential solution for SSGs (a strongly subexponential algorithm has only been known for
binary SSGs [L]). Using known reductions between various games, we achieve the first strongly subexponential
solutions for Discounted and Mean Payoff Games. We also give alternative simple proofs for the best known
upper bounds for Parity Games and binary SSGs.

To the best of our knowledge, the LP-type framework has been used so far only in order to yield linear
or close to linear time algorithms for various problems in computational geometry and location theory. Our
approach demonstrates the applicability of the LP-type framework in other fields, and for achieving sub-
exponential algorithms.

Key Words. Simple stochastic games, Subexponential randomized algorithms, LP-type framework.

1. Introduction. Sharir and Welzl [SW] defined a model which generalizes Linear
Programming (LP) and called it the LP-type model (see definitions in Section 2.2). An
LP-type problem of combinatorial dimension d, where d is independent of the size n of
the problem, is called fixed dimensional. Several algorithms that solve LP-type problems
in time linear in n are known, such as the ones of Sharir and Welzl [SW] or Kalai [Ka].
The O(n) time algorithm of Clarkson [Cl], which was originally formulated to solve
LP, fits the LP-type model as well [CM], [GW1]. By formulating problems as fixed-
dimensional LP-type problems, and using the LP-type algorithms, one can obtain linear
time algorithms to various optimization problems, mainly in computational geometry
and location theory, as shown in [A] and [MSW].

The algorithms of [Ka] and [SW] run in time subexponential in d. In this paper we
use the LP-type framework in order to give the first strongly subexponential solution for
Simple Stochastic Games, Discounted Payoff Games and Mean Payoff Games (defined
below). To the best of our knowledge, this is the first application of the LP-type framework
for solving a problem which is neither in computational geometry nor in location theory.
Moreover, it is the first application of variable-dimensional LP-type problems.

A Simple Stochastic Game (SSG) is defined on a directed graph with three types of
vertices, min, max and average, along with two sink vertices, the 0-sink and the 1-sink.

1 This work is based upon a chapter in the author’s Ph.D. dissertation, prepared at Tel Aviv University under
the supervision of Professor Arie Tamir.
2 Massachusetts Institute of Technology, Cambridge, MA 02139, USA. halman@mit.edu.
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The sink vertices have no outgoing edges. For every average vertex ak , the outgoing
edges from ak have positive rational weights such that the sum of their weights is 1. The
outgoing edges from the min and max vertices are unweighted. One of the vertices is a
start vertex.

The game is a contest between two players, 0 and 1. It is played in the following
way. Begin by placing a token on the start vertex. When the token is on a min vertex yj ,
player 0 moves it along one of the outgoing edges of yj . When the token is on a max
vertex xi , player 1 moves it along one of the outgoing edges of xi . When the token is on
an average vertex ak , the edge along which the token is moved is determined randomly,
in proportion to the weights of the edges outgoing from ak . The game ends when one
of the sink vertices is reached. The goal of player 1 is to reach the 1-sink. The goal of
player 0 is to avoid the 1-sink.

Before the game begins, player 1 chooses an outgoing edge from each max vertex.
These selected edges will define a strategy for player 1. During the game, whenever the
token is on a max vertex, player 1 will move the token along the edge that is included
in his strategy. (Defining strategies deterministically in this way does not result in any
loss of generality [Co].) Similarly, a choice of an outgoing edge for each min vertex is
a strategy for player 0. Given an SSG, we would like to find the “optimal strategies” for
both players (we formally define optimal strategies in Section 2.1). The corresponding
decision problem is to determine whether player 1 wins with probability greater than
1
2 when both players use their optimal strategies. SSGs are closely connected with the
development of algorithms for automatic verification (“model-checking”) and synthesis
of hardware and software systems [GW2].

A binary SSG is a special case of an SSG, where the outgoing degrees of the min
and max vertices are bounded by 2, and where all average vertices have exactly two
outgoing edges of weight 1

2 each. Zwick and Paterson [ZP] gave a simple polynomial
reduction from an SSG with n vertices and ne edges, in which the denominators of all
the (rational) probabilities are at most W , to a binary SSG with n′ = O((n+ ne) log W )

vertices and n′e = O(ne log W ) edges. We note that ne may be quadratic in n, so the
number of vertices in the binary game resulting by the reduction, n′, may be �(n2). In
this case the running time of the best known algorithm for binary SSGs (which is eO(

√
n′)

time) becomes exponential in n. This is the reason why the proof of Corollary 7.4 in
[GW2] is in error.

