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Abstract

We study succinct approximation of functions that have noisy oracle access. Namely, construction
of a succinct representation of a function, given oracle access to an L-approximation of the function,
rather than to the function itself. Specifically, we consider the question of the succinct representation of
an approximation of a convex function φ that cannot be accessed directly, but only via oracle calls to a
general (i.e., not necessarily convex) L-approximation φ̃ of φ. We efficiently construct such a succinct
(1+ ϵ)L2-approximation for a univariate convex φ, for any ϵ > 0. The algorithms designed in this paper
can, and are used as subroutines (gadgets) within other approximation algorithms.

1 Introduction

1.1 Succinct representation of functions given noisy oracles

On succinct representation of data. A broadly successful approach to massive datasets analysis
involves understanding and manipulating not the raw data, but the essence of the data. Not all the data
is captured, but only a representation suitable for subsequent analysis. Ideally, this representation is
succinct, i.e., far smaller than the original data, and adequate at least for approximate analysis.

When dealing with datasets, errors may occur unintentionally during the process of data acquisition
(e.g., white noise) or data processing (e.g., roundoff errors). But errors may intentionally be allowed in
order to speedup data processing (e.g., approximation of the requested value). While unintentional errors
are typically of additive nature (stochastic/robust), we consider intentional errors of multiplicative nature.
In this setting, it is perhaps more natural to view the dataset as a function φ over a finite domain.

In this paper we consider an ideal function φ that is assumed to satisfy various known structural
properties, e.g., it may be monotone. Because of errors, the oracle φ̃ may not be such. However, for every
point x in the domain, φ̃(x) is limited to be at least φ(x) and at most Lφ(x), where L > 1 is a given
constant. In this way L− 1 is the relative error of φ̃. Considering monotonicity, we note that sorted lists
of numbers are a requirement for all kind of operations. For example, a binary search will easily err if the
list is not perfectly sorted. We would like therefore to process the function efficiently and store a succinct
representation of it such that for any query point we will be able to return a value that is (i) consistent
with a sorted list and (ii) differs from the ideal φ by a factor of at most KL, (K > 1). An immediate
application of such a representation is to provide robustness for binary search over functions that are far
from being monotone (e.g., half of their values need to be changed in order to retain monotonicity), but
the relative error in each value is bounded by L− 1. Another application, which we pursue in this paper,
is constructing a bounded-error relative approximation for φ.
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On noise models. Consider the following “traditional” settings for accessing a function φ (the first two
have no error):

1. Explicit: One has explicit access to the function, e.g., one is given its closed-form formula.

2. Implicit: One accesses the function via queries to an oracle. For each query point x, one gets a value
depending on the specific setting:

(a) Direct (“black box”): φ(x).

(b) Stochastic: φ̃(x) := φ(x) + ϵ(x), where ϵ(x) is a random additive sampling error with a given
probability distribution.

(c) Robust: φ̃(x) := φ(x) + ϵ(x), where ϵ(x) is a random additive sampling error with unknown
probability distribution.

Consider the problem of convex function minimization. In the explicit setting, if the function is differen-
tiable then using the Karush-Kuhn-Tucker (KKT) conditions may lead to a closed-form solution that can
be derived analytically. In the direct (or stochastic) setting, methods for numerically solving the KKT
system of equations may be used. We note that among works that primarily consider the robust setting
(where ϵ(x) is arbitrary large for an unknown small fraction of the points, and otherwise is zero) are those
on property testing, self correction, and property reconstruction [BLR90, RS96, ACCL08].

The relative noise model. We propose to investigate the following natural noise model, which arises,
e.g., when approximating functions recursively: for every query point x, we are provided with φ̃(x), where
φ̃ is an L-approximation function of φ, for a given constant L ≥ 1. φ̃ is said to be an L-approximation
function of φ if it returns a value that is between φ(x) and Lφ(x), for every point x in its domain. We
call our model the relative noise model.

Succinct approximation under the relative noise model. We formalize the problem of succinct
approximations of functions. The goal is to efficiently construct a succinct M -approximation of a non-
negative function φ : D→R+ over a linearly ordered finite domain D, while having access only to
an L-approximation φ̃ : D→R+ of it. By succinct we mean that the space used for the representa-
tion of the approximation must be polylogarithmic in |D| and φmax

φmin , where φmax = maxx∈D φ(x) and

φmin = min{φ(x) | x ∈ D and φ(x) > 0}. By efficient we mean that the time and number of oracle calls
to φ̃ needed by an algorithm to create the approximation function must be polylogarithmic in these two
terms as well. We would like to have M > L be as small as possible.

If L = 1, i.e., in the direct setting where one has a “black box” access to the function itself, this can
be done with M = L quite easily for either monotone or convex univariate functions [HKL+08]. Note that
if the function is unimodal - this is not possible, e.g., consider a function whose value is always 1 except
for one point in the domain, in which its value is 0.

If L > 1, i.e., in the relative setting, approximating monotone functions is quite straightforward for
M = (1+ ϵ)L and any ϵ > 0, mainly because the exact argmin of φ is known [HKL+13]. The convex case
is more involved.

1.2 Our results and contributions

Our main algorithmic result is:

Theorem 1.1 (Succinct approximation of a convex function via an L-approximation general oracle). Let
φ : [A,B]→Z+ be a univariate convex function, L > 1 be a constant, φ̃ be an L-approximation function
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of φ and tφ̃ be an upper bound on the time needed to evaluate φ̃(x), for any x ∈ D. Then for every
K = 1 + ϵ > 1, it is possible to construct in

O

(
1 + tφ̃
ϵ

log φ̃max [log log φ̃max + log(1/ϵ)]
[
L4 + log(B −A)

])
time a convex piecewise-linear KL2-approximation function of φ that has O( log φ̃

max

ϵ ) breakpoints.

We note that it may be possible to use this result as a “building block” when approximating multidi-
mensional convex (or submodular) functions, as is already done with corresponding results in the direct
setting [CDJ14]. But this result does not extend in a natural way to multidimensional domains, even under
the direct setting. I.e., it is impossible, in general, to get succinct K-approximations even for bivariate
functions that are both monotone and discretely-convex. We formally state our main impossibility result:

Theorem 1.2 (Non-existence of succinct approximations for multivariate functions). For any 1 ≤ K < 2,
a bivariate monotone discretely-convex function in the sense of Miller [Mil71] does not necessarily admit
a succinct K-approximation, regardless of the scheme used to represent the function.

Our contribution. Our contribution is fourfold. First, we propose a novel perspective on the problem
of succinct approximations - we study succinct approximations under the relative setting where one can
only access an L-approximation of a function and not the function itself. To the best of our knowledge, this
problem was not studied before under this setting. Second, we efficiently construct succinct approximations
for univariate convex functions in this setting by means of careful algorithm design. Third, besides this
stand-alone algorithmic result, the algorithms designed here can, and are successfully used as subroutines
within other approximation algorithms, such as approximation algorithms based on the method of K-
approximation sets and functions (see below). Last - we give the first impossibility result for succinctly
approximating multidimensional discretely-convex/monotone functions, even under the direct setting.

1.3 Related work

Property-preserving reconstruction. It is interesting to compare this work and the one on property-
preserving reconstruction [ACCL08, SS10]. In monotonicity reconstruction, the function is given in the
robust setting and is assumed to be monotone. The (additive) sampling error ϵ(x) equals zero for an
unknown fraction 1 − ϵ of the points in D, and can be arbitrary large otherwise. In other words, one
assumes that φ is monotone, and that in general the oracle φ̃ must be modified at ϵ|D| places to become
monotone. The goal is to construct in an online fashion a monotone filter f that for any query point
x ∈ D returns a value f(x) that, although not necessarily equal to φ(x), differs from it as infrequently
as possible. Because f should resemble to φ as much as possible, and φ̃ is equal to φ on (1 − ϵ)|D|
of the points, in an offline preprocessing, the filter can always go over the entire domain, compute the
“nearest” monotone function, and store it as its filtered function. This is not efficient, however, since
the number of queries performed is linear in |D| (and not polylogarithmic). In our work, the function is
given in the relative setting. φ̃(x) may differ from a monotone φ(x) on all of the points in the domain,
but its value is always “close” to φ(x), i.e., it satisfies φ(x) ≤ φ̃(x) ≤ Lφ(x), for some given constant
L > 1. The goal is to construct a function ψ that is a monotone approximation of φ. It turns out that
an efficient offline construction of a succinct approximation ψ of φ is possible. This is mainly because
we allow ψ to differ from φ on “many” points and by using the monotonicity of φ. (E.g., consider of
φ(x) := x, ∀x ∈ [10, 20], φ̃(x) := ⌈1.5x⌉ + 3(−1)x and L = 1.8. Then φ̃ is an L-approximation of φ,
φ̃ ̸= φ in all points of the domain and should be corrected in half of its domain in order to be monotone.
Nevertheless, it is possible to construct a monotone succinct 2-approximation for φ such as ψ(x) := 2x,
while accessing only φ̃). We note in passing that [ACCL08, SS10] design reconstructions of d-dimensional
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monotone functions, while we show that it is impossible in general to get efficient succinct approximations
for d-dimensional monotone functions, even under the direct setting.

