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Abstract A TV channel has a single advertisement break of duration h and a convex
continuous function f : [0, h] → R

+ representing the TV rating points within the
advertisement break. Given n TV advertisements of different durations p j that sum up
to h, andwillingness to pay coefficientsw j , the objective is to schedule them on the TV
break in order to maximize the total revenue of the TV channel

∑
j w j

∫ c j
c j−p j

f (t)dt,
where [c j − p j , c j ) is the broadcast time interval of TV advertisement j . We show
that this problem is NP-hard and propose a fully polynomial time approximation
scheme, using a special dominance property of an optimal schedule and the technique
of K -approximation sets and functions introduced by Halman et al. (Math Oper Res
34:674–685, 2009).

Keywords Scheduling · TV rating points ·Dynamic programming · Fully polynomial
time approximation scheme · K -approximation sets and functions

1 Introduction

SchedulingTVadvertisements is one of themost important decisions for a TVchannel,
providing a vital source of revenue for the company (see e.g. [5]). In this paper, we
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study the TV advertisements scheduling problem from the following new centralized
perspective. A TV channel has an advertisement break of duration h ∈ N seconds and
a convex continuous function f : [0, h] → R

+ that represents the TV rating points
within the advertisement break. In order to model the TV audience rating level, we
assume that f is decreasing in [0, v] and increasing in (v, h] where v ∈ N. Without
loss of generality, we assume f (v) = 0. The assumption on the convexity of the TV
rating points function follows the behavior of the TV audience rating, which tends
to be higher at the start and end of a TV break than during the middle [6]. The TV
channel is also given a set J of n TV advertisements, where each TV advertisement
j has a duration of p j ∈ N seconds and a willingness to pay coefficient w j ∈ Q

+,
such that broadcasting the advertisement in time interval [c j − p j , c j ) will result in a
payment of w j

∫ c j
c j−p j

f (t)dt dollars. We assume that
∑

p j = h, because TV breaks
have no empty broadcast times. The TV channel goal is to define a schedule S for
maximizing the total revenue from the advertisements broadcast:

F(S) =
n∑

j=1

w j

∫ c j

c j−p j

f (t)dt,

where [c j − p j , c j ) is the broadcast time interval of TV advertisement j according to
schedule S.

Our contribution We show that this problem is NP-hard and propose a fully polyno-
mial time approximation scheme (FPTAS), that is, an algorithm that for every given
parameter ε > 0 returns a feasible solution with relative error up to ε from an optimal
solution, and that runs in time polynomial in the (binary) size of the problem input
and in 1/ε, Our results are based on (1) a special dominance property of an optimal
schedule, which allows us to state conditions that must be satisfied for every pair of
TV advertisements i, j ∈ J in any optimal schedule S∗; and (2) the technique of
K -approximation sets and functions introduced by Halman et al. [14] applied on a
specific dynamic programming formulation that we give for the problem.

2 Literature review

The literature related to the TV advertisements scheduling problem can be categorized
into two settings: TV advertisements scheduling problems and the single machine
scheduling problem with a non-monotone penalty function.

TV advertisements scheduling problems In the literature, TV advertisements schedul-
ing problems have been studied by several authors from different perspectives,
considering various parameters in its formulation, such as: advertisement/program
content, viewers’ interests, sponsors’ preferences, program timing, program popular-
ity and available advertisement slot [26].