Condon [Co] was the first to study SSGs from a complexity theory point of view. She
showed that the SSG decision problem is in NP ∩ co-NP (and even in UP ∩ co-UP [J1]),
and hence is unlikely to be NP-complete, but at the same time it is not known to be in P,
despite substantial effort (see [EJS], [L], [ZP], [Se], [BCJ+], [J2], [GW2], and [BSV1]).
Some exponential algorithms for SSGs are described in [MC]. The first subexponential
algorithm for binary SSGs was an eO(

√
n) time ad hoc algorithm obtained in 1995 by

Ludwig [L], for games with n vertices.
We show (see also [Ha1]) the first subexponential solution for (non-binary) SSGs that

halt with probability 1 (and consequently for the SSG decision problem, see definitions
below) where the game given consists of n nodes and ne edges, in which the denominators
of all the (rational) probabilities are at most W . The idea is to formulate the SSG as
an LP-type problem, and then to calculate optimal strategies for both players by the
LP-type algorithm of [SW]. Independently, Björklund et al. [BSV1] developed several
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ad hoc subexponential algorithms for this problem. Their approach is different. They first
formulate the objective function of this problem as a special function (which they call
either the RLG, CLG or CU function). They then “adapt” the algorithm of [L], as well as
the LP-type subexponential algorithms of [SW] and [Ka], to solve these functions. The

algorithms of [Ha1] and [BSV1] are randomized and run in eO(
√

n log n) × C(n, ne,W )

time, where C(x, y, z) is the time needed to solve a linear program with x variables, y
constraints and z being the (binary) coding size of the input numbers. The best known
algorithms for solving variable-dimensional LP problems (e.g., the one of Khachiyan
[Kh]) perform a polynomial number of operations in x , y and z. Since the number of
operations they perform depends on the size of the input numbers, they are not strongly
polynomial. This implies that the algorithms of [Ha1] and [BSV1] are not strongly

subexponential. In this paper we obtain the first strongly eO(
√

n log n) subexponential
solution for SSG. This algorithm is faster than the previous algorithms when W is much
greater than n.

SSGs are a restriction of stochastic games introduced by Shapley [Sh], some 50 years
ago. Many variants of SSGs have been studied since then (see [PV] for a survey). In
this work we consider three variants of SSGs: Parity Games (PGs), Mean Payoff Games
(MPGs) and Discounted Payoff Games (DPGs).

A Parity Game is defined on a directed graph with two types of vertices, 0 and 1. Each
vertex has a positive integer color and has at least one outgoing edge. (The number of
colors k may be as big as the number of vertices.) One of the vertices is a start vertex.
Similarly to SSG, the game is a contest between two players, 0 and 1. It is played in the
following way. Begin by placing a token on the start vertex. When the token is on a 0 (1)
vertex, player 0 (1) moves it along one of its outgoing edges, respectively. The players
construct an infinite path called a play. The largest vertex color j occurring infinitely
often in a play determines the winner. Player 0 wins if j is even and player 1 wins if j
is odd.

Other variants of SSGs are MPGs and DPGs. Each of these games is an infinite two-
person game played on a directed graph G = (V, E) in which each vertex has at least
one edge going out of it. Let ω: E→{−W, . . . , 0, . . . ,W } be a function that assigns
an integral weight to each edge of G. One of the vertices, say a0, is a start vertex. The
first player chooses an edge e1 = (a0, a1) ∈ E . The second player then chooses an edge
e2 = (a1, a2) ∈ E , and so on. The first player wants to maximize the function f1 while
the second player wants to minimize f2. In MPGs

f1 = lim inf
t→∞

1

t

t∑
i=1

ω(ei ); f2 = lim sup
t→∞

1

t

t∑
i=1

ω(ei ).

In DPGs we are also given a rational discounting factor λ with 0 < λ < 1. The weight
of the i th edge, ei , chosen by the players is now multiplied by (1− λ)λi and

f1 = f2 = (1− λ)
∞∑

i=1

λiω(ei ).

SSGs are a generalization of PGs, MPGs and DPGs in the sense that there exists a
polynomial time reduction from them to (non-binary) SSGs that halt with probability 1.
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Table 1.

Problem Previous results Our results

Binary SSG Strongly eO(
√

n) [L] Strongly eO(
√

n)

SSG eO(
√

n log n) × C(n, ne,W ) [Ha1, BSV1] Strongly eO(
√

n log n)

PG Strongly eO(
√

n log n) [BSV2] Strongly eO(
√

n log n)

MPG log W · eO(
√

n log n) [BSV3] Strongly eO(
√

n log n)

DPG No subexponential algorithm is known Strongly eO(
√

n log n)

(See definition in Section 2.2. See [Pu] or Lemma 7.5 in [GW2] for a reduction of PG
to MPG, and [ZP] for a reduction of MPG and DPG to SSG.) The decision problems
corresponding to PGs, MPGs and DPGs are also known to be in NP ∩ co-NP. No
polynomial time algorithm for any of these decision problems is yet known. Using the

above reductions we get that our strongly subexponential eO(
√

n log n) time algorithm for
SSGs solves PGs, MPGs and DPGs in the same (strongly) subexponential time bound.

Independently of our results, Björklund et al. [BSV2], [BSV3] developed ad hoc

strongly eO(
√

n log n) algorithms for PGs and for the decision problem corresponding to

MPGs (they also provided a log W · eO(
√

n log n) algorithm for MPGs). We summarize
the previous best results and our results in Table 1.