Discrete convexity. In discrete optimization, discrete analogs of convexity, or “discrete convexity” for
short, have been considered. Miller investigated a class of discrete functions, of which local optimality
implies global optimality [Mil71]. Favati and Tardella considered a certain special way of extending
functions defined over the integer lattice to piecewise-linear functions defined over the real space, and they
introduced the concept of “integrally convex functions” [FT90]. Murota introduced the concepts of “L-
convexity” and “M-convexity,” in which “L” stands for “Lattice” and “M” stands for “Matroid” [Mur03].
L- and M-convex functions possess several desirable properties as discrete convex functions, including
extendability to ordinary (continuous) convex functions, duality theorems, and conjugacy between L- and
M-convex functions, etc. Our impossibility result, Theorem 1.2, deals with discretely-convex functions in
the sense of Miller, which is a specific, although quite general, class of discretely-convex functions.

K-approximation sets and functions. The method of K-approximation sets and functions, intro-
duced in earlier work with coauthors, is used for designing fully polynomial time approximation schemes
(FPTAS) for discrete-time finite-time stochastic dynamic programs (DP) where direct (“black-box”) access
to the single-period cost functions is assumed [HKM+09]. The basic idea underlying the FPTAS is to K-
approximate the functions involved in a DP by keeping only a logarithmic number of points in their domain
(called a K-approximation set). One then uses a step function or linear interpolation to determine the
function value at points that have been eliminated from the domain. [HKL+08] give an FPTAS for three
classes of problems that fall into this framework: convex DP, nondecreasing DP, nonincreasing DP. This
FPTAS is not problem-specific, but relies solely on structural properties of the DP. This was used to give
the first FPTAS for several problems, and to improve (running-time wise) upon existing “tailor-made”
FPTASs for other problems (e.g., for deterministic single-item capacitated economic lot-sizing problem
with a monotone cost, the “general” FPTAS in [HKL+08] runs faster than the currently best ad-hoc
FPTAS [CNC10]).

1.4 Applications of our model

Generalized binary search. Suppose one is interested in minimizing a univariate convex function φ.
If there is direct access to φ, then by applying binary search one can efficiently minimize φ. Our current
work enables one to apply binary search in the relative setting, when access to φ is via a (not necessarily
convex) L-approximation φ̃ of φ: all we need is to apply Theorem 1.1 in order to get a convex succinct
approximation of φ and then perform binary search over it.

Generalized K-approximation sets and functions. The FPTAS framework discussed above assumes
direct (“black-box”) access to the single-period functions which we denote by gt. This work generalizes
this FPTAS framework to work under the relative setting: suppose that the single-period cost functions
gt of a convex DP are not known, but an FPTAS g̃ϵt for them is available. If g̃ϵt is convex then the convex
structure of the DP is maintained and the framework of [HKL+08] applies. Otherwise, by Theorem 4.1
below, one gets convex FPTASs for the various gt, and again the aforementioned framework applies. We
note in passing that any cost function that requires simulation can be computed approximately with high
probability when the lowest and greatest nonzero probability is bounded away from zero and one.
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1.5 Notation.

Let R,R+,Z,Z+,N denote the set of real numbers, nonnegative real numbers, integers, nonnegative integers
and positive integers, respectively. For every pair A,B of integers, A < B let [A,B] = {A,A + 1, . . . , B}
denote the set of integers between A and B. For simplicity, we assume throughout that B − A > 1.
A function φ : D→R over a linearly ordered set D is called increasing if it is nondecreasing on D.
Similarly, φ is called decreasing if it is nonincreasing on D. We denote by tφ the time needed to evaluate
φ on a single point in its domain. Given a finite set D ∈ R and x ∈ [Dmin, Dmax], for x < Dmax let
next(x,D) := min{y ∈ D | y > x}, and for x > Dmin let prev(x,D) := max{y ∈ D | y < x}. Given a

function defined over a finite set φ : D→R, we define σφ(x) :=
φ(next(x,D))−φ(x)

next(x,D)−x
as the slope of φ at x for

any x ∈ D \ {Dmax}, σφ(Dmax) := σφ(prev(D
max, D)). For any subset D′ ⊆ D, we define the piecewise

linear extension of φ induced by D′ as the function obtained by making φ linear between successive values
of D′. For any subset D′ ⊆ D, a function φ over D is called convex over D′ if its piecewise linear extension
induced by D′ is convex. For any subset D′ ⊆ D, we define the convex extension of φ induced by D′ as the
function defined as the lower envelope of the convex hull of {(x, φ(x)) | x ∈ D′}. The base two logarithm
of z is denoted by log z. In our setting the problem input is given as A,B and an oracle φ̃. We define the
input size to be logA+ logB + log φ̃max.

2 Non-approximability of multivariate convex functions

A function f : [1, U ]d → R+ is said to be a “Miller’s discretely convex function” (discretely convex function
for short) if

min{f(z) | z ∈ N(αx+ (1− α)y)} ≤ αf(x) + (1− α)f(y) (1)

holds for any x, y ∈ [1, U ]d and any 0 ≤ α ≤ 1, where N(t) = {t′ ∈ Zd | ∥t− t′∥∞ < 1} for t ∈ Rd, [Mil71].
Note that Miller’s discretely convex functions is a class of convex functions which is fairly broad [Mur03,
p. 37], and they have the characteristic that local optimality implies global optimality [Mil71].

We now state the following proposition, where its validity follows directly from the definition of K-
approximation functions.

Proposition 2.1. For every 1 ≤ K < 2, d ∈ N, and binary function φ : [1, U ]d→{0, 1}, any integer-valued
K-approximation function of φ coincides with φ.

By Proposition 2.1, approximating φ instead of calculating it exactly does not reduce the complexity of
the problem.

We next calculate a lower bound on the number of nondecreasing discretely convex functions φ :
[1, U ]2→[0, U ]. We say that φ1, φ2 : [1, U ]2→[0, U ] are binary distinct if φ−1

1 (0) ̸= φ−1
2 (0); that is, the

domains on which their values are zero are different. (An equivalent definition is as follows: φ1, φ2 are
binary distinct if bin(φ1) ̸= bin(φ2), where bin(φ) is a function such that bin(φ)(x, y) = 0 if φ(x, y) = 0
and bin(φ)(x, y) = 1 otherwise.)

Proposition 2.2. There are Ω(2
√
U ) binary distinct nondecreasing discretely convex functions φ :

[1, U ]2→[0, U ].

Proof. Let

Φ =

{
φr1,...,rU : [1, U ]2→[0, U ]

∣∣∣∣ r1, . . . , rU ∈ [0, U ];

U∑
i=1

ri = U ; r1 ≤ r2 ≤ · · · ≤ rU
}
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be a family of bivariate functions defined as follows: For every function φr1,...,rU ∈ Φ and every i = 1, . . . , U ,

φr1,...,rU (x, i) =

{
0, for x = 1, . . . , U −

∑i
j=1 rj ;

x− U +
∑i

j=1 rj , for x ≥ U −
∑i

j=1 rj + 1 and
∑i

j=1 rj ≥ 1.

Clearly, any pair of elements of Φ are binary distinct. We refer to {φr1,...,rU (x, i) | x = 1, . . . , U} as the
ith row of φr1,...,rU . Note that the first row contains U − r1 zeros, and for i > 1, the ith row contains ri
less zeros than the (i− 1)st row. Note also that since

∑U
i=1 ri = U , we have φr1,...,rU (x,U) = x.

Consider any φr1,...,rU ∈ Φ. Clearly, φr1,...,rU is a nondecreasing function. In addition, it is not difficult
to check that φr1,...,rU is discretely convex (and the detailed convexity proof is omitted).