Bollapragada et al. [4] aim to schedule a set of TV advertisements in a set of
available TV breaks such that multiple airings of the same TV advertisement are as
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evenly spaced as possible, employing a branch and bound and a heuristic approach on
an integer programming model. Bollapragada and Garbiras [6] address a scheduling
problem that satisfies a certain percentage of total requirements on the start and end
broadcast positions of TV advertisements in different TV breaks in order to obtain a
higher level of TV audience rating, proposing an integer programming model and a
heuristic resolution method. Mihiotis and Tsakiris [22] study the frequency and the
position of TV advertisements on a set of available TV breaks in order to achieve
the highest TV audience rating subject to the advertisers budget constraints, using
a binary programming model and a heuristic method for its resolution. Zhang [27]
models a selling time problem to the advertisers, proposing a two step hierarchical
resolution method: (a) select advertisers and assign them on a specific TV break and,
(b) allocate the broadcast time to the selected advertisers on the TV break. Benoist
et al. [3] work on French satellite television, where the broadcast time interval of
TV advertisements are sold as packages to be incorporated into a set of TV breaks.
They define this optimization problem as the TV break packing problem, showing
unary NP-hardness and some resolution approaches. Mao et al. [19] are focused on
the Japanese TV advertising market, proposing an ant colony optimization algorithm
to optimize the sum of products of revenue and credit information. Gassemi Tari and
Alaei [11] propose a combinatorial auction to select a set of TV advertisements during
the peak of viewing time in a TV channel and design a steady state genetic algorithm
to find a near optimal solution. García-Villoria and Salhi [9] consider the demands of
advertisers, who want multiple airings of the same brand of TV advertisement to be
as spaced out as possible over a given time period, proposing two mixed integer linear
programming formulations and two constructive heuristics: local search procedures
and simulated annealing.

The single machine scheduling problem with a non-monotone penalty function In a
typical single machine scheduling problem, we have to order n jobs, each with given
positive processing time p j and priority weightw j . A schedule is defined by a ranking
σ , and the completion time of job j is defined as c j := ∑

i pi , where the sum ranges
over all jobs i such that σi ≤ σ j . Given a penalty function g: R

≥0 �→ R
≥0, the

goal is to produce a schedule that minimizes
∑

j w j g(c j ), denoting the problem by
1|| ∑ j w j g(c j ).

Most of the penalty functions considered in the literature are monotone increasing.
Bansal and Pruhs [2] address the more general problem 1||∑ g j (c j ), where every job
j is given an increasing penalty function g j (·), that does not need to be of the form
w j g(·). They design a 16-approximation algorithmbased on a geometric interpretation
of the problem. The approximation factor has been improved from 16 to 4 by Mestre
and Verschae [21] based on an analysis of the primal-dual approach proposed in [7].
Höhn et al. [18] give a quasi-polynomial time algorithm scheme (QPTAS) that yields
an (e + ε) approximation based on a certain connection of the scheduling problem
1||g j (·) and the unsplittable flow problem (UFP) on a path.

The simpler problem 1||∑w j g(c j ) was considered in [8], who provide a (4+ ε)-
approximation scheme which depends polynomially on the input size and 1/ε, ε >

0 for the setting where g is an arbitrary increasing differentiable penalty function
chosen by an adversary after the schedule has been produced. A polynomial time
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approximation scheme (PTAS), which runs in time 2O(log(1/ε)/ε2) log(
∑

j w j )n has
been provided by Megow and Verschae [20] for the problem 1||∑w j g(c j ), where g
is an arbitrary monotone penalty function (see Vásquez [24] for complexity results of
other specific penalty functions).

Höhn and Jacobs [17] derive a method to compute the tight approximation factor
of the Smith-ratio-schedule for any particular monotone increasing convex or concave
cost function. The method is based on an alternative interpretation of the problem,
assuming a non uniform processor speed at any time t given by a nonnegative mono-
tone function s: R≥0 �→ R

≥0, and the processing times (or workloads) of the jobs
are given with respect to a unit speed processor. The total workload processed until
time t is G(t) := ∫ t

0 s(x)dx . Conversely, if the total workload of job j and all jobs
processed before it is p, then the completion time of j in the schedule is s−1(p) and
then, the problem is equivalent to 1||∑ j w j G−1(c j ), where G−1 is increasing con-
cave or increasing convex defined by an increasing or decreasing speed function s,
respectively.

