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ON THE ALGORITHMIC ASPECTS OF DISCRETE AND
LEXICOGRAPHIC HELLY-TYPE THEOREMS

AND THE DISCRETE LP-TYPE MODEL∗

NIR HALMAN†

Abstract. Helly’s theorem says that, if every d+1 elements of a given finite set of convex objects
in R

d have a common point, there is a point common to all of the objects in the set. In discrete Helly
theorems the common point should belong to an a priori given set. In lexicographic Helly theorems
the common point should not be lexicographically greater than a given point. Using discrete and
lexicographic Helly theorems we get linear time solutions for various optimization problems. For this,
we introduce the DLP-type (discrete linear programming–type) model, and provide new algorithms
that solve in randomized linear time fixed-dimensional DLP-type problems. For variable-dimensional
DLP-type problems, our algorithms run in time subexponential in the combinatorial dimension.
Finally, we use our results in order to solve in randomized linear time problems such as the discrete
p-center on the real line, the discrete weighted 1-center problem in R

d with either l1 or l∞ norm,
the standard (continuous) problem of finding a line transversal for a totally separable set of planar
convex objects, a discrete version of the problem of finding a line transversal for a set of axis-parallel
planar rectangles, and the (planar) lexicographic rectilinear p-center problem for p = 1, 2, 3. These
are the first known linear time algorithms for these problems. Moreover, we use our algorithms to
solve in randomized subexponential time various problems in game theory, improving upon the best
known algorithms for these problems.
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1. Introduction.

1.1. Helly-type theorems. The classical theorem of Helly stands at the origin
of what is known today as the combinatorial geometry of convex sets. It was discovered
in 1913 and may be formulated as follows.

Theorem 1.1 (Helly’s theorem). Let H be a family of closed convex sets in Rd,
and suppose either H is finite or at least one member of H is compact. If every d+ 1
or fewer members of H have a common point, then there is a point common to all
members of H.

A possible generalization of Helly’s theorem is as follows. Let H be a family of
objects, and let P be a predicate on subsets of H. A Helly-type theorem for H is of
the form:

There is a constant k such that for every finite set G, G ⊆ H, P(G), if and only
if, for every F ⊆ G with |F | ≤ k, P(F ).

The minimal such constant k is called the Helly number of H with respect to
the predicate P. If no such constant exists, we say that the Helly number of H with
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respect to P is unbounded or infinite (∞). In Helly’s theorem, the Helly number is
d + 1, and P is the predicate of having a nonempty intersection.

Over the years, a vast body of application analogues and far-reaching generaliza-
tions of Helly’s theorem has been assembled in the literature (see, for instance, the
excellent surveys of [10, 12, 16]).

It is possible to give lexicographic versions to some of the Helly theorems. For
instance, the following theorem is a lexicographic version of Helly’s theorem. (Recall
that, for every x = (x1, . . . , xd), y = (y1, . . . , yd) ∈ Rd, x is said to be lexicographically
smaller than y (lsmaller, in short, or x <L y) if either x1 < y1 or there exists d ≥ k > 1
such that xi = yi for i = 1, 2, . . . , k − 1 and xk < yk.)

Theorem 1.2 (lexicographic Helly’s theorem [26, 20]). Let H be a finite family
of convex sets in Rd. For every x ∈ Rd, if every d + 1 or fewer members of H have
a common point which is not lexicographically greater than x, then there is a point
common to all members of H which is also not lexicographically greater than x.

This theorem is folklore. It derives directly from Helly’s theorem and Lemma
8.1.2 in [26] and is proved independently in [20]. d+1 is called the lexicographic Helly
number of H with respect to intersection (lex-Helly number, in short). The following
theorem is a discrete version of Helly’s theorem, due to Doignon.

Theorem 1.3 (see [11]). Let H be a finite family of at least 2d convex sets in
Rd. If every 2d or fewer members of H have a common point with integer coordinates,
then there is a point with integer coordinates common to all members of H.