As seen in the table, our algorithmic results improve upon the best known algorithms
for SSGs, MPGs and DPGs. We also give alternative simple proofs for the best known
upper bounds for PGs and binary SSGs. While Ludwig [L] and Björkland et al. [BSV1]–
[BSV3] developed ad hoc algorithms for each of the specific games they solved, we use
only one unifying algorithm for all of these five games—the LP-type algorithm of Sharis
and Welzl [SW].

2. Definitions and Previous Results. In this section we review the definitions and the
results known about SSGs and LP-type problems.

2.1. Simple Stochastic Games. Although this section is self-contained, it is strongly
based upon the first two sections in [L].

Let G = (V = X � N � A � {v0, v1}, E = S � D � AA) be an SSG. v0 is the 0-sink
and v1 is the 1-sink. X = {x1, x2, . . . , xd}, N = {y1, y2, . . . , ym} and A = {a1, . . . , ap}
are the sets of max, min and average vertices, respectively. Let n = |V | = d+m+ p+2
be the number of vertices in the graph. For i = 1, . . . , d (i = 1, . . . ,m; i = 1, . . . , p) let
Xi (Ni , Ai ) be the set of edges outgoing from the max (min, average) vertex xi (yi , ai ),
respectively. Let S = ⊎d

i=1 Xi (D = ⊎m
i=1 Ni ; AA = ⊎p

i=1 Ai ) be the set of the edges
outgoing from vertices of X (N , A), respectively. For every i = 1, . . . , p, every edge
e ∈ Ai is given a positive rational weight pr(e) < 1 such that

∑
e∈Ai

pr(e) = 1.
Formally, a strategy for player 1 is a function σ : {1, 2, . . . , d}→V which indicates

for every vertex xi ∈ X , an outgoing edge (xi , σ (i)) ∈ Xi that player 1 will choose. We
define a strategy τ for player 0 similarly. Let σ, τ be a pair of strategies for players 1 and 0.
Construct the graph Gσ,τ = (V, Sσ ∪ Dτ ∪ AA) where Sσ = {(xi , σ (i)) | i = 1, . . . , d}
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and Dτ = {(yi , τ (i)) | i = 1, . . . ,m}. An SSG halts with probability 1 if and only if for
all pairs of strategies σ, τ , every vertex in Gσ,τ has a path to a sink vertex. In the results
that follow, we restrict our discussion to games that halt with probability 1 (Lemma 2.2
below shows that this restriction can be applied to the decision problem without loss of
generality).

We define the value of a vertex z ∈ V with respect to a pair of strategies σ, τ , denoted
by vσ,τ (z), to be the probability that player 1 will win the game if the start vertex is z
and the players use strategies σ and τ .

We say that a vertex xi ∈ X is stable with respect to a pair of strategies σ, τ if
vσ,τ (xi ) = max{vσ,τ (z) | (xi , z) ∈ E}. Similarly, we say that a vertex yi ∈ N is stable
with respect to a pair of strategies σ, τ if vσ,τ (yi ) = min{vσ,τ (z) | (yi , z) ∈ E}. We say
that a vertex is unstable if it is not stable.

Let σ, τ be a pair of strategies for players 1 and 0. The strategy τ is said to be optimal
with respect to σ if every min vertex is stable with respect to σ, τ . We will let τ(σ )
denote an optimal strategy for player 0 with respect to the player 1 strategy σ . Optimal
strategies for player 1 are defined similarly. σ, τ are said to be optimal if each strategy
is optimal with respect to the other.

The lemmas below were originally stated for binary SSGs. Using the polynomial
reduction of [ZP] from SSGs to binary SSGs, they are valid also for SSGs.

LEMMA 2.1 (Lemma 2 in [L]). Let G = (V, E) be an SSG that halts with probability 1.
Then there is a pair of optimal strategies σ ∗, τ ∗ for players 1 and 0 for the game G.

The value of an SSG G is the value of the start vertex with respect to a pair of optimal
strategies for the two players. For every vertex z ∈ V we denote by v(z) the value of the
SSG G where the start vertex is z.

LEMMA 2.2 (Lemma 3 in [L]). Given an SSG G, we can construct a new game G ′ in
time polynomial in the size of G such that G ′ has the same number of min and max
vertices as G, the value of G ′ is greater than 1

2 if and only if the value of G is greater
than 1

2 , and G ′ halts with probability 1.

The next two lemmas show that the definition of “optimal” is suitable in the sense
that an optimal strategy for either player optimizes the value of every vertex from that
player’s point of view.

LEMMA 2.3 (Lemma 4 in [L]). Let G = (V, E) be an SSG that halts with probability 1,
and let σ ∗, τ ∗ be a pair of optimal strategies. Then for all z ∈ V,

vσ ∗,τ ∗(z) = max
σ

min
τ
vσ,τ (z).

LEMMA 2.4 (Lemma 5 in [L]). Let G = (V, E) be an SSG that halts with probability 1.
Then for any vertex z ∈ V,

min
τ

max
σ
vσ,τ (z) = max

σ
min
τ
vσ,τ (z).