We now determine the cardinality of the family Φ. Because r1 ≤ r2 ≤ · · · ≤ rU and
∑U

i=1 ri = U ,
each combination of r1, . . . , rU is a partition of the integer U into at most U positive integers. Let p(U)
be the number of partitions of U (note: a partition of a positive integer U is a set consisting of positive
numbers whose sum is U). The number of combinations in our case is p(U); that is, |Φ| = p(U). Note

that p(U) > H
U e

2
√
U for some positive constant H [HR18, eq. (2.11)]. Hence, p(U) > He

√
U ≥ H · 2

√
U ,

and the validity of the proposition follows.

Let F be the family consisting of all nondecreasing discretely convex functions φ : [1, U ]2→[0, U ], and let
binF = {bin(f) | f ∈ F}. Proposition 2.2 tells us that we need in general Ω(

√
U) space to represent

a function from binF . Since this term is not polylogarithmic in the domain size U2, nor in φmax

φmin < U2,

there exists a function φ′ ∈ binF that does not admit a succinct representation. This, together with
Proposition 2.1, implies that there exists a function φ ∈ F with bin(φ) = φ′ which does not admit a
succinct K-approximation for any 1 ≤ K < 2. Hence, we have proved Theorem 1.2.

3 Approximating φ

3.1 The monotone case
A related (and easier) problem is when φ is known to be monotone (and not necessarily convex). This
problem was solved in [HKL+13] as follows.

Proposition 3.1 (Succinct approximation of a monotone function via a K-approximation general oracle,
Proposition 4.7 in [HKL+13]). Let φ : [A,B]→R+ be a monotone function of real numbers, L > 1 be a
constant, and φ̃ be a (not necessarily monotone) L-approximation function of φ. Then for every K =

1 + ϵ > 1, it is possible to construct in O(
1+tφ̃
ϵ (1 + log φ̃max

φ̃min ) log(B − A)) time a monotone step KL-

approximation function of φ with O(1 + 1
ϵ log

φ̃max

φ̃min ) steps.

This result was proved in [HKL+13] with general finite domains D. We choose to present it with
D = [A,B] for the sake of simplicity.

For the sake of completeness we provide a self-contained proof of this theorem, together with a state-
ment of function IndirectApxInc, by proving in the Appendix the following somewhat stronger result:

Proposition 3.2. Let φ : [A,B]→R+ be a function of real numbers, L > 1 be a constant, and φ̃ be a
(not necessarily monotone) L-approximation function of φ. Let tφ̃ be an upper bound on the time needed
to evaluate φ̃(x). Then for every K = 1 + ϵ > 1, Function IndirxtApxInc (Algorithm 6) runs in

O(
1+tφ̃
ϵ (1 + log φ̃max

φ̃min ) log(B − A)) time and constructs a set W of size O(1 + 1
ϵ log

φ̃max

φ̃min ) and a function

ψ : [A,B]→R+ such that

ψ(y) ≤ Kψ(x), ∀ consecutive x < y ∈W with y − x ≥ 2.
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Moreover, if φ is increasing then ψ is an increasing step KL-approximation function of φ with O(|W |)
steps.

For the analogue case of decreasing functions we design in a similar way function IndirectApxDec, and
thus get a result similar to Proposition 3.2.

3.2 The convex case

3.2.1 A high-level description of the algorithm

The algorithm for approximating a convex φ is surprisingly much more involved than in the monotone
case, maybe because one needs to first approximate an argmin of φ, and then use it to build an approx-
imation function of φ̃. Note that finding (exactly) an argmin of φ is generally not possible because an
L-approximation function φ̃ of φ induces only a partial order over {φ(x) | x ∈ [A,B]}. (If φ̃ induces a
complete linear order then the convex case will decompose into two monotone cases). We summarize this
in the following simple proposition (whose proof is omitted).

Proposition 3.3. Let φ : [A,B]→R+, L > 1, and φ̃ be an L-approximation function of φ. If φ̃(x1) ≥
Lφ̃(x2) then φ(x1) ≥ φ(x2). Else, if φ̃(x1) ≤ φ̃(x2)

L then φ(x1) ≤ φ(x2). Otherwise, (Lφ̃(x2) > φ̃(x1) >
φ̃(x2)
L ), the order between φ(x1) and φ(x2) cannot be deduced by querying φ̃.

The algorithm for approximating a convex φ consists of 5 functions. IndirectApxConvex is the
the outer-level function, SmartSearch is the high-level search procedure to find an element x′ for which
φ̃(x′) is lower than a given threshold, EquidistanceSearch is a low-level search procedure for finding
such an x′, and Consecutive and Shrink are two auxiliary functions.

EquidistanceSearch(φ̃, A,B,C,K,L, q)) is the basic search procedure. Given oracle access to φ̃ :
[A,B]→R, an upper bound C of φ̃max, and real positive numbers K,L, it performs a number of evenly-
spaced queries sufficient to find an element x′ for which φ̃(x′) < KLY, (Y = C/Kq). The idea behind
this procedure is simple. If φ̃min < Y , then when the query points are close enough to each other, one is
guaranteed to find at least one such element x′. When the ratio between C and Y is small, the number of
sufficient such queries is polynomial in the input size. Otherwise, a more sophisticated search procedure
needs to be called, namely SmartSearch.

Shrink(φ̃, A,B, L) exploits the convexity of φ to reduce (“shrink”) the interval [A,B] from one of its
endpoints. If the endpoints of the interval are unbalanced, i.e, the ratio between φ̃(A) and φ̃(B) is greater
that L2, then Shrink “cuts” away a piece from one of the sides of [A,B] and returns a balanced interval
[A′, B′].

Consecutive(φ̃, A,B,M) facilitates reducing the interval [A,B] from the inside. Given a value M
between φ̃(A) and φ̃(B), it returns two consecutive points a′, A′ such that φ̃(a′) ≤M and φ̃(A′) ≥M .

Given oracle access to φ̃ : [A,B]→R, and real positive numbersK,L, q, q∗, SmartSearch(φ̃, A,B,K,L, q, q∗)
returns an element x′ with φ̃(x′) < KLY, (Y = C/Kq where C = max{φ̃(A), φ̃(B)}). The parame-
ter q∗ bounds the number of queries Q∗, EquidistanceSearch is allowed to perform when called by
SmartSearch. The algorithm starts with a call to Shrink in hope that the new maximal value of φ̃
on the reduced interval, C ′, will be small enough, so that the ratio between C ′ and Y will not be too
large, and therefore the number of equidistance queries needed to find x′ will not exceed Q∗. If unsuc-
cessful, it calls EquidistanceSearch with a new value y > Y (but still y ≪ C), gets an element x′′

for which φ̃(x′′) < y, and then calls Consecutive twice. Let (a′, A′) =Consecutive(φ̃, A, x, y) and
(b′, B′) =Consecutive(φ̃, x,B, y) be the results of these calls. Thus the interval [a′, b′] is a smaller in-
terval that contains x′′ and φ̃(a′), φ̃(b′)≪ C ′. If needed, this process is repeated, until the requested x′ is
found.
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Finally, we describe function IndirectApxConvex(φ̃, A,B,K,L), which calculates aK3L2-approximation
function of φ̃ : [A,B]→Z+. The function first checks whether min φ̃ = 0 by a call to SmartSearch. If
the answer is in the positive, then a KL-approximation for φ is calculated by splitting the domain into
two parts, over which φ is monotone. Otherwise, by performing a binary search (through calls to Smart-
Search), the algorithm finds a value M and its argument x′ for which φmin > M and φ̃(x′) < K2LM .
Using x′ as an approximated argmin of φ, the algorithm splits the interval [A,B] into two parts and tries
to calculate monotone KL-approximations of φ over [A, x′] and [x′, B], acting as if φ were monotone over
these two intervals. Since φ is not necessarily monotone over these intervals, a local correction may be
requested, and the resulting approximation factor may deteriorate up to K3L2.

3.2.2 The algorithm

We start by stating function EquistableSearch. This function deals with the following question. Sup-
pose we are told that the minimum value of φ is less than Y , i.e., there exists a point x′ with φ(x′) < Y .
Since φ̃ is an L-approximation of φ, we have φ̃(x′) < LY . Can we find such an x′ efficiently? Since φ̃
is not necessarily convex, the answer to this question is in the negative (e.g., φ(x) = Y − 1 + |x| and is
defined over [−Y, Y ], φ̃(x) = 2Y, ∀x ̸= 0 and φ̃(0) = Y − 1. Then φ̃ is a 2-approximation function of vp,
whose minimizer cannot be found efficiently). But as it turns out, we can find x̃ such that φ̃(x̃) < KLY ,
where K = 1 + ϵ for infinitely small ϵ > 0.