2d is called the discrete Helly number of H with respect to intersection. Hal-
man [20] provides discrete versions to numerous known Helly theorems. For instance,
a special case of Helly’s theorems is when the given convex sets are axis-parallel boxes
in Rd. In this case the Helly number is just 2 [9]. A discrete version of this Helly
theorem is as follows.

Theorem 1.4 (Theorem 2.10 in [20]). Let S be a finite set of points in Rd, and
let D be a finite family of closed boxes in Rd with edges parallel to the axes. If every
2d or fewer members of D have a common point in S, then there is a point in S
common to all members of D.

A combined discrete-lexicographic version of this Helly theorem is as follows.
Theorem 1.5 (Theorem 2.10 in [20]). Let S be a finite set of points in Rd, and

let D be a finite family of closed boxes in Rd with edges parallel to the axes. For
every x ∈ Rd, if every 2d or fewer members of D have a common point x′ ∈ S, with
x′ ≤L x, then there is a point x∗ ∈ S common to all members of D with x∗ ≤L x.

1.2. Algorithmic aspects of finite Helly numbers. In this section we discuss
two optimization models and show their relations to Helly numbers.

The LP-type model. Matoušek, Sharir, and Welzl [28] defined a model which
generalizes linear programming (LP) and called it the LP-type model (see definitions
in section 2). Fixed-dimensional LP-type problems can be solved efficiently by LP-
type algorithms such as the ones of Matoušek, Sharir, and Welzl [28] or Kalai [22].
The algorithm of Clarkson [8], which was originally formulated to solve LP, fits the
LP-type model as well [31, 7, 15]. This provides a tool for obtaining linear time
algorithms to various (continuous) optimization problems, mainly in computational
geometry and location theory, as shown in [2, 28].

The DLP-type model. In continuous optimization models related to LP-type
problems, the feasible set is defined by a finite set of constraints. In the discrete
versions, in addition to the above, there is also a prespecified set of relaxations. A
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feasible solution is restricted to be in the set of relaxations as well as to satisfy
the constraints. Integer programming (IP) is an example of a discrete optimization
problem where the set of relaxations is the integer lattice. Another example for
a discrete optimization problem is the discrete point set width problem, where we
are given a finite set of points in the plane (i.e., constraints) and a finite set of
permissible directions (i.e., relaxations). The goal is to find the minimal width of a
band with a permissible direction which contains all of the points (see more detail
about this problem in section 4). Many times discrete optimization problems are
proved to be computationally harder to solve than their corresponding continuous
versions (e.g., LP vs. IP and continuous planar Euclidean 1-center vs. the discrete
version as proved in section 9). In this paper we propose the following framework
for solving discrete optimization problems: We generalize integer programming by
introducing the discrete LP-type (DLP-type) model. We provide randomized linear
time algorithms to solve fixed-dimensional DLP-type problems satisfying a condition
we call the violation condition (VC).

Helly numbers and the two optimization models. In [20] Halman defines
the notion of discrete and lexicographic Helly theorems, provides lexicographic and
discrete versions to numerous known Helly theorems, and studies the relations be-
tween the different types of Helly theorems. In this paper we show that discrete and
lexicographic Helly theorems have interesting algorithmic aspects as well. In 1994,
Amenta [2] showed that every parameterized Helly system satisfying a condition called
the unique minimum condition (UMC) results in a fixed-dimensional LP-type problem
(see definitions of the terms parameterized Helly theorems and UMC in section 2.3).
In this paper we define lexicographic parameterized Helly systems and show that ev-
ery such system results in a fixed-dimensional LP-type problem. Unlike in [2], no
additional conditions are needed. Similarly to [2], this provides a framework for ob-
taining linear time algorithms (i.e., the LP-type algorithms mentioned above) for the
optimization problems related to these Helly numbers. In this way the existence of
finite lexicographic Helly numbers implies the solvability of their corresponding opti-
mization problems by the linear time LP-type algorithms. Similarly to the above, we
show that every lexicographic-discrete parameterized Helly system can be formulated
as a fixed-dimensional DLP-type problem.