So all pairs of optimal strategies give the same probability for player 1 to win.
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If the game consists only of max and average vertices (i.e., N = ∅) or only of
min and average vertices (i.e., X = ∅), then Derman [D] showed that a linear program
can be constructed such that there is a one-to-one correspondence between basic feasible
solutions and strategies. However, no such construction is known when the game consists
of all three types of vertices. In the next section we show that an LP-type problem can be
constructed such that there is a one-to-one correspondence between feasible solutions
of the LP-type problem and strategies in the corresponding SSG.

LEMMA 2.5 [D]. Let H be an SSG with no max vertices that halts with probability 1.
Let n denote the number of vertices in H , let the vertices of H be labeled such that
V = {1, 2, . . . , n}, and let the 0-sink and the 1-sink be labeled n−1 and n, respectively.
Then the optimal strategy for player 0 (with respect to the trivial player 1 strategy) can
be found by solving the following linear program:

maximize
n∑

i=1

v(i)

subject to v(i) ≤ v( j) if i ∈ N and (i, j) ∈ E,

v(i) =
∑
(i, j)∈E

pr(i, j)v( j) if i ∈ A,

v(n − 1) = 0,

v(n) = 1.

(1)

We observe that the condition that H halts with probability 1 ensures the boundness
of (1): for each i ∈ V , v(i) ≤ 1. Having the solution of the linear program (1) on hand,
i.e., the value of the vertices in the graph, we find an optimal strategy τ for player 0 in
the following way. For every i = 1, . . . ,m, τ(i) = j where (i, j) ∈ E and v(i) = v( j).

In Section 3 we use the following lemma for showing that the SSG can be formulated
as an LP-type problem.

LEMMA 2.6 (Adaptation of Lemma 6 in [L]). Let G = (V, E) be an SSG that halts
with probability 1, and let σ be a strategy for player 1 that is not optimal. Let xi ∈ X be
a vertex that is unstable with respect to σ, τ(σ ). Let σ ′ be a strategy that is obtained from
σ by changing the strategy at vertex xi such that ∀ j �= i , σ ′( j) = σ( j), (xi , σ

′(i)) ∈ E
and vσ,τ(σ )(σ ′(i)) = max(xi ,z)∈E vσ,τ(σ )(z). Then for all z ∈ V , vσ ′,τ (σ ′)(z) ≥ vσ,τ(σ )(z),
and for some z ∈ V , vσ ′,τ (σ ′)(z) > vσ,τ(σ )(z).

Proofs of Lemmas 2.1–2.4 and 2.6 can be found in [Co] (most of these are based on
proofs by Shapley [Sh], Howard [Ho] and Derman [D]). We conclude this section by
stating a lemma proved in [L].

LEMMA 2.7 (Lemma 9 in [L]). Any function f : N→N satisfying

f (d) ≤ f (d − 1)+ 1

d

d−1∑
i=1

f (i)+ 1
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for d > 1 and

f (1) ≤ 1,

has f (d) ≤ e2
√

d−1, for all d ≥ 1.

2.2. LP-Type Problems. Most of the definitions in this subsection are taken from
[MSW] and [A]. We start by defining a general class of problems:

DEFINITION 2.8. An abstract problem is a tuple (H, ω) where H is a finite set of
elements (which we call constraints) and ω is an objective function from 2H to some
totally ordered set � which contains a special maximal (minimal) element ∞ (−∞),
respectively. The goal is to compute ω(H).

DEFINITION 2.9. An LP-type problem is an abstract problem (H, ω) that obeys the
following conditions (when we write <, ≤, =, etc., we mean under the ordered set �).

Monotonicity: For all F ⊆ G ⊆ H , ω(F) ≤ ω(G).
Locality: For all F ⊆ G ⊆ H such that ω(F) = ω(G) �= −∞ and for each h ∈ H , if
ω(G ∪ {h}) > ω(G) then ω(F ∪ {h}) > ω(F).

Let G ⊆ H be arbitrary. If ω(G) = ∞, we say G is infeasible; otherwise we call
G feasible. If ω(G) = −∞, we say G is unbounded; otherwise we call G bounded.
A basis B is a set B ⊆ H with ω(B ′) < ω(B) for all proper subsets B ′ of B. A basis
for G is a basis with ω(B) = ω(G). The combinatorial dimension d of an LP-type
problem is the maximum size of any basis for any feasible sub-family G. An LP-type
problem of combinatorial dimension d is called d-dimensional. An LP-type problem is
fixed dimensional if d is a constant, i.e., independent of the size n of the problem.

An LP-type algorithm takes a d-dimensional LP-type problem (H, ω) and returns a
basis B for H . The randomized algorithm of [SW] (which was re-analyzed in [MSW]),
Function lptype (see Figure 1), gets as an input the set of constraints H , and a candidate
basis C ⊆ H . C is not necessarily a basis for H . It can be viewed as some auxiliary
information one gets for the computation of the solution which has no influence on the
output of the procedure (but it influences its efficiency). The algorithm uses two primitive
operations. A basis computation takes a family G of at most d + 1 constraints and finds

Function lptype(H,C)

1. if H = C then return C
2. else

(a) choose at random h ∈ H\C
(b) B ←lptype(H\{h},C)
(c) if Violation(B, h) then return lptype(H,Basis(B ∪{h}))
(d) else return B

Fig. 1. The algorithm of [SW] returns a basis for the LP-type problem on H , when given a candidate basis C .
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a basis for G. A violation test takes a basis B and a constraint h, and returns false if and
only if B is a basis for B ∪ {h}.