1: Function EquidistanceSearch(φ̃, A,B,C,K,L, q)
2: Perform ⌈q⌉K⌈q⌉−1 equidistance queries of φ̃ in [A,B].
3: if there exists a query point x with φ̃ < KLC/Kq then
4: return x
5: else
6: return ∞
7: end if

Algorithm 1: Returning a point on which the value of φ̃ is smaller than KLC/Kq, where φ̃(x) ≤ C, ∀x.

Lemma 3.4. Let φ : [A,B]→R+ be a convex function, K,L > 1 be arbitrary real numbers, and φ̃
be an L-approximation function of φ. For every upper bound C ≥ max{φ̃(A), φ̃(B)} and q ∈ R, let
Y = C

Kq . If there exists x∗ such that φ(x∗) < Y then function EquidistanceSearch (Algorithm 1) finds

in O((1+ tφ̃)qK
q−1) time a set of points X̃ ⊂ [A,B] such that φ̃(x) < KLY for all x ∈ X̃ and there exists

x̃ ∈ X̃ such that φ(x̃) < KY .

Proof. Let

Y = C/Kq, x0 = argmin{φ(x) < Y }, x′ = argmax{φ(x) < Y }, x′′ = argmax{φ(x) < KY },

and
U2 = [x′, B], U ′

2 = [x′, x′′], U12 = U ′
12 = [x0, x′],

see Figure 1. We will show below that the smaller the ratio |U2|
|U ′

2|
is, the easier it becomes to find a point x̃

with φ(x̃) < KY . Therefore the worst is when |U2|
|U ′

2|
is the largest possible. Since φ is convex over [A,B],

this ratio is maximized if φ is linear over U2, see Figure 1. By triangle similarity we get

|U2|
|U ′

2|
=
φ(B)− Y
KY − Y

≤ C − Y
KY − Y

=
Kq − 1

K − 1
≤

⌈q⌉−1∑
i=0

Ki ≤ ⌈q⌉K⌈q⌉−1.
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Repeating the same argument for U1 = {x < x0 | φ(x) ≥ Y }, we get that |U1|
|U ′

1|
≤ ⌈q⌉K⌈q⌉−1. Therefore, we

get that |U1|+|U12|+|U2|
|U ′

1|+|U ′
12|+|U ′

2|
≤ ⌈q⌉K⌈q⌉−1 (recall that U12

U ′
12

= 1). We conclude the proof by performing ⌈q⌉K⌈q⌉−1

equally-spaced queries of φ̃ over [A,B], which by our calculation must include a point x̃ ∈ U ′
1 ∪ U ′

12 ∪ U ′
2,

i.e., a point x̃ with φ̃(x̃) ≤ Lφ(x̃) < KLY .

6

φ

U1 U12 U2

U ′
1 U ′

12 U ′
2

Y

KY

A
A
A
A
A
A
A
A
A
AA �

�
�
�

�
�
�
�

�
��

Figure 1: Finding values of φ smaller than KLY .

Remark. Note that if only one of the queries performed by Algorithm 1 satisfies φ̃(x′) ≤ KLY , then we
must have φ(x′) ≤ KY . If more than one such point exists, say x′, x′′, by Proposition 3.3 we may not be
able to deduce whether φ(x′) ≤ KY , or φ(x′′) ≤ KY , or both holds.

When the ratio between C and Y is “large”, e.g., q ≈ logK C, the number of queries performed by
EquidistanceSearch may not be polynomially bounded by the input size. We next aim to give a more
efficient algorithm (that we call SmartSearch) for finding values of φ smaller than KLC/Kq for large
q’s. This is done at the cost of bounding the ratio between K and L.

Before doing so, we state two auxiliary functions, Consecutive and Shrink

1: Function Consecutive(φ̃, A,B,C)
2: amin1 ← argmin{φ̃(A), φ̃(B)}, amax1 ← argmax{φ̃(A), φ̃(B)}, j ← 0
3: while |aminj+1 − amaxj+1| > 1 do
4: j ← j + 1, mid← ⌊(aminj + amaxj)/2⌋
5: if φ̃(mid) < C then
6: aminj+1 ← mid, amaxj+1 ← amaxj
7: else
8: aminj+1 ← aminj , amaxj+1 ← mid
9: end if

10: end while
11: return (aminj+1, amaxj+1)

Algorithm 2: Returning 2 consecutive points amin, amax ∈ [A,B] with φ̃(amin) ≤ C and φ̃(amax) ≥ C.

Proposition 3.5. Let φ̃ : [A,B]→R+ be an arbitrary function and C ∈ R+ be a constant. If max{φ̃(A), φ̃(B)} ≥
C and min{φ̃(A), φ̃(B)} ≤ C then function Consecutive (Algorithm 2) finds in O((1 + tφ̃) log(B −A))
time two consecutive points amin, amax ∈ [A,B] with φ̃(amin) ≤ C and φ̃(amax) ≥ C.

Proof. At the beginning of the while loop the following inequalities hold for j∗ = 1:

φ̃(aminj∗) ≤ C, φ̃(amaxj∗) ≥ C. (2)

9



Note that by the updates done in lines 6 and 8, the invariant (2) continues to hold for larger values of j∗.
The algorithm exits the while loop when |aminj∗ −amaxj∗ | = 1 so (2) holds for two consecutive elements.
The running time of the algorithm follows from the fact that at each iteration of the while loop the size
of the domain, i.e., |amaxj − aminj |, is cut by half.

We next state function Shrink that finds a subset [A′, B′] ⊆ [A,B] that contains an argmin of a convex
function φ, where the ratio between φ̃(A′) and φ̃(B′) is bounded by L2.

1: Function Shrink(φ̃, A,B,L)
2: A1 ← A, B1 ← B, i← 0

3: while max{ φ̃(Ai+1)
φ̃(Bi+1)

, φ̃(Bi+1)
φ̃(Ai+1)

} > L2 and min{φ̃(Ai+1), φ̃(Bi+1)} > 0 do

4: i← i+ 1, Ci ← max{φ̃(Ai), φ̃(Bi)}
5: (amin, amax)← Consecutive(φ̃, Ai, Bi, Ci/L)
6: Ai+1 ← min{amin, argmin{φ̃(Ai), φ̃(Bi)}}, Bi+1 ← max{amin, argmin{φ̃(Ai), φ̃(Bi)}}
7: end while
8: return [Ai+1, Bi+1]

Algorithm 3: Returning a sub domain of [A,B] that contains an argmin of a convex function φ, where
the ratio between the values of φ̃ on its endpoints is bounded by L2.

We prove in the Appendix the following lemma:

Lemma 3.6. Let φ : [A,B]→R+ be a convex function, L > 1 be a constant, and φ̃ be an L-approximation
function of φ. Function Shrink (Algorithm 3) returns in O((1+tφ̃)(1+logL(

φmax

max{φ̃(A′),φ̃(B′)})) log(B−A))
time a sub domain [A′, B′] that contains an argmin of φ over [A,B], where the ratio between φ̃(A′) and
φ̃(B′) is at most L2.

Remark: The maximal running time of Shrink is O((1 + tφ̃) logL(
φmax

φmin ) log(B − A)), and is realized

whenever φ̃(A′) = φ̃(B′) ≈ φmin.
We are ready to state function SmartSearch(φ̃, A,B,K,L, q, q∗), which returns a point x′ and an

interval [A′, B′] ∋, on which the value of φ̃ : [A,B]R+ is smaller than KLY, (Y = C/Kq, C =
max{φ̃(A), φ̃(B)}), when the number of equidistance queries done at a single call to EquidistanceSearch
is never more than Q∗ = q∗Kq∗−1. The idea behind SmartSearch is as follows - if q ≤ q∗, then simply
call EquidistanceSearch. Otherwise, shrink the domain in which an argmin of φ lies in the following
two ways. First, if the ratio between the values of φ̃ on the endpoints of the domain is greater than L2,
then call function Shrink to get a smaller interval [A′, B′]. Now the ratio between max{φ̃(A′), φ̃(B′)} and
Y decreases, so Q∗ equidistance queries over [A′, B′] may be sufficient in order to find x′. If this is the case -
call EquidistanceSearch. Otherwise, shrink the domain in the second way, i.e., perform Q∗ equidistance
queries over [A′, B′], get a point x′′ on which φ̃(x′′) ≤ KLY ′ (Y ′ > Y ), and reduce the domain to [A′′, B′′]
such that max{φ̃(A′), φ̃(B′)}/max{φ̃(A′′), φ̃(B′′)} > L2K, via two calls to Consecutive. Now the ratio
between max{φ̃(A′′), φ̃(B′′)} and Y decreases even further, so Q∗ equidistance queries over [A′′, B′′] may
be sufficient in order to find x′. If so, simply call EquidistanceSearch. Otherwise - repeat the process
of shrinking the domain in the two ways described above. The process is guaranteed to stop after at most
O(logLC) iterations.