1.3. Applications. We improve upon the best known algorithms for the seven
problems listed below. The problems differ in the way we solve them. The first
three are solved by using the LP-type model and its connection to lexicographic Helly
theorems. The next four problems are solved via the DLP-type model. While the
first three of them are solved via lexicographic-discrete Helly theorems, the fourth is
not. We solve in this paper the first five problems in linear time. Due to its length,
we refer the reader to [17] for details of the solution of the sixth problem. The first
six problems lie in the fields of research of either computational geometry or location
theory. The seventh problem is solved in [19] and is different, since it lies in game
theory and is solved in strongly subexponential time. We summarize the solutions we
give to each of these problems in Table 1.1.

1. Planar lexicographic weighted rectilinear p-center optimization
problem (p = 1, 2, 3). Given a finite set H = {h1, . . . , hn} of reference points
in the plane and a set W = {w1, . . . , wn} of weights in R+, find the lexicograph-
ically smallest vector (λ1, x1, y1, x2, y2, . . . , xp, yp) ∈ R+ × R2p such that for every
scaled square λ1

wi
hi, hi ∈ H, centered at hi with radius λ1

wi
, there exists 1 ≤ j ≤ p
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Table 1.1

A comparison between the various problems solved.

Problem number 1 2 3 4 5 6 7
Running time Linear Linear Linear Linear Linear Linear Subexponential
Model used LP-type LP-type LP-type DLP-type DLP-type DLP-type LP/DLP-type
Type of Helly
theorem used lex lex lex lex-discrete lex-discrete None None

such that λ1

wi
h contains (i.e., is pierced by) point (xj , yj) (we call λ1 the radius and

(x1, y1, . . . , xp, yp) the centers vector).

For p > 3 [32] showed a lower bound of Ω(n log n). [32, 21] solve the corresponding
nonlexicographic problem in linear time.

2. Line transversal of axis-parallel rectangles optimization problem.
Given a set B of axis-parallel rectangles, find the minimal scaling factor λ∗ such that
the set of scaled rectangles λ∗ admits a line transversal.

For the next problem we use the following definitions. A set H of convex objects is
called totally separable if there exists a direction such that each line in this direction
intersects at most one convex object from H. We call the objects in H simple if
they have a constant size storage description, the intersections and common tangents
between any two objects can be found in constant time, and the minimal scaling factor
for any 3 objects to admit a line transversal can be found in constant time.

3. Line transversal of totally separable set of convex planar objects
decision problem. Given is a totally separable finite family H of simple convex
objects (the direction of separation is not given). Decide whether H admits a line
that intersects all of the objects in H.

Given the order in which any line transversal should meet the objects in H, the
problem is solvable in linear time [13].

4. Lexicographic discrete line transversal of axis-parallel rectangles
problem. Given a finite family D of axis-parallel rectangles and a finite set S of
line directions, find a line transversal for D, y = ax + b, with the lexicographically
smallest vector (a, b) satisfying a ∈ S.

We show in section 10 that a similar problem, where, instead of a finite family
S of line directions, we are given a finite family S′ of lines, and the goal is find the
lexicographically smallest vector (a, b) ∈ S′ such that y = ax + b is a line transversal
for D, has a lower bound of Ω(n log n) under the algebraic computation tree model.

5. Discrete weighted 1-center problem in Rd with an l∞ norm. Given
are sets D = {d1, . . . , dn} and S = {s1, . . . , sm} of points in Rd and a set W =
{w1, . . . , wn} of weights in R+. Find a point s ∈ S (center) which minimizes the
real function r(D,S) = mins∈S maxi wi‖s− di‖∞ (the optimal radius). We solve the
corresponding rectilinear problem (i.e., with an l1 norm) in linear time as well.

It is folklore that the latter problem restricted to the case S = D is solvable in
O(n log n) time.

6. Discrete p-center problem on the real line. Given a finite set D of
real numbers (points) and a finite set S of real numbers (center locations), find a
subset C ⊆ S of p points (centers) which minimizes the real function rp(D,S) =
minC⊆S,|C|≤p maxh∈D dist(h,C) (the optimal radius). For every finite set of real num-
bers C and real h, dist(h,C) = minc∈C |h− c|. Due to space limitations we refer the
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interested reader to Chapter 9 in [17] for a detailed description of our linear time
solution for this problem.