Let (H, ω) be a d-dimensional LP-type problem and let n = |H |. Let tb (tv) be
the time required for a basis computation (a violation test), respectively. Let nb (nv) be
the number of basis computations (violation tests) performed throughout the execution
of the algorithm. Matoušek et al. [MSW] show that nv ≤ nbn, which implies a crude
upper bound of O(nb(tvn + tb)) for the running time of their algorithm. When the
size of every basis for any feasible subfamily is exactly d, and d ≤ n ≤ √ded/4,
they [MSW] show that nb = eO(

√
d ln d), so the algorithm of [SW] runs in randomized

O(eO(
√

d ln d)(tvn + tb)) time, i.e., subexponential in dimension d of the problem. If n is
large we use the algorithm of [Cl], which takes an LP-type problem of a large size n and
breaks it into several smaller problems of size 9d2. These small problems we solve by the
algorithm of [SW]. The overall (randomized) running time of the combined algorithm
is O(eO(

√
d ln d)(tvn + tb log n)). To the best of our knowledge, the LP-type framework

is used to solve only problems in computational geometry and location theory, and in
linear or close to linear time (see [A], [MSW] and the references therein).

3. Formulating the SSG as an LP-type Problem. Let G = (V = X∪N∪A∪{v0, v1},
E = S ∪ D ∪ AA) be an SSG. For every S′ ⊆ S such that every max vertex x ∈ X
has an outgoing edge in S′ (i.e., Xi ∩ S′ �= ∅, ∀i ∈ {1, . . . , d}) we say that G(S′) =
(V, S′ ∪ D ∪ AA) is a simple stochastic sub-game of G (with respect to edges outgoing
from max vertices). We note that every non-sink vertex in G(S′) has at least one outgoing
edge. We also note that if G halts with probability 1 then so does G(S′).

Let � = R ∪ {∞,−∞} be a set where ∞ (−∞) is a special maximal (minimal)
element, respectively. Let σ(S′), τ (S′) be an arbitrary pair of optimal strategies in G(S′).
Similarly to [L], we define ω: 2S→� in the following way:

ω(S′) =


−∞ if ∃i ∈ {1, . . . , d} s.t. Xi ∩ S′ = ∅,∑
z∈V

vσ(S′),τ (S′)(z) otherwise.(2)

We note that, due to Lemma 2.3, ω(S′) is well defined since for any z ∈ V the value of z
with respect to any pair of optimal strategies is the same. We also note that S′ is always
feasible, and it is bounded if and only if G(S′) is a sub-game of G.

We note that if σ, τ is a pair of strategies in the game G, and since it is not always
true that Sσ ⊆ S′, then σ, τ is not necessarily a pair of strategies in G(S′). We also
note that if σ, τ is a pair of optimal strategies in G(S′), it is a pair of strategies in
G which is not necessarily optimal since the set of possible strategies for player 1 in
G contains the one in G(S′) (an example of such G,G(S′), σ and τ can be easily con-
structed). We observe that there is a sufficient condition that ensures the optimality of σ, τ
in G.

OBSERVATION 3.1. Let G = (V = X ∪ N ∪ A ∪ {v0, v1}, S ∪ D ∪ AA) be an SSG
that halts with probability 1. Let G(S′) = (X ∪ N ∪ A ∪ {v0, v1}, S′ ∪ D ∪ AA) be a
simple stochastic sub-game of G. Let σ, τ be a pair of optimal strategies in G(S′). If
ω(S) = ω(S′) then σ, τ is a pair of optimal strategies in G as well.
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PROOF. We first note that since the sets of outgoing edges from min vertices in G and
G(S′) are identical (and equal to D), τ is an optimal strategy in G with respect to σ , so
τ = τ(σ ).

We now claim that σ is an optimal strategy in G with respect to τ . Suppose on the
contrary that σ is not an optimal strategy in G with respect to τ . By the non-optimality
of σ in G there is a vertex xi ∈ X that is unstable with respect to σ, τ(σ ). (That is,
vσ,τ(σ )(xi ) �= max(xi ,z)∈S vσ,τ(σ )(z).) Let σ ′ be a strategy that is obtained from σ by
changing the strategy at vertex xi such that ∀ j �= i , σ ′( j) = σ( j), (xi , σ

′(i)) ∈ S and
vσ,τ(σ )(σ

′(i)) = max(xi ,z)∈S vσ,τ(σ )(z). Due to Lemma 2.6

∀z∈V, vσ ′,τ (σ ′)(z) ≥ vσ,τ(σ )(z) and ∃z∈V, vσ ′,τ (σ ′)(z)>vσ,τ(σ )(z).(3)