Our problem can be viewed as the maximization variant of a new scheduling prob-
lem with a non-monotone penalty function g and a non-monotone speed function s
for an alternative interpretation of the problem (G−1 is non-monotone).

3 A certain dominance property

Recently, dominance properties have been shown to improve the performance of
exhaustive search procedures by early pruning ineffective partial solutions in problems
with monotone [1,25] and non-monotone penalty function [23].

In order to reduce the search space of our problem, we study a certain dominance
property that is satisfied in any optimal schedule S∗ for every pair of TVadvertisements
i, j ∈ J , when i and j have both a broadcast time interval before or after v.

Note that any schedule S defines three sets of TV advertisements: J1 = { j ∈
J |c j < v},J2 = { j ∈ J |v ≤ c j ∧ c j − p j ≤ v} and J3 = { j ∈ J |v < c j − p j },
where |J2| = 1.

Lemma 1 In an optimal schedule S∗, the TV advertisements in J1 are scheduled
in a non-increasing willingness to pay order and the TV advertisements in J3 are
scheduled in a non-decreasing willingness to pay order.

Proof The proof of Lemma 1 is based on a simple exchange argument. We show the
case for TV advertisements in J1 where the objective function f is decreasing, the
other case is symmetric. Let I be an instance containing TV advertisements i, j in J1
and, S1 and S2 schedules for I of the form S1 = Ai j B and S2 = Aji B, for some sets
of TV advertisements A and B. Let a be the total broadcast time interval of A and
F(S) be the total revenue from the advertisements broadcast of schedule S. We have
the following equivalences:
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Fig. 1 Illustration of Eq. (1) for
pi > p j

i j

j i

a a+ pj a+ pi a+ pi + pj

F(S1) − F(S2) = wi

∫ a+pi

a
f (t)dt + w j

∫ a+pi+p j

a+pi
f (t)dt

−
(

w j

∫ a+p j

a
f (t)dt + wi

∫ a+p j+pi

a+p j

f (t)dt

)

= (wi − w j )

(∫ a+min{pi ,p j }

a
f (t)dt −

∫ a+pi+p j

a+max{pi ,p j }
f (t)dt

)

(1)

Figure 1 illustrates Eq. (1) for pi > p j . The shaded area is the contribution of TV
advertisement i on the total revenue from both schedules S1 and S2.

From the mean value theorem, we have:

∫ a+min{pi ,p j }

a
f (t)dt =min{pi , p j } f (ε), ε ∈ [a, a + min{pi , p j }] (2)

and

∫ a+pi+p j

a+max{pi ,p j }
f (t)dt = (pi + p j − max{pi , p j }) f (ε′), ε′ ∈ [a + max{pi , p j },

a + pi + p j ]
= min{pi , p j } f (ε′). (3)

Thus, we replace the expression (2) and the expression (3) in expression (1) and
we have

(wi − w j )min{pi , p j }( f (ε) − f (ε′))

We have f (ε) − f (ε′) > 0 follows since f is strictly decreasing in [0, c],
min{pi , p j } > 0 and then, Eq. (1) ≥ 0 is equivalent to wi − w j ≥ 0. To end,
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we note that Eq. (1) is independent on a, implying that the TV advertisement order
resulting from the exchange argument directly defines the optimal schedule S∗ among
TV advertisements in J1. 
�
Definition 1 Given aTVadvertisements scheduling S, an advertisement j such that all
advertisements preceding it are scheduled in a non-increasingwillingness to pay order,
and all advertisements succeeding it are scheduled in a non-decreasing willingness to
pay order is called a pivot advertisement. Such a schedule S is called a pivotal schedule
around j .

We get from Lemma 1 the following corollary:

Corollary 1 Any optimal schedule is a pivotal schedule.

Corollary 1 tells us that we can restrict the search space to pivotal solutions, i.e., an
optimal solution must be an optimal pivotal solution around some advertisement j .

4 Computational complexity

Theorem 1 The TV advertisements scheduling problem is NP-hard.