Assuming the order of the points on the line is given, the discrete p-center prob-
lem on the real line is solvable in linear time by the fairly involved technique of
Frederickson [14].

7. Simple stochastic games and infinite games. The first strongly subexpo-
nential algorithm for binary simple stochastic games (SSGs) was given by Ludwig [25]
in 1995 by using ideas from the algorithms of [22] and [31] for LP-type problems.
Halman [19] gives the first strongly subexponential solution for (nonbinary) SSGs by
formulating the SSG as an LP-type problem and then calculating optimal strategies
for both players by the LP-type algorithm of [31]. Since several infinite games are
linearly reducible to nonbinary SSGs, this gives strongly subexponential algorithms to
parity games (PGs) and the first strongly subexponential algorithms to mean payoff
games (MPGs) and discounted payoff games. Halman notes in [19] that nonbinary
SSGs can most naturally be formulated as discrete LP-type problems, because of the
essentially primal-dual nature of the two-player game. We note that, independently,
Björklund, Sandberg, and Vorobyovn [6] developed a (nonstrongly) subexponential
algorithm for MPGs, a strongly subexponential algorithm for PGs [5], and a (non-
strongly) subexponential algorithm to nonbinary SSGs [4]. All of their algorithms
are “tailored” to the specific game solved and “adapt” ideas from the algorithms of
[25, 22, 31] (see formal definitions of all of these games in [19]).

Our contribution. In this paper we define a new model for solving discrete
optimization problems, the DLP-type model. We develop for it several linear time
(randomized) algorithms. We study the relations between discrete Helly theorems and
the DLP-type model. We study also the relations between (nondiscrete) lexicographic
Helly theorems and the LP-type model. We show that every lexicographic parame-
terized Helly system results in a fixed-dimensional LP-type problem. In this case the
UMC stated in the main theorem of [2] is not needed. By incorporating these “ingre-
dients” together we provide the first linear time algorithms for the first six problems
defined above. All of these problems are related to computational geometry and lo-
cation theory. By solving the seventh problem we show (for the first time, to the best
of our knowledge) that the LP-type and DLP-type models have applications in other
fields of research, such as game theory. Moreover, we show that these two models are
also useful for solving non-fixed-dimensional problems in subexponential time.

Organization of the paper. In this paper we extensively use terms which are
defined in [2], two tools for establishing linear time algorithms: the LP-type framework
and Helly-type results, which are reviewed in [2, 32], and the two LP-type algorithms
in [8, 32]. In order to make the paper self-contained we review these terms, models,
and algorithms in section 2. In section 3 we define a dual version of the LP-type
model, which we use in order to define the DLP-type model in section 4. In section 5
we develop algorithms which solve (fixed-dimensional) DLP-type problems in (ran-
domized) linear time. The rest of the paper is dedicated to show the interrelations
between discrete and lexicographic Helly theorems and DLP-type and LP-type mod-
els. In section 6 we study the relations between lexicographic Helly theorems and
the LP-type model. By showing that every lexicographic parameterized Helly sys-
tem results in a fixed-dimensional LP-type problem, we give a partial solution for the
main open problem raised by Amenta [2], who asked to characterize the parameter-
ized Helly systems which result in fixed-dimensional LP-type problems. In section 7
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we demonstrate the applicability of these relations by solving the first problem dis-
cussed in this section—the planar lexicographic weighted rectilinear p-center problem
(p = 1, 2, 3) in linear time. In section 8 we study the relations between discrete and
lex-discrete Helly theorems and the DLP-type model. In sections 9 and 10 we solve
in linear time the next four problems discussed in this section.

2. Literature review. In this section we review some of the definitions and
results given in Amenta [1, 2], Sharir and Welzl [31], Matoušek, Sharir, and Welzl [28],
and Clarkson [8]. The term used in the first two papers is GLP (general linear
programming) rather than LP-type.