The proof of the following lemma is provided in the Appendix:

Lemma 3.7. Let φ : [A,B]→R+ be a convex function, K > 1, q∗ ∈ N be arbitrary numbers and q ∈ R+

be a real number satisfying q ≥ q∗. Let L ∈ R+ be an arbitrary number satisfying K
q∗
4
− 1

2 ≥ L ≥ 1. Let φ̃
be an L-approximation function of φ, C = max{φ̃(A), φ̃(B)} and Y = C

Kq . If there exists a point x such
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1: Function SmartSearch(φ̃, A,B,K,L, q, q∗)
2: C0 ← max{φ̃(A), φ̃(B)}, A0 ← A, A1 ← A, B0 ← B, B1 ← B, q0 ← q, i← 1
3: while min{φ̃(Ai), φ̃(Bi)} > LC/Kq−1 do

4: if max{φ̃(Ai),φ̃(Bi)}
min{φ̃(Ai),φ̃(Bi)} > L2 then

5: [Ai, Bi]← Shrink(φ̃, Ai, Bi, L)
6: end if
7: Ci ← max{φ̃(Ai), φ̃(Bi)}, Ri ← Ci−1/Ci, ri ← logK Ri, qi ← qi−1 − ri
8: if qi ≤ q∗ then
9: return (EquidistanceSearch(φ̃, Ai, Bi, Ci,K, L, qi), Ai, Bi)

10: end if
11: x̃← EquidistanceSearch(φ̃, Ai, Bi, Ci,K, L, q

∗)
12: if x̃ =∞ then
13: return (∞, Ai, Bi)
14: end if
15: (Ai+1, amaxA)← Consecutive(φ̃, Ai, x̃,

Ci

L2K )

16: (Bi+1, amaxB)← Consecutive(φ̃, x̃, Bi,
Ci

L2K )
17: i← i+ 1
18: end while
19: return(argmin{φ̃(Ai), φ̃(Bi)}, Ai, Bi)

Algorithm 4: Finding a point on which the value of φ̃ is smaller than KLmax{φ̃(A), φ̃(B)}/Kq and an
interval on which a minimum of φ is attained.

that φ(x) < Y then function SmartSearch (Algorithm 4) finds in

O

(
(1 + tφ̃)

[
q − q∗

1 + logK L
q∗Kq∗−1 +max

{
q − q∗

1 + logK L
, logL

φmax

φmin

}
log(B −A)

])
time a point x̃ such that φ̃(x̃) < KLY . Moreover, φ is decreasing over [A,Ai∗+1] and increasing over
[Bi∗+1, B], where i∗ is the number of times the while loop was executed.

We now state function IndirectApxConvex which constructs a convex (1 + ϵ)L2-approximation of φ.

Overview of function IndirectApxConvex. We would like to split the domain of φ into two intervals,
according to where φ is decreasing or increasing. In line 3, the algorithm checks whether minφ(x) = 0 by
performing a call to SmartSearch with a positive query value of less than 1. Since φ is integer-valued,
the only such possible value is 0. We first consider the case where SmartSearch returns x′ such that
φ̃(x′) = 0. Note that in this case, because φ̃ is a relative approximation of φ, we also have φ(x′) = 0. This
means the algorithm was successful in splitting the domain [A,B] into two parts in where φ is monotone:
φ is decreasing over [A, x′] and increasing over [x′, B]. In this case the condition in line 4 is not satisfied,
and the algorithm goes to line 7. In this line, the algorithm builds on each one of the intervals [A, x′] and
[x∗, B] a piecewise-linear approximations of φ (using IndirectApxDec, IndirectApxInc), and stores
the corresponding breakpoints inWD,WI , respectively. Note that since φ is monotone in each one of these
intervals, Proposition 3.1 assures us that we get a KL-approximation in both intervals. The algorithm
then jumps to line 15, sets ψ to be the concatenation of ψD and ψI , and returns the greatest convex
function that lies below ψ. (We note in passing that since φ̃(x′) = 0, we get that ψD(yD) = ψI(yI) = 0, so
neither one of the conditions in lines 9 and 12 is satisfied, so indeed the algorithm jumps to line 15. We
note also that the concatenation operation is well defined since WD ∩WI = {x′} and ψD(x

′) = ψI(x
′).)

We next consider the case where the condition in line 4 is met, i.e., the minimal value of φ is strictly
positive. Since φ̃ is not necessarily convex, it may be too costly to find an exact realizer of the minimum
value of φ̃, so instead, the algorithm calculates an approximated argmin x′ which is returned by a call to
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1: Function IndirectApxConvex(φ̃, A,B,K,L)
2: q∗ ← ⌈2 + 4 logK L⌉, C ← max{φ̃(A), φ̃(B)},
3: (x′, A′, B′)← SmartSearch(φ̃, A,B,K,L, 1 + ⌈logK LC⌉, q∗)
4: if x′ =∞ (i.e., min φ̃ ≥ 1 ) then
5: by binary search, find the maximal integer q′ ∈ [1, ⌈logK C⌉] for which

(x′, A′, B′)← SmartSearch(φ̃, A,B,K,L, q′, q∗) satisfies φ̃(x′) < KLC
Kq′

6: end if
7: (ψD,WD)← IndirectApxDec(φ̃, A, x′,K), (ψI ,WI)← IndirectApxInc(φ̃, x′, B,K)
8: yD ← minw∈WD

ψD(w) = ψD(x
′), yI ← maxw∈WI

ψI(w) = ψI(x
′)

9: if ψD(x
′) < ψI(x

′) or (ψD(x
′) = ψI(x

′) and ψI(x
′) < φ̃(x′) then

10: WD ←WD ∩ [A, yD], WI ←WI \ {x′} ∪ {yD + 1}, ψI(x)← φ̃(yI), ∀x ∈ [yD + 1, yI ]
11: end if
12: if ψD(x

′) > ψI(x
′) then

13: WD ←WD \ {x′} ∪ {yI − 1}, WI ←WI ∩ [yI , B], ψD(x)← φ̃(yD), ∀x ∈ [yD, yI − 1]
14: end if
15: Let ψ : [A,B]→R+ be the concatenation of ψD :WD→R+ and ψI :WI→R+

16: return the convex extension of ψ induced by WD ∪WI

Algorithm 5: Approximating a convex function that is accessed via an L-approximation function φ̃.

SmartSearch in line 5. (Note that due to Lemma 3.7, φ is guaranteed to be decreasing over [A,A′] and
increasing over [B′, B]. Also note that neither φ nor φ̃ is necessarily monotone over either [A, x′] or [x′, B].)
The algorithm then enters line 7 and constructs the two functions ψD, ψI by calling IndirectApxDec and
IndirectApxInc with the approximated argmin x′. Therefore, due to Proposition 3.2, ψD is a decreasing
step functions with breakpoints in WD, and ψI is an increasing step function with breakpoints in WI . Let
yD be the least minimizer of ψD, and yI be the greatest minimizer of ψI , see line 8.

If the algorithm is lucky, no smaller minimum was found, i.e., ψD(x
′) = ψI(x

′) = φ̃(x′), and the
algorithm jumps to line 15. By the construction of the ψ functions (e.g., see line 23 in function Indirec-
tApxInc which implies that ψ(x) ≤ φ̃(x), ∀x ∈ WD ∪WI), we get that ψ is a unimodal step function
over [A,B] with O(|WD ∪WI |) steps which is minimized at x′, so:

ψ(x′) = φ̃(x′), ψ is decreasing in [A, x′], ψ is increasing in [x′, B], and ψ(x) ≤ φ̃(x), ∀x ∈WD ∪WI .
(3)

Otherwise (ψD(x
′) ̸= ψI(x

′) or ψI(x
′) < φ̃(x′)), the algorithm performs a local correction of ψD and ψI in

lines 9-14, so that a concatenation of ψD and ψI is possible, and where (3) still holds.
Using (3), it is possible to prove that ψ is indeed a KL2-approximation of φ, as we do in the proof of

lemma 3.8 below. We prove the following lemma in the Appendix:

Lemma 3.8. Let φ : [A,B]→Z+ be a convex function, L > 1 be a constant, K = 1+ ϵ > 1 be a constant,
and φ̃ be an L-approximation function of φ. Function IndirectApxConvex (Algorithm 5), when called
with parameters φ̃, A,B, 3

√
K,L, constructs in

O

(
1 + tφ̃
ϵ

log φ̃max [log log φ̃max + log(1/ϵ)]

[
L4 +

logK

logmin{K,L}
log(B −A)

])
time a convex piecewise-linear KL2-approximation function for φ that has O( log φ̃

max

ϵ ) breakpoints.