Proof The TV advertisements scheduling problem is clearly in N P , as the conditions
on the completion times for a feasible solution and the scheduling value from it can
be checked in polynomial time.

To show that the TV advertisements scheduling problem is NP-hard, we consider
the 2-PARTITION problem [10]:

Instance: n numbers p1, . . . , pn ∈ N such that
∑

j p j = 2A.

Question: Is there a subset S such that
∑

j∈S p j = A?, and we reduce an instance of
2-PARTITION to the decision version of the TV advertisements scheduling problem,
asking for a solution with an objective value equal to a given threshold k.

We construct an instance I of TV advertisements scheduling problem as follows:
a set J of n TV advertisements with w j = w ∀ j = 1, . . . , n and p j ∈ N ∀ j =
1, . . . , n such that

∑
j p j = 2A; a TV advertisement n + 1 with 0 ≤ wn+1 < w

and pn+1 = A; a break TV of duration h = 3A and a TV rating points function f (t)
strictly convex with f (A) = f (2A) and f (v) = 0, v ∈ [A, 2A]. The threshold k is
w

∫ 3A
0 f (t)dt + (wn+1 − w)

∫ 2A
A f (t)dt .

We claim that this instance I has a solution S with at least k if and only if there
exists a solution to the 2-PARTITION instance.

For the easy direction, given a solution to the 2-PARTITION instance we construct
a schedule consisting of TV advertisement of one partition before time A, then TV
advertisementn+1and the remainingTVadvertisements from time2A to 3A. Straight-
forward verification shows that the resulting schedule has the required value k.

For the hard direction, given the instance I we consider a solution to the TV
advertisements scheduling problem of total revenue k. Its revenue cannot be smaller.

By Lemma 1, any optimal solution S∗ has the TV advertisement n + 1 scheduled
in the last position among TV advertisements in J1, in the first position among TV
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Fig. 2 Feasible solution S of
2-PARTITION instance

0 v h

A A

TV advertisements in J1 TV advertisement n + 1 TV advertisements in J3

advertisements inJ3 or it is the single TV advertisement inJ2. Thus, the total revenue
of schedule where TV advertisement n + 1 starting at x , with 0 ≤ v − A ≤ x ≤ v is
defined as follows:

w

∫ x

0
f (t)dt + wn+1

∫ x+A

x
f (t)dt + w

∫ h

x+A
f (t)dt

= w

∫ h

0
f (t)dt − w

∫ x+A

x
f (t)dt + wn+1

∫ A+x

x
f (t)dt

= w

∫ 3A

0
f (t)dt + (wn+1 − w)

∫ x+A

x
f (t)dt (4)

Now, we compute the first derivative in x and have

(wn+1 − w)( f (A + x) − f (x)), (5)

with (wn+1 − w) < 0 by case assumption, f (A + x) − f (x) strictly increasing in
x ∈ [v − A, v] by f strictly convex, f (v)− f (v − A) < 0 and f (A+v)− f (v) > 0.
Therefore, the expression in (4) is strictly concave in x and then, the expression (5)
equal to 0 is a sufficient condition to define an unique optimal value x∗. Thus, it
suffices to find f (A + x∗) = f (x∗). We have f (A) = f (2A) by case assumption
and then x∗ = A. Therefore, the optimal solution S∗ corresponds to the solution S of
2-PARTITION instance, such as shown in Fig. 2, concluding the proof. 
�

5 A dynamic programming formulation

In this section, we develop a dynamic programming (DP) formulation to our problem.
For each advertisement j we will build a feasible solution in which j serves as a
pivot advertisement. Let the pivot advertisement be fixed. We re-index the remaining
advertisements from 1 to n−1 in non-increasing willingness to pay order and re-index
the pivot advertisement to n. For every 0 ≤ k ≤ n and 0 ≤ � ≤ h−∑n

i=k pi we define
a partial solution Fk(�), where the assigned TV advertisements are k, . . . , n and Fk(�)

123

Author's personal copy



F. Díaz-Núñez et al.

Fig. 3 Illustration of the
possible broadcast time intervals
for TV advertisement k

0 v hsk+1

k

∑n
i=k+1 pi

pk

k

∑n
i=k+1 pi

pk

is the best value of the objective function for broadcasting these advertisements in the
time interval

[
�, � + ∑n

i=k pi
]
, such that advertisement n is a pivot advertisement.