If σ ′, τ (σ ′) is a pair of optimal strategies in G we get thatω(S) > ω(S′) in contradiction.
Otherwise let σ ∗, τ ∗ be an arbitrary pair of optimal strategies in G. Let S = {σ : X→V |
∀xi ∈ X (xi , σ (i)) ∈ S} (T = {τ : N→V | ∀yi ∈ N (yi , τ (i)) ∈ D}) be the set of
strategies for player 1 (player 0) in game G, respectively. By Lemma 2.3 we get that for
all z ∈ V ,

vσ ∗,τ ∗(z) = max
σ∈S

min
τ∈T

vσ,τ (z),(4)

and by choosing the specific strategy σ ′ ∈ S we obtain

max
σ∈S

min
τ∈T

vσ,τ (z) ≥ min
τ∈T

vσ ′,τ (z) = vσ ′,τ (σ ′)(z).(5)

Combining (4) and (5) together implies that vσ ∗,τ ∗(z) ≥ vσ ′,τ (σ ′)(z), so from (3) we get
again that ω(S) > ω(S′) in contradiction.

We are now ready to show

LEMMA 3.2. An SSG (V = X ∪ N ∪ A ∪ {v0, v1}, S ∪ D ∪ AA) that halts with
probability 1 is a d-dimensional LP-type problem (S, ω) where ω is as defined in (2)
and d = |X |.

PROOF. We consider the abstract problem (S, ω). The aim of player 1 is to maximize his
chances to win (i.e., maximize ω). We need to show that the Monotonicity and Locality
Conditions are met. Directly from the definitions of σ(S′), τ (S′) and ω(S′) (S′ ⊆ S)
we get that the Monotonicity Condition is satisfied. (Adding more edges outgoing from
vertices of the set X enlarges the set of possible strategies for player 1, and hence does
not decrease the probability of player 1 to win.)

Now we show that the Locality Condition is met, that is, for all S′ ⊆ S, and for
all S′′ ⊂ S′ such that ω(S′) = ω(S′′) �= −∞ and for each e = (xi , v) ∈ S, if
ω(S′ ∪ {e}) > ω(S′) then ω(S′′ ∪ {e}) > ω(S′′). Let σ, τ be a pair of optimal strategies
in G(S′′). By Observation 3.1, σ, τ is also a pair of optimal strategies in G(S′), so all
vertices in the game G(S′) are stable with respect to the pair of optimal strategies σ, τ .
If ω(S′ ∪ {e}) > ω(S′) then σ, τ is not a pair of optimal strategies in G(S′ ∪ {e}), and
there is at least one vertex in V which is unstable in G(S′ ∪ {e}). Since all the vertices
in G(S′) are stable, the only vertex in G(S′ ∪ {e}) which is unstable is xi (xi is the only
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vertex in V which has different sets of outgoing edges in G(S′) and in G(S′ ∪ {e})). In
this way (and since the vertices in G(S′ ∪ {e}) and G(S′′ ∪ {e}) have the same values
with respect to σ, τ ) xi is unstable in G(S′′ ∪ {e}) as well. Due to Lemmas 2.6 and 2.3, as
explained at the end of the proof of Observation 3.1, we get that ω(S′′ ∪ {e}) > ω(S′′) as
needed. Considering the combinatorial dimension of the problem, we note that a basis
B (in the LP-type sense) for any bounded S′ ⊆ S is the set of d edges corresponding
to an optimal strategy σ , for player 1 in the sub-game G(S′) (i.e., B = Sσ ). Hence the
corresponding LP-type problem is d-dimensional.

We define sub-games with respect to edges outgoing from min vertices. Let G =
(V = X ∪ N ∪ A ∪ {v0, v1}, E = S ∪ D ∪ AA) be an SSG. For every D′ ⊆ D with
Ni ∩ D′ �= ∅, ∀i ∈ {1, . . . ,m} we say that G(D′) = (V, S ∪ D′ ∪ AA) is a simple
stochastic sub-game of G. We let� = R∪{∞,−∞} be as before, and let σ(D′), τ (D′)
be an arbitrary pair of optimal strategies in G(D′). We define ν: 2D→� in the following
way:

ν(D′) =


−∞ if ∃i ∈ {1, . . . ,m} s.t. Ni ∩ D′ = ∅,
−
∑
z∈V

vσ(D′),τ (D′)(z) otherwise.(6)

We prove the following lemma in a similar way to which we proved Lemma 3.2.

LEMMA 3.3. An SSG (V = X∪N∪A∪{v0, v1}, S∪D∪AA) that halts with probability
1 is an m-dimensional LP-type problem (D, ν)where ν is as defined in (6) and m = |D|.

4. Solving SSGs, PGs, MPGs and DPGs in Strongly eO(
√

n log n) Time

THEOREM 4.1. An SSG G = (V, S ∪ D ∪ AA) that halts with probability 1 is solvable

in strongly eO(
√

n log n) expected time.