Remark. If φ is not known to be integer-valued but φmin is provided, then we can approximate φ as
before. All we need to do is to multiply φ̃ by 1

φmin and proceed as before. Of course, the running time will

increase, as φmax increases to φmax

φmin .
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4 Conclusions and future research

Let φ̃ be an L approximation function of a convex function φ. In this paper, given an oracle access to
φ̃, we construct an efficient convex KL2-approximation of φ. We consider first the computation time in
Theorem 1.1. Note that the dependency of the running time on ϵ is 1

ϵ log
1
ϵ , and on φ̃max

φ̃min is φ̃max

φ̃min log φ̃max

φ̃min .
Is it possible to improve the running time? Taking advantage of the convexity of φ, and using the slope

trick in [HNO13], it may be possible to reduce the term φ̃max

φ̃min to min{σ
max
φ

σmin
φ̃

, φ̃
max

φ̃min }.
We next consider the approximation ratio in Theorem 1.1. If L is not constant, but we have an FPTAS

for φ instead (so L = 1 + δ > 1 for arbitrary small δ), then we have the following easy corollary.

Theorem 4.1 (Succinct approximation of a convex function via an FPTAS general oracle). A convex
function φ : [A,B]→Z+ that cannot be evaluated direcly, but only via an FPTAS admits a convex FPTAS.

An interesting open question arises when L is a constant. The approximation ratio in Theorem 1.1 is
L2K. We would like to reduce it to KL. A possible idea of how to do so is if we could have assured that
the point x′ function IndirectApxConvex gets from function SmartSearch is the x̃ that is defined in
the statement of Lemma 3.4. Then (17) in the proof of Lemma 3.8 would have changed to

ψ(x) ≤ ψ(b) ≤ Kψ(a) ≤ Kφ̃(a) ≤ K2LY ≤ K3LY.

The explanation of the forth inequality is as follows. Since φ is decreasing over [x̃, a] we get φ(a) ≤ φ(x̃) ≤
KY . Since φ̃ is an L-approximation of φ we get then φ̃(a) ≤ Lφ(a) ≤ KLY . The last inequlity is due to
the second inequality in (13).

We note that even though the oracle function φ̃ is unstructured (i.e., it is neither monotone nor convex),
the knowledge that it approximates a convex function is instrumental to our algorithm design. This raises
the following question. Suppose φ has no structure. From the discussion in the Introduction, we know
that it does not necessarily admit an efficient succinct approximation. Therefore, if we still want to have
such an approximation, we must impose an additional constraint, e.g., that φ is close to being structured.
By close we mean that φ admits an L-approximation φ̃ that is structured. Can one then effectively
approximate φ? It turns out that the answer is in the positive. And the fact that we have access to a
structured function facilitates the proof of the following two results considerably (a proof is given in the
Appendix).

Proposition 4.2 (Succinct approximation of a general function via an L-approximation monotone ora-
cle). Let φ : [A,B]→R+ be a nonnegative real-valued function, L > 1 be a constant, and φ̃ be a mono-
tone L-approximation function of φ. Then for every K = 1 + ϵ > 1, it is possible to construct in
O(

1+tφ̃
ϵ log φ̃max

φ̃min log(B−A)) time a monotone step KL-approximation function of φ with O(1+ 1
ϵ log

φ̃max

φ̃min )
steps.

Using the slope trick in [HNO13], we get an improved space and running time in the convex case.

Proposition 4.3 (Succinct approximation of a general function via an L-approximation convex ora-
cle). Let φ : [A,B]→Z+ be a nonnegative integer-valued function, L > 1 be a constant, and φ̃ be a
convex L-approximation function of φ. Then for every K = 1 + ϵ > 1, it is possible to construct in

O(
1+tφ̃
ϵ logmin{σ

max
φ

σmin
φ̃

, φ̃
max

φ̃min } log(B − A)) time a piecewise-linear convex KL-approximation function of φ

with O(1 + 1
ϵ logmin{σ

max
φ

σmin
φ̃

, φ̃
max

φ̃min }) breakpoints.

We conclude this section by considering the impossibility result in Theorem 1.2. This result deals with
a specific, although quite general, class of discrete convex functions. But there are other classes of discrete
convex functions, see Figure 1.15 in [Mur03] which depicts the inclusion relationship among these classes.
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It is easy to show that Theorem 1.1 can be extended to hold also for the class of multivariate separable
convex functions, which is the most restrictive class in the figure. It is interesting to distinguish between
the classes of multivariate discrete convex functions that admit efficient succinct approximations, and those
who don’t. Moreover, for the former case it is desirable to design such efficient succinct approximations.

Recently, [CDJ14] studied fixed-dimensional stochastic dynamic programs in a discrete setting over a
finite horizon, under the primary assumption that the cost-to-go functions are discrete L♮-convex. They
proposed a pseudo-polynomial time approximation scheme that solves multi-dimensional dynamic pro-
grams to within an arbitrary pre-specified additive error of ϵ > 0. The proposed approximation algorithm
is a generalization of the explicit-enumeration algorithm, offers a full control in the tradeoff between ac-
curacy and running time, but runs in time pseudo-polynomial in the input size. If the class of discrete
L♮-convex functions turns out not to admit efficient succinct approximations, then their result is in a way
best possible. It is interesting to give a result of this type for all classes of discrete convex functions that
do not admit efficient succinct approximations.

Acknowledments: The author thanks Jim Orlin for fruitful discussions on an earlier version of this
paper, and Chung-Lun Li for improving the presentation of the proof of Theorem 1.2.
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Appendix

A Function IndirectApxInc

1: Function IndirectApxInc(φ̃, A,B,K)
2: x← B and W ← {A,B}
3: while x > A+ 1 and Kφ̃(A) < φ̃(x) do
4: j ← 0, A1 ← A, B1 ← B, mid← ⌊(A+B)/2⌋, s← mid
5: while Kφ̃(min{mid, s}) ≥ φ̃(x) or Kφ̃(max{mid, s}) < φ̃(x) do
6: mid← ⌊(Aj +Bj)/2⌋
7: if Kφ̃(mid) < φ̃(x) then
8: j ← j + 1, s← mid+ 1
9: if Kφ̃(s) < φ̃(x) then

10: Aj+1 ← s, Bj+1 ← Bj

11: end if
12: else
13: s← mid− 1
14: if Kφ̃(s) ≥ φ̃(x) then
15: Aj+1 ← Aj , Bj+1 ← s
16: end if
17: end if
18: end while
19: x← min{mid, s}, W ←W ∪ {x, x+ 1}
20: end while
21: Define a function ψ : [A,B]→R+ as follows: ψ(B)← φ̃(B), x← B
22: while x ̸= A do
23: ψ(prev(x,W ))← min{φ̃(prev(x,W )), φ̃(x)}, x← prev(x,W )
24: end while
25: Extend the definition of ψ to [A,B] by setting ψ(z)← ψ(next(z,W )) for every z /∈W
26: return (ψ(·),W )

Algorithm 6: Approximating an increasing function that is accessed via an approximation function φ̃.