The DP formulation reads as follows.

Fn(�) = wn
∫ �+pn
�

f (t)dt, � = 0, . . . , h − pn,

Fk(�) = max

⎧
⎪⎨

⎪⎩

wk
∫ �+pk
�

f (t)dt + Fk+1(� + pk),

wk
∫ �+∑n

i=k pi
�+∑n

i=k+1 pi
f (t)dt + Fk+1(�)

� = 0, . . . , h − ∑n
i=k pn, k = n − 1, . . . , 1.

(6)
The first equation in DP formulation (6) deals with the boundary case of a single
advertisement that is scheduled in the time interval [�, � + pn]. The upper (resp. lower)
expression in the second equation deals with the case in which advertisement k is
scheduled some time before (resp. after) the pivot advertisement. The value of an
optimal solution is F1(0).

Theorem 2 For any given pivot advertisement j , DP (6) yields an optimal pivotal
schedule around j .

Proof Recall that the remaining TV advertisements are re-indexed in non-increasing
willingness to pay order and the pivot advertisement is re-indexed to n. We denote
by sk+1 the starting broadcast time of the subset of TV advertisements {k + 1, k +
2, . . . , n}, k = 1, . . . , n − 1, where advertisement n is a given pivot advertisement.
Indeed, in anoptimal pivotal schedule aroundn eachTVadvertisement k ∈ {1, . . . , n−
1} can only be scheduled on either the broadcast time interval

[
sk+1 − pk, sk+1

]
or[

sk+1 + ∑n
i=k+1 pi , sk+1 + ∑n

i=k pi
]
, as shown in Fig. 3. 
�
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6 An overview of K -approximation sets and functions

In this section we provide an overview of the technique of K -approximation sets and
functions. In the next section we use this technique in order to construct an FPTAS
for the TV advertisements scheduling problem.

Notation For a function ϕ: {A, . . . , B}→R that is not identically zero we denote
ϕmin := minA≤x≤B{|ϕ(x)|: ϕ(x) = 0}, and ϕmax := maxA≤x≤B{|ϕ(x)|}. We define
σϕ(x) := ϕ(x + 1) − ϕ(x) as the slope of ϕ at x for any integer A ≤ x < B. We
define σmax

ϕ := maxA≤x<B{|σϕ(x)|} and σmin
ϕ := minA≤x<B{|σϕ(x)|: |σϕ(x)| > 0}.

Let tϕ be the time needed to calculate ϕ(x), for any x .
Halman et al. [14] have introduced the technique of K -approximation sets and

functions, and used it to develop an FPTAS for a certain stochastic inventory control
problem.Halman et al. [13] have applied this tool to develop a framework for construct-
ing FPTASs for three general classes of DPs: when the single-period cost functions are
nondecreasing (resp. nonincreasing) in the state variable, the DP is called nondecreas-
ing (resp. nonincreasing) and when the single-period cost functions have a certain
convex structure and the transition function is affine, the DP is called convex. This
technique has been applied to yield FPTASs to various optimization problems, see
[12,13,16] and the references therein. Halman et al. [15] have accelerated the FPTAS
running time for convex DPs.

K-approximation sets and functions As the TV advertisements scheduling problem
has a convex structure, to simplify the discussion, we concentrate on Halman et al.’s
definitions for K -approximation sets and functions specialized for convex functions,
as in [15]. Let K ≥ 1, and let ϕ, ϕ̃: {A, . . . , B} → R

+ be arbitrary functions. We
say that ϕ̃ is a K -approximation function of ϕ if ϕ(x) ≤ ϕ̃(x) ≤ Kϕ(x) for all
x = A, . . . , B.