PROOF. We solve the SSG by calling Function lptype(H,C) of [SW] (see Figure 1)
with H = S and C as follows. We choose C to consist of d arbitrary edges from S,
each one going out of a distinct vertex in V , so C is bounded. Note that all subsets of S
visited throughout the execution of the algorithm are bounded as well. By Lemma 3.2
the SSG, G(S) = (V, S ∪ D ∪ AA), is a d-dimensional LP-type problem (S, ω), so
the algorithm correctly solves the problem. As explained in Section 2.2, Function lptype

runs in O(nb(tv|S| + tb)) expected time where nb = eO(
√

d log d) is the number of basis
computations, tv is the time needed to perform a violation test and tb is the time needed
to perform a basis computation.

A basis for any feasible S′ ⊆ S is a set B ′S = Sσ where σ is an optimal strat-
egy with respect to τ(σ ) for the sub-game G(S′). An edge e = (xi , z) violates B ′S
(Violation(B ′S, e) = true) if and only if vσ,τ (xi ) �= max{vσ,τ (z), vσ,τ (σ (i))}. This can be
checked in constant time, so tv = O(1).

Let σ ′ be the strategy obtained from σ by changing the strategy at vertex xi (i.e., ∀i �=
j ,σ ′( j) = σ( j) andσ ′(i) = z). A basis computation for B ′S∪{e} (Basis(B ′S∪{e})) is done
by deciding which strategy amongst σ, σ ′ is optimal in the game (V, B ′S∪{e}∪D∪ AA).
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In order to decide this we need to find an optimal strategy of player 0 with respect to
σ ′, i.e., to find an optimal strategy of player 0 in the sub-game G(Sσ ′). We note that
the outdegree of each max vertex in this sub-game is 1. By Lemma 3.3, G(Sσ ′) is an
m-dimensional LP-type problem (D, ν). We solve this problem by calling again the LP-

type algorithm of [SW], in O(n′b(t
′
v|D|+t ′b)) expected time where n′b = eO(

√
m log m). It is

sufficient to show that t ′v and t ′b are both strongly polynomial in n. As before, t ′v = O(1).
Let B ′D = Dτ be a basis for any bounded D′ ⊆ D, and let e = (yi , z) ∈ D be an
edge which violates B ′D . Let τ ′ be the strategy obtained from τ by changing the strategy
at vertex yi . A basis computation for B ′D ∪ {e} (Basis(B ′D ∪ {e})) is done by deciding
which strategy amongst τ, τ ′ is optimal in the game (V, Sσ ′ ∪ B ′D ∪ {e} ∪ AA). In order
to decide this we need to find an optimal strategy of player 1 with respect to τ ′, i.e., to
find an optimal strategy of player 1 in the sub-game G(Sσ ′ , Dτ ′). In this sub-game the
outdegree of each min and max vertex is 1, so only one trivial strategy exists for each of
the players. The values of this game for each of its vertices can be computed by solving
a system of n linear equations with n variables. This can be done for instance in strongly
O(n3) time by Gaussian elimination, so t ′b is as needed.

Due to Lemma 2.2 we get:

COROLLARY 4.2. The decision problem corresponding to SSGs is solvable in strongly

eO(
√

n log n) expected time.

Since DPGs, MPGs and PGs are all strongly polynomially reducible to SSGs that halt
with probability 1 we get

COROLLARY 4.3. DPGs, MPGs and PGs are all solvable in strongly eO(
√

n log n) ex-
pected time.

5. Solving Binary SSGs in Strongly eO(
√

n) Time. As reviewed in Section 2.2, the
running time of Function lptype is linearly dependent on nb(tvn + tb). In the previous

section we used the result of [MSW] that nb = eO(
√

n log n). We now show that for binary
SSGs this bound can be lowered to nb = eO(

√
n). We prove the following lemma similarly

to the proof of Lemma 8 in [L].

LEMMA 5.1. Given a binary SSG (V, E = S ∪ D ∪ AA) that halts with probability 1,
let (S, ω) be its corresponding d-dimensional LP-type problem. Let nb(d) denote the
expected number of basis calculations required for Function lptype applied on (S, ω),
when d elements (edges) of a basis need to be selected. Then

nb(d) ≤ nb(d − 1)+ 1

d

d−1∑
i=1

nb(i)+ 1,

for d > 1 and

nb(1) ≤ 1.
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PROOF. Let B0 be an initial basis such that there exists a strategy σ 0 for player 1 with
B0 = Sσ 0 (i.e., B0 = {(x1, σ

0(1)), . . . , (xd , σ
0(d))}). Let σ 0 be the complementary

strategy of σ 0 (i.e., ∀i = 1, . . . , d; σ 0(i) = zi where (xi , zi ) is the unique edge in
Xi\{(xi , σ

0(i))}. Let

ωi = max
B⊆S, |B|=d

{ω(B) | (xi , σ
0(i)) ∈ B}.