B Proof of Proposition 3.2

Proof. We start by considering the cardinality of W and the running time of the algorithm. We call the
while loop that starts at line 3 the outer loop and the while loop that starts at line 5 the inner loop.
We first consider the inner. Note that for each iteration of the outer loop, the inner loop is executed at
least once because we have mid = s at the first time the condition of the inner loop is checked. Note
also that in the remaining times the condition of the inner loop is checked (in the same iteration of the
outer loop) we have |s−mid| = 1. In the first iteration of the inner loop the interval is [A1, B1] and the
condition of the outer loop implies that Kφ̃(A1) < φ̃(x). In addition, Kφ̃(B1) ≥ φ̃(x) (since B1 = x). The
algorithm chooses a middle element mid ∈ [A1, B1]. The algorithm considers two different cases. Case 1:
Kφ̃(mid) < φ̃(x). In this case, the algorithm chooses a second element s ← mid + 1. If Kφ̃(s) ≥ φ̃(x),
then the inner loop is completed by assigning x ← mid. Otherwise, the algorithm sets a new (reduced)
interval [A2, B2] ← [s,B1]. Case 2: Kφ̃(mid) ≥ φ̃(x). In this case, the algorithm sets s ← mid − 1. If
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Kφ̃(s) < φ̃(x), then the inner loop is completed by assigning x ← s. Otherwise, the algorithm sets a
new (reduced) interval [A2, B2] = [A1, s]. In both cases, if the inner loop is not completed, then we get
a new interval [A2, B2] of size at most half of the one of [A1, B1], and it satisfies Kφ̃(A2) < φ̃(x) and
Kφ̃(B2) ≥ φ̃(x). The inner loop continues this way. Clearly, the inner loop is exhausted in O(log(B−A))
steps. Note that for every consecutive elements x, y ∈ W with y > x + 1 we have Kφ̃(x) < φ̃(y). Thus,
the outer loop repeats at most O(1 + logK

φmax

φmin ) times. Clearly, the cardinality of W is O(1 + logK
φmax

φmin ).

The computational time required in each iteration of the outer loop is O(tφ̄ log(B − A)), and since the
loop that starts at line 22 runs only |W | times, the claimed running time of the algorithm follows. We
note in passing that indeed

ψ(y) ≤ Kψ(x), ∀ consecutive x < y ∈W with y − x ≥ 2. (4)

We next prove that if φ is increasing over [A,B] then ψ is an increasing KL-approximation step
function of φ. By the construction of ψ in line 23, we have ψ(x) ≤ φ̃(x) for any x ∈ W . This, together
with the fact that φ̃ is an L-approximation of φ, implies that

ψ(x) ≤ Lφ(x), ∀x ∈W.

On the other hand, for any x ∈W , there exists y ∈W such that y ≥ x and ψ(x) = φ̃(y). Because φ̃ is an
L-approximation of φ, we have φ̃(y) ≥ φ(y). Thus,

ψ(x) = φ̃(y) ≥ φ(y) ≥ φ(x), ∀x ∈W, (5)

where the second inequality is due to the monotonicity of φ. Hence, ψ is an increasing L-approximation
step function of the restriction of φ over W .

We conclude the proof by considering the approximation ratio of ψ over [A,B] \W . Let x ∈ [A,B] \
W,y = next(x,W ), z = prev(x,W ). Due to line 25 we have ψ(x) = ψ(y), thus

ψ(x) = ψ(y) ≤ Kψ(z) ≤ Kφ̃(z) ≤ KLφ(z) ≤ KLφ(x).

(The first inequality is due to (4), the second one is due to line 23, the third one is because φ̃ is an
L-approximation function of φ, and the last one is due to the monotonicity of φ).

On the other hand we have
ψ(x) = ψ(y) ≥ φ(y) ≥ φ(x),

where the first inequality is due to (5) and the second one is due to the monotonicity of φ. Therefore, ψ
is a KL-approximation of φ over [A,B].

C Proof of Lemma 3.6

Proof. The algorithm enters the while loop only if (recall that Ci ← max{φ̃(Ai), φ̃(Bi)}):

φ̃(argmin{φ̃(Ai), φ̃(Bi)}) <
Ci

L2
. (6)

Therefore, the call to Consecutive with Ci/Li is well defined. By Proposition 3.5, we get in line 5 two
consecutive elements amin, amax in [Ai, Bi] with

φ̃(amin) ≤ Ci

L
, φ̃(amax) ≥ Ci

L
. (7)
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Due to (6) and (7)

φ̃(amax) ≥ Ci

L
> Lφ̃(argmin{φ̃(Ai), φ̃(Bi)}),

so by Proposition 3.3 we get
φ(amax) > φ(argmin{φ̃(Ai), φ̃(Bi)}).

Considering the points amax,Ai, Bi, due to the convexity of φ we get that φ is increasing over[
min{amax, argmax{φ̃(Ai), φ̃(Bi)}}, max{amax, argmax{φ̃(Ai), φ̃(Bi)}}

]
.

Hence, φ attains a minimum in

[Ai+1, Bi+1] :=
[
min{amin, argmin{φ̃(Ai), φ̃(Bi)}}, max{amin, argmin{φ̃(Ai), φ̃(Bi)}}

]
.

Note that the value of φ̃ over the endpoints of the new domain [Ai+1, Bi+1] is upper bounded by Ci
L .

Therefore, the number of iterations of the while loop is O(logL
φ̃max

max{φ̃(A′),φ̃(B′)}), where in each iteration
Consecutive is called once. The claimed overall running time follows.

D Proof of Lemma 3.7

Proof. Let Y ← C0/K
q0 = C/Kq. We first consider the ratio between the values of φ̃ on the endpoints

Ai, Bi. When the algorithm reaches line 7, we must have

min{φ̃(Ai), φ̃(Bi)} ≥
max{φ̃(Ai), φ̃(Bi)}

L2
>

Ci

L2K
. (8)

(if the condition in line 4 is met, then a Shrink operation is called.) We next consider Ri, i.e., the ratio
between the maximal value of φ̃ on Ai−1, Bi−1 and the maximal value of φ̃ on Ai, Bi. Note that Ri > 1
implies that either the condition in line 4 was met (i.e., Shrink was executed), or lines 15 and 16 were
executed in the previous iteration of the while loop as we explain below. The algorithm updates the
exponent qi of the K in order to keep

Ci

Kqi
=

Ci−1

Ri

Kqi−1−ri
=

Ci−1

Kqi−1
= . . . = Y (9)

invariant throughout the execution of the algorithm.
Regarding the condition in line 8, if qi is relatively small (i.e., qi ≤ q∗) then Equidistance-Search is

not too costly, and the algorithm exits by executing Equidistance-Search with the original bound Y =
Ci/K

qi and returning its outcome. Otherwise, the algorithm enters line 11 and executes Equidistance-
Search with a larger value of bound (i.e., Ci/K

q∗). If Equidistance-Search does not find a value of φ̃
smaller than KLCi/K

q∗ , clearly φ̃ does not have a value smaller than Y = KLCi/K
qi , so the algorithm

exits by returning the negative answer (∞, Ai, Bi). Otherwise, Equidistance-Search finds a value of φ̃
smaller than KLCi/K

q∗ together with its argument x̃. I.e.,

φ̃(x̃) <
KLCi

Kq∗
≤ Ci

L3K
, (10)

where the second inequality is due to the lemma’s assertion that L ≤ K
q∗
4
− 1

2 . (Note that the calls to
EquidistanceSearch are valid because Ci is indeed an upper bound on the maximal value of φ̃ over
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[Ai, Bi]). We now turn to the calls to Consecutive. In line 15, the algorithm calls Consecutive and
finds two consecutive elements amaxB,Ai+1 ∈ [Ai, x̃] with (note that amaxB = Ai+1 − 1)

φ̃(amaxA) ≥ Ci

L2K
, φ̃(Ai+1) ≤

Ci

L2K
. (11)

(Note that this call is valid due to (8) and (10)). The algorithm also calls Consecutive in line 16 and
finds two consecutive elements Bi+1, amaxB ∈ [x̃, Bi] satisfying (note that amaxB = Bi+1 + 1)

φ̃(Bi+1) ≤
Ci

L2K
, φ̃(amaxB) ≥ Ci

L2K
. (12)

(Note again that this call is valid due to (8) and (10)). Due to Proposition 3.3 and (10)-(12) we get

φ(Ai+1 − 1) ≥ φ(x̃) ≤ φ(Bi+1 + 1).

Due to the convexity of φ we get that it is decreasing over [A,Ai+1] and increasing over [Bi+1, B]. Hence,
φ can achieve a value of less than Ci/K

qi only in [Ai+1, Bi+1]. Note that the value of φ̃ on the endpoints
of this domain is upper bounded by Ci

L2K
. Therefore, the updated ratio satisfies Ri > L2K. Therefore, in

the next iteration of the while loop the new exponent of K, qi, will be smaller than the old one by at least
1 + 2 logK L. Thus, the number of iterations is at most (⌊q⌋ − q∗)/(1 + 2 logK L). The overall running
time of the algorithm follows because each iteration of the algorithm performs one EquidistanceSearch
and at most two Consecutive operations, and the overall running time of the various calls to Shrink is
bounded by (1 + tφ̃)(logL

φmax

φmin log(B −A).