The following property of K -approximation functions is extracted from Propo-
sition 5.1 of [13], which provides a set of general computational rules of K -
approximation functions. Its validity follows directly from the definition of K -
approximation functions.

Property 1 (Calculus of K -approximation functions) For i = 1, 2 let Ki ≥ 1,
let ϕi , ϕ̃i : {A, . . . , B} → R

+ and let ϕ̃i be a Ki -approximation of ϕi . Let
ψ1: {A′, . . . , B ′}→{A, . . . , B} be an arbitrary function. The following properties
hold:

Summation of approximation: ϕ̃1 + ϕ̃2 is a max{K1, K2}-approximation func-
tion of ϕ1 + ϕ2.

Composition of approximation: ϕ̃1(ψ1) is a K1-approximation of ϕ(ψ1).
Maximization of approximation: max{ϕ̃1, ϕ̃2} is amax{K1, K2}-approximation of

max{ϕ1, ϕ2}.
Approximation of approximation: If ϕ2 = ϕ̃1 then ϕ̃2 is a K1K2-approximation

function of ϕ1.

Wenext turn to defining K -approximation sets. The idea behind such approximation
sets is to keep a small (i.e. polynomially bounded size) set of points in the domain of
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Algorithm 1 Function Compress(ϕ, D, K ) returns a convex K -approximation of
ϕ: D→R

+
1: Function Compress(ϕ, D, K )
2: obtain a K -approximation set W of ϕ over domain D
3: return the convex extension of ϕ induced byW as an array {(x, ϕ̃) | x ∈ W } sorted in increasing order

of x .

a function, ensuring that linear interpolation between the function’s values on this set
guarantees rigorous error bounds.

Definition 2 [13] Let ϕ: {A, . . . , B} → R be a convex function. ∀E ⊆ {A, . . . , B},
the convex extension of ϕ induced by E is the function ϕ̂ defined as the lower envelope
of the convex hull of {(x, ϕ(x)): x ∈ E}.
Definition 3 [15, Def. 3.1] Let K ≥ 1 and let ϕ: {A, . . . , B} → R

+ be a convex
function. Let W ⊆ {A, . . . , B} and let ϕ̂ be the convex extension of ϕ induced by
W . We say that W is a K -approximation set of ϕ if: (i) A, B ∈ W ; (ii) For every
x ∈ {A, . . . , B}, ϕ̂(x) ≤ Kϕ(x).

Definition 3 tell us that the convex extension of ϕ induced by a K -approximation
set of ϕ is a K -approximation function of ϕ.

Proposition 1 [15, Thm. 3.2] Let ϕ: {A, . . . , B} → R
+ be a convex function. Then

for every K > 1, it is possible to compute a K -approximation set of ϕ of size

O

(

logK min

{
σmax

ϕ

σmin
ϕ

,
ϕmax

ϕmin

})

in O

(

tϕ logK min

{
σmax

ϕ

σmin
ϕ

,
ϕmax

ϕmin

}

log(B − A)

)

time.

A procedure for the construction of a K -approximation function ϕ̆ for ϕ is stated as
Algorithm 1. By applying the calculus of approximation (approximation of approx-
imation) and the discussion above we get the following result (see also [13, Prop.
4.5]).

Proposition 2 Let K1, K2 ≥ 1 be real numbers and let ϕ: {A, . . . , B}→R
+ be a

convex function. Let ϕ̄ be a convex K2-approximation function of ϕ. Then Algorithm 1

(Function Compress(ϕ̄, {A, . . . , B}, K1)) returns in O

(

tϕ logK min

{
σmax

ϕ

σmin
ϕ

,
ϕmax

ϕmin

}

log(B−A)

)

timeapiecewise linear convex function ϕ̆with O

(

logK min

{
σmax

ϕ

σmin
ϕ

,
ϕmax

ϕmin

})

pieces that K1K2-approximates ϕ, and of which the query time is

tϕ̆ = O

(

log logK min

{
σmax

ϕ

σmin
ϕ

,
ϕmax

ϕmin

})

.