2.1. LP-type problems.
Definition 2.1. An abstract problem is a tuple (H,ω), where H is a finite set

of elements (which we call constraints) and ω is an objective function from 2H to
some totally ordered set Λ which contains a special maximal (minimal) element ∞
(−∞), respectively. The goal is to compute ω(H).

Definition 2.2. Let (H,ω) be an abstract problem. For any subset G ⊆ H
we say that F ⊆ G defines the solution on G (F is a solution-defining set of G) if
ω(F ) = ω(G).

Clearly, for every G ⊂ H, G is a defining set for itself.
Definition 2.3. An LP-type problem is an abstract problem (H,ω) that obeys

the following conditions (when we write <, ≤, = etc., we mean under the ordered
set Λ):

1. Monotonicity: For all F ⊆ G ⊆ H : ω(F ) ≤ ω(G) (so the special element
−∞ is such that ω(∅) = −∞).

2. Locality: For all F ⊆ G ⊆ H, with ω(G) = ω(F ) 
= −∞, and for each h ∈ H,
if ω(G ∪ {h}) > ω(G) then ω(F ∪ {h}) > ω(F ).

Note that lexicographic linear programming, where the input is a finite set of closed
half-planes in Rd and the output is the lsmallest point which lies in all half-planes,
is an LP-type problem: H is the finite set consisting of these closed half-spaces, and
the function ω(G) returns the coefficients of the lexicographic minimum point in

⋂
G.

Adding half-planes to H cannot decrease the value of ω, so the monotonicity condition
is satisfied. As for the locality condition, note that if ω(G) = ω(F ) 
= −∞, then ω(G)
is realized in a single point x∗ ∈ Rd. The fact that ω(G ∪ {h}) > ω(G) implies that
x∗ /∈ h. Therefore, ω(F ∪ {h}) > ω(F ) as needed. An immediate consequence of the
monotonicity and locality conditions is the following.

Corollary 2.4. Let (H,ω) be an LP-type problem. For all F ⊆ G ⊆ H,
with ω(G) = ω(F ) 
= −∞, and for each h ∈ H, ω(G ∪ {h}) > ω(G) if and only if
ω(F ∪ {h}) > ω(F ).

We give now several definitions for every abstract problem (H,ω) which meets
the monotonicity condition. Let G ⊆ H be arbitrary, and let n = |H|. If ω(G) =∞,
we say G is infeasible; otherwise we call G feasible. If ω(G) = −∞, we say G is
unbounded ; otherwise we call G bounded. We say a constraint h ∈ H violates G when
ω(G ∪ {h}) > ω(G). (Using this definition we note that the locality condition says
that, for every bounded subset G ⊆ H, defining set F for G, and h /∈ G, if h violates
G, then h must violate the defining set F . Corollary 2.4 says that, for any such
G,F, h, h violates G if and only if it violates its defining set F .) A basis B is a set
B ⊆ H, with ω(B′) < ω(B) for all proper subsets B′ of B. A basis for G is a basis
B ⊆ G, with ω(B) = ω(G). (In other words, a basis for G is a minimal (by inclusion)
defining set of G.) We note that due to the monotonicity condition a basis for G, for
any G ⊆ H, always exists. The basis for any unbounded set is the empty set.
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Observation 2.5. Let (H,ω) be an LP-type problem, let G ⊂ H, and let B ⊆ G
be such that ω(B) = ω(G). If ω(G) < ω(H), then there exists a constraint h ∈ H \G
which violates B.

To see this, it is sufficient to show that if no h ∈ H \G violates B, then ω(G) =
ω(H). We add to B and G an arbitrary constraint h ∈ H \G. Since h does not violate
B, the locality condition implies that h does not violate G and that ω(B) = ω(G∪{h}).
Repeating this argument |H \G| times, we get that ω(G) = ω(H) as needed.

So B is a basis for G if and only if B ⊆ G is a basis and no element in G violates
it. We say that h ∈ G is extreme in G if ω(G \ {h}) < ω(G). Thus h ∈ G is extreme
in G if and only if h violates G \ {h}. From the minimality of a basis, every h in a
basis B is extreme in B. From the monotonicity condition we get the following.