E Proof of Lemma 3.8

Proof. We analyze IndirectApxCon when called with parameters φ̃, A,B,K,L. For the sake of brevity,
we will only prove that ψ is an increasing K3L2-approximation of φ over [x′, B]. The proof that ψ is a
decreasing K2L-approximation of φ over domain [A, x′] is similar. If the condition in line 4 is not met,
then φ̃(x′) = 0. We get then 0 = φ̃(x′) ≥ φ(x′) ≥ 0, where the first inequality is due to φ̃ being an
L-approximation of φ and the second one is due to the nonnegativity of φ. Thus, φ is increasing over
[x′, B], and due to Proposition 3.1, our ψ is a KL-approximation of φ over [x′, B].

We next consider the case where the condition in line 4 is met. Suppose first that ψD(x
′) = ψI(x

′) =
φ̃(x′), i.e., no lower value of φ̃ was discovered while performing line 7. Note that in this case (3) holds, as
explained in the description of the algorithm. In the proof we will use 2 more equations, namely, (13) and
(14). Let Y ′ = C/Kq′ . Line 5 coupled with Lemmas 3.4 and 3.7 imply the correctness of the inequalities

φ̃(x′) < KLY ′, φ(x) ≥ Y ′

K
, ∀x ∈ [A,B]. (13)

(The second inequality is due to the maximality of q′.) Recall that Proposition 3.2 tells us that

ψ(y) ≤ Kψ(x), ∀ consecutive x < y ∈WI with y − x ≥ 2. (14)

Let x∗ = argminx∈[A,B] φ(x) be a realizer of the optimal value of φ, and let b = min{x ≥ x∗ | x ∈WI}.
We distinguish between two cases. (i) If x∗ ≤ x′ we are done, since then φ is increasing over [x′, B],
and again due to Proposition 3.1, our ψ is a KL-approximation of φ over [x′, B]. (ii) If, on the other
hand, x∗ > x′ and we consider the approximation ratio over [b,B] then because φ is increasing over this

19



interval, Proposition 3.1 tells us that our ψ is a KL-approximation of φ over [b,B]. Otherwise, x∗ > x′

and consider the approximation ratio on x ∈ [x′, b]. We consider below each of the upper and lower bounds
of the approximation ratio.
Lower bound: if x ∈ [x′, x∗] then we have

ψ(x) ≥ ψ(x′) = φ̃(x′) ≥ φ(x′) ≥ φ(x), (15)

where the first inequality and the equality are due to (3), the second inequality is due to φ̃ being an
L-approximation of φ, and the last one is due to φ being decreasing over [x′, x∗]. If x ∈ [x∗, b] then

ψ(x) = ψ(b) = φ̃(c) ≥ φ(c) ≥ φ(x),

where the first two equalities are by the construction of ψ (lines 25 and 23, respectively, in IndirectApx-
Inc, where c ≥ b), the first inequality is due to φ̃ being an L-approximation of φ, and the last one is due
to φ being increasing over [x∗, b]. We summarize the above two equations:

ψ(x) ≥ φ(x), ∀x ∈ [x′, b]. (16)

Upper bound: If x∗ = b then

ψ(x) ≤ ψ(b) = ψ(x∗) ≤ φ̃(x∗) ≤ Lφ(x∗) ≤ Lφ(x),

where the first two inequalities are due to (3), the third one is due to φ̃ being an L-approximation of φ,
and the last one is since x∗ is a minimizer of φ. If, x∗ < b then b− a ≥ 2 and we use (14):

ψ(x) ≤ ψ(b) ≤ Kψ(a) ≤ Kφ̃(a) ≤ KLφ̃(x′) ≤ K3L2φ(x), (17)

where the first and third inequalities are due to (3), and the second inequality is due to (14). Regarding
the forth inequality - note that the monotonicity of φ over [x′, a] implies φ(a) ≤ φ(x′). Proposition 3.3
then tells us that φ̃(a) ≤ Lφ̃(x′). The last inequality is due to both inequalities in (13). We summarize
the above two equations:

ψ(x) ≤ K3L2φ(x), ∀x ∈ [x′, b]. (18)

We conclude from (16)-(18) that ψ is a K3L2-approximation of φ over [x′, b].
It remains to deal with the case where ψD(x

′) ̸= ψI(x
′) or ψD(x

′) = ψI(x
′) < φ̃(x′), i.e., the algorithm

performs changes to the original domains WD,WI and functions ψD, ψI in either line 10 or 13. Note that
in the case that ψD(x

′) > ψI(x
′), ψ over [x′, B] is a restriction of the original ψI that was constructed

by IndirectApxInc, so the same analysis above still holds. In the other two cases, the approximated
argmin is moved left to yD, and ψ over [x′ + 1, B] consists of the original ψI “glued” with the constant
function over [yD + 1, yI ] with value φ̃(yI). (Note: the intuition for which this correction is successful is
that the value of the constant function is the value of φ̃ on the right endpoint of the domain. Also in
line 23 in IndirectApxSet such corrections were made.) We will show that this modified function keeps
the claimed approximation error. Going over the proof for the case of ψD(x

′) = ψI(x
′) < φ̃(x′) (with

x′ = yD + 1), only 2 inequalities need be to be proved, namely (15) and (17). Considering (15), we will
prove it for x ∈ [yD, x

∗] (instead of x ∈ [yD + 1, x∗]). Indeed,

ψ(x) ≥ ψ(yD) = φ̃(yD) ≥ φ(yD) ≥ φ(x),

The first inequality hold because the corrected ψ is increasing in [yD, B], and the other inequalities still hold
from the same reasons. Regarding (17), the proof remains unchanged, except for the case where a = yD+1
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(recall that the first two elements in WI are yD + 1 and yI , so b = yI , and that ψ(yD + 1) = ψ(yI)). In
this case we have an even smaller upper bound, i.e.,

ψ(x) ≤ ψ(b) = ψ(yI) ≤ φ̃(x′) ≤ K2Lφ(y),

where the first inequality is due to the definition of yI . We note in passing that this is no surprise - the
fact the the algorithm found a smaller realizer for φ̃ than x′ should only improve the approximation ratio.

It remains to consider the running time of the algorithm. Clearly, in the worst case, the running time
is bounded by the time it takes to perform the binary search in line 5. There are O(log(logK C− q∗)) calls
to SmartSearch. Taking the right value of q∗ and transforming bases of the log to 2 we get the claimed
running time.

F Proof of Proposition 4.2

Proof. We prove the theorem for the case φ̃ is increasing. The proof for the case φ̃ is decreasing is similar
and hence omitted. Let ψ =IndirectApxInc(φ̃, A,B,K). By Proposition 3.2,

ψ(y) ≤ Kψ(x), ∀ consecutive x < y ∈W with y − x ≥ 2. (19)

Let z ∈ [A,B]. If z ∈ W then ψ(z) = φ̃(z), so the fact that φ̃ is an L-approximation of φ implies
φ(z) ≤ ψ(z) ≤ Lvp(z). Otherwise, let x = prev(z,W ) and y = next(z,W ). We get that

φ(z) ≤ φ̃(z) ≤ φ̃(y) = ψ(y) = ψ(z) ≤ Kψ(x) = Kφ̃(x) ≤ Kφ̃(z) ≤ KLφ(z).

(The first and last inequalities are due to φ̃ being an L-approximation of φ. The equalities are due to the
fact that the monotonicity of φ̃ implies ψ(t) = φ̃(t), ∀t ∈ W . The second and forth inequalities are due
to the monotonicity of φ̃. The third inequality is due to (19).) Therefore, ψ is a KL-approximation of φ.
The cardinality of W and the time needed to build ψ derive both from Proposition 3.2.

G Proof of Proposition 4.3

Proof. We use function ApxSetSlope from [HNO13]. Let W =ApxSetSlope(φ̃, [A,B],K). Let ψ
be the piecewise linear extension of φ̃ induced by W . Then, Definition 3.1 coupled with Theorem 3.2 in
[HNO13] imply that ψ is aK-approximation of φ̃. Therefore, applying twice the definition of approximation
functions we get that

φ(z) ≤ φ̃(z) ≤ ψ(z) ≤ Kφ̃(z) ≤ KLφ(z), ∀z ∈ [A,B],

so ψ is a KL-approximation of φ. The cardinality of W and the time needed to build ψ derive both from
Theorem 3.2 in [HNO13].
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