Let {i1, . . . , id} be a permutation of {1, . . . , d} such that ωi1 ≥ · · · ≥ ωid . Now suppose
that at step 2(a), Function lptype applied on H = S chooses at random edge h =
(xir , σ

0(ir )), so (xir , σ
0(ir )) must be in every basis for H\{h}. Then by solving a sub-

problem where d − 1 elements of a basis need to be selected, it will reach a basis B ′

satisfying ω(B ′) = ωir . Then since every basis calculation increases the value of the
objective function, it can no longer make at step 2(c) a basis computation to a basis B ′′,
which has (xij , σ

0(i j )) ∈ B ′′, for any j > r . Hence every basis for H must contain the

edges (xij , σ
0(i j )) for every j > r , so these edges are now fixed until the algorithm

terminates. By the same argument, after at most one basis computation, the algorithm
chooses which one of the edges (xir , σ

0(ir )), (xir , σ
0(ir )) is contained in a basis for

H (we note that edge (xir , σ
0(ir )) is chosen if and only if no basis computation was

done). Therefore, after one top-level iteration requiring an expected number of basis
computations not exceeding nb(d − 1) + 1, the size of the problem that remains to be
solved (i.e., the number of edges remaining to be chosen for a basis for H ) is r−1. Then
the recurrence follows from the fact that all possible choices of r are equally likely.

THEOREM 5.2. A binary SSG (V, S∪ D∪ AA) that halts with probability 1 is solvable

in strongly eO(
√

min{d,m}) × poly(n) expected time.

PROOF. We proceed as in the proof of Theorem 4.1, but instead of finding an optimal
counterstrategy by solving an LP-type problem, we solve an LP problem. In order to
achieve the claimed running time we need to show that when Function lptype is applied
on instances (S, ω) of the binary SSG, nb equals eO(

√
d), and that tb is strongly polynomial

in n. Lemma 5.1 coupled with Lemma 2.7 implies that nb = e2
√

d−1, so nb = eO(
√

d) as
needed. The constants in the LP program we solve in each basis computation are 0, 1 and
1
2 , so the algorithm of Khachiyan [Kh] solves the LP program in strongly polynomial
time.

Again, due to Lemma 2.2 we get:

COROLLARY 5.3. The decision problem corresponding to binary SSGs is solvable in

strongly eO(
√

min{d,m}) × poly(n) expected time.

6. Concluding Remarks. It is possible (and maybe even more natural) to formulate
an SSG as a discrete LP-type problem (see the definitions of discrete LP-type and dual
LP-type problems in [Ha2]). For every D′ ⊆ D and S′ ⊆ S we say that G(S′, D′) =
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(V, S′ ∪ D′ ∪ AA) is a sub-game of G if G(S′, D′) is a sub-game of G with respect to
edges outgoing from both min and max vertices. Let � = R ∪ {∞,−∞} be as before.
Let σ(S′, D′), τ (S′, D′) be an arbitrary pair of optimal strategies in a given sub-game
G(S′, D′) of G. We define µ: 2S × 2D→� in the following way:

µ(S′, D′) =




−∞ if ∃i ∈ {1, . . . , d} s.t. Xi ∩ S′ = ∅,
∞ otherwise if ∃i ∈ {1, . . . ,m}

s.t. Ni ∩ D′ = ∅,∑
z∈V

vσ(S′,D′),τ (S′,D′)(z) otherwise.

From this definition we get that for all S′ ⊆ S, µ(S′, D) = ω(S′) and (S, ω) is a
d-dimensional LP-type problem. Moreover, for every D′ ⊆ D, µ(S, D′) = −ν(D′)
and (D,−ν) is an m-dimensional dual LP-type problem. Hence, (S, D, µ) is a (d,m)-
dimensional discrete LP-type problem. We solve this problem in the same time bound
stated in Theorem 4.1 by applying the discrete LP-type algorithm in [Ha2]. It is interesting
to apply the LP-type and discrete LP-type frameworks in order to achieve subexponential
solutions to problems in fields other than game theory.

One major open problem is to develop polynomial time algorithms to solve the games
studied in this paper. Another major open problem is to find a Nash equilibrium in
Bimatrix Games in subexponential time [St]. This problem, together with factoring has
been called “the most important concrete open question on the boundary of P today” [Pa].
We hope that the LP-type and discrete LP-type frameworks will shed new light on this
problem.

Acknowledgments. I thank Uri Zwick who brought the paper by Ludwig [L] to my
attention, and Leo Ruest for pointing out the reference [GW2].
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[CM] B. Chazelle and J. Matoušek, One linear-time deterministic algorithms for optimization problems
in fixed dimension, Journal of Algorithms 21, 579–597 (1996).



OF14 N. Halman

[Co] A. Condon, The complexity of stochastic games, Information and Computation 96, 203–224 (1992).
[D] C. Derman, Finite State Markovian Decision Processes, Academic Press, New York (1972).

[EJS] E.A. Emerson, C.S. Jutla and A.P. Sistla, On model-checking for fragments of ν-calculus, in Costas
Courcoubetis, editor, Computer Aided Verification, 5th International Conference (CAV ’93), Lecture
Notes in Computer Science 697, pp. 385–396, Springer-Verlag, Berlin.
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