Observation 2.6. Let (H,ω) be an LP-type problem. Every h ∈ G which is
extreme in G ⊆ H is contained in every basis B for G.

In other words, a basis B for G contains all of the constraints which are extreme
in G. We note that not all of the elements in B are extreme in G as seen in Figure 2.1.
Let G be the set of 5 lines. The two thick lines form a basis B for G, and each one of
them is extreme in B. We note that the line with negative slope is extreme in G.

The terms “violates” and “extreme” are somewhat complementary: For h ∈ G
we may ask whether h is extreme in G (or, equivalently, whether it violates G \ {h}).
Similarly, for h /∈ G we may test whether h violates G (or, equivalently, whether it is
extreme in G∪{h}). Using the monotonicity condition and the observation above we
get the following.

Observation 2.7. Let (H,ω) be an LP-type problem. Let B be a basis for G ⊆ H.
If h /∈ G violates B, then h is extreme in G ∪ {h} and is a member of every basis for
G ∪ {h}.

The combinatorial dimension d of (H,ω) is the maximum size of every basis for
any feasible subset G. An abstract problem which meets the monotonicity condition
and is of combinatorial dimension d, where d is independent of |H|, is called fixed-
dimensional. A d-dimensional LP-type problem where the cardinality of every basis
is exactly d is called a d-dimensional basis-regular LP-type problem. Note that if such
a problem is feasible and bounded, then ω(H) = maxG⊂H, |G|=d ω(G).

For instance, in lexicographic linear programming, if
⋂
G 
= ∅, the lexicographi-

cally smallest point in
⋂
G is determined by a basis of cardinality at most d (if G is

unbounded, its basis is ∅). Notice that, although more than d half-spaces may have
the minimum point on their boundary, a subfamily of at most d of them is sufficient to
determine the minimum. In Figure 2.1 below, the thick two lines are a basis. Notice
also that a subfamily G may have more than one basis.

2.2. LP-type algorithms. An LP-type algorithm takes a d-dimensional LP-
type problem (H,ω) and returns a basis B for H. Several efficient randomized LP-
type algorithms are known such as the ones of Clarkson [8], Matoušek, Sharir, and
Welzl [28], or Kalai [22]. In the following two sections we review the first two al-
gorithms. We develop in section 5 a DLP-type algorithm by combining these two
algorithms together.

It is not clear, of course, what computational operations are possible on an ab-
stract object such as (H,ω). We assume two computational primitives and analyze the
various algorithms by counting the number of calls to these primitives. The running
time for a specific LP-type problem then depends on how efficiently the primitives
can be implemented. Let us now define the two primitive operations. A basis com-
putation Basis(G) takes a family G of at most d + 1 constraints and finds a basis for
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Fig. 2.1. A basis for LP.

G. A violation test Violation(B, h) takes a basis B and a constraint h and returns
true if and only if h violates B (i.e., B is not a basis of B ∪ {h}). Let tb be the
time required for a basis computation and tv be the time required for a violation
test.

2.2.1. Clarkson’s algorithm. As originally presented, Clarkson’s algorithm is
aimed for linear programming. As Sharir and Welzl [31] note, the algorithm solves
LP-type problems in the same time bound. We review the algorithm in the context of
linear programming. Given a lexicographic linear programming problem in d variables
with a set of constraints H (|H| = n) and objective function ω, we view it as the d-
dimensional LP-type problem (ω,H).

Let x∗
s be an algorithm which gets input of size up to 9d2 (d is the dimension of

the problem) and outputs a basis for H. The algorithm of Clarkson [8] is as follows:

Function x∗
m(H) (Returns a basis for H)

1. Let V ∗ := ∅, let V := H

2. If |H| ≤ 9d2, then return x∗
s(H)

3. Else repeat the following until V = ∅:
(a) Choose R ⊂ H \ V ∗ uniformly at random, |R| = d

√|H|
(b) Let B := x∗

i (R ∪ V ∗), and let V := {h ∈ H | Violation(