7 An FPTAS

We are ready to state and analyze our FPTAS for the TV advertisements scheduling
problem, see Algorithm 2. The algorithm has two “for” loops. In the outer “for” loop
(with index j), the algorithm considers pivotal schedules around advertisement j . In
the inner “for” loop it constructs a 1

1+ε
-approximation for an optimal pivotal schedule
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Algorithm 2 Function TV(ε) returns a
(

1
1+ε

)
-approximation for the TV scheduling

problem
1: Function TV(ε)

2: Let K ← n√1 + ε

3: for j := 1 to n do
4: Re-index the advertisements in {1, . . . , n} \ { j} from 1 to n − 1 in non-increasing willingness to pay

order and re-index the pivot advertisement to n

5: Let F̆ j
n (·) ← Compress

(
wt

∫ ·+pt· f (t)dt, {0, . . . , h − pn}, K
)

6: for t := n − 1 downto 1 do
7: f̆t (·) ←Compress

(
wt

∫ ·+pt· f (t)dt, {0, . . . , h − pt }, Kn−t
)

8: Define F̄ j
t (x) := max

{
f̆t (x) + F̆ j

t+1(x + pt ), f̆t
(
x + ∑n

i=t+1 pi
) + F̆ j

t+1(x)
}

9: F̆ j
t (·) ←Compress

(
F̄ j
t (·), {0, . . . , h − ∑n

i=t pi
}
, K

)
/* F̄ j

t (·) as defined in line 8 */

10: end for
11: end for

12: return max j=1,...,n
F̆ j
1 (·)
1+ε

and the corresponding schedule by performing backtracking

around advertisement j . In its last step, the algorithm returns the best approximated
pivotal schedule among the n pivotal schedules it constructed. As any optimal solution
is a pivotal solution around some pivot advertisement, see Corollary 1, we get that the
solution returned by the algorithm is a 1

1+ε
-approximation for an optimal solution. We

need some more notation first. From hereon after we use the notation z(·), where the
“·” stands for the argument of function z. E.g., the value of z(·−w) for variable value
2 is z(2−w). Put it differently, the function z is shifted by −w. z̆ stands for a succinct
representation of a convex approximation of z, i.e., a sorted array {(x, z(x)) | x ∈ W },
whereW is an approximation set of z. z̄ stands for an approximate oracle (black box) to

z. Let ft (·) := wt
∫ ·+pt
· f (t)dt . Let U f := maxt=1,...,n f max

t
mint=1,...,n f min

t
and Uσ := maxt=1,...,n σmax

ft
mint=1,...,n σmin

ft

.

In Sect. 6, we defined a K -approximation function ϕ̆ for ϕ as a function that is “sand-
wiched” between ϕ and K -times ϕ, for any K > 1. This works out for minimization
problems in which each feasible solution lies not below the optimal solution. For max-
imization problems, as is the case with the TV advertisements scheduling problem,
we want to approximate from below, that is, to construct a function that is sandwiched
between ϕ and ϕ/K , for any K > 1. Note that if ϕ̆ is a K -approximation of ϕ (in the
ordinary sense, as defined in Sect. 6) then ϕ̆/K is a 1/K -approximation function of ϕ

from below.

Theorem 3 For any given parameter ε > 0, Algorithm 2 returns in O
( n3

ε
log n

ε
log

(min{Uσ , nU f }) log h log log(min{Uσ , nU f })
)
time a 1

1+ε
-approximation of the TV

advertisements scheduling problem.

Proof Due to Corollary 1, an optimal schedule for the TV advertisement problem has
advertisement j as a pivot advertisement for a certain j . We will show that the solution
that the algorithm constructs when the value of the index of the outer “for” loop is j ,
is a 1

1+ε
-approximation for the TV advertisement problem. For simplicity we omit the

superscript j from F j
t (·) and use instead Ft (·).
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We note first that all calls to Compress are well defined: regarding lines 5 and
7, ft (·) = wt

∫ ·+pt
· f (t)dt is a convex function because f (·) is convex. Regarding

line 9, F̄t (·) is convex as a maximization of convex functions.
We start by analyzing the error bound. We show by backward induction that F̆t (·)

is a Kn−t+1-approximation of Ft (·). The base case for t = n holds true due to the
fact that there is a single advertisement to broadcast and the definition in line 5. We
assume by induction correctness for t + 1, i.e., F̆t+1(·) is a Kn−t -approximation of
Ft+1(·), and prove that F̆t (·) is a Kn−t+1-approximation of Ft (·). By the parameters
set in line 7 and Proposition 2 with the parameter K2 = 1, we have that f̆t (·) is
Kn−t -approximation of ft (·). In line 8, for a fixed value of x we define the value of
F̄t (x) according to DP formulation (6). By the induction hypothesis and the calculus
of approximation (summation, composition and maximization of approximation in
Proposition 1) we get that F̄t (x) is a Kn−t -approximation of Ft (·). We remark that no
actual computation is involved in this step because we did not fix a value of x yet (it
will be determined in the next step), but including line 8 in the algorithm helps us for
the analysis. In line 9, by Proposition 2 we get that F̆t (·) is a Kn−t+1-approximation
of Ft (·) as needed.

We turn to analyzing the running time. By Proposition 2, the query time of
F̆t (·) is tF̆t = O(log logK min{Uσ , nU f }). The running time of Compress in
line 7 is dominated by the one in line 9, which is by the same proposition
O(tF̆t logK min{Uσ , nU f } log h). Moving to base 2 logarithm, using the equation

log K = log n
√
1 + ε = O( ε

n ), substituting tF̆t for its value and taking into account
that there are n iterations in each one of the outer and inner “for” loops, the claimed
running time follows. 
�

We note that the FPTAS for convex DPs in general, and function Compress in par-
ticular, have been implemented in practice with excellent computational performance,
see [15, Section 4]. That paper includes an extensive computational evaluation based
on randomly generated problem instances coming from applications in supply chain
management and finance, and shows that the FPTAS runs faster than an exact algo-
rithm even for small problem instances and small approximation factors, becoming
orders ofmagnitude faster as the problem size increases, see [15, Section 6].Moreover,
that paper shows that with careful algorithm design, the errors introduced by floating
point computations can be bounded, so a guarantee on the approximation factor over
an exact infinite-precision solution can be provided, see [15, Section 4.3]. Further-
more, to reduce the optimality gap, the paper suggests an adaptive selection strategy
of the approximation factors in each iteration, see [15, Section 6.5]. A posteriori error
analysis is given in [15, Appendix B.3]. More detail on the computational efficiency
of the FPTAS can be found in [15].

8 Concluding remarks

In this paper, we study the TV advertisements scheduling problem from a new cen-
tralized perspective, considering a TV channel with a TV rating points function and
willingness to pay coefficients, in order to define a schedule that maximizes the total
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revenue from the advertisements broadcasted on a single TV break. This problem
corresponds to the maximization variant of a new scheduling problem with a non-
monotone penalty function g and a non-monotone speed function s for an alternative
interpretation of the problem (G−1 is non-monotone) in a scheduling general setting.
We prove NP-hardness of the problem and develop for it an FPTAS.

For future research, we propose to address another TV advertisement problem
where the duration of the single TV break is less than the total duration of the TV
advertisements, and then an optimal solution with idle times in the break is possible.
The above problem can be interpreted as a special knapsack problem, where the
contribution of each item is determined by its position in the knapsack via a specific
function (in the classic version this function is a constant, i.e., the profit coefficient of
the item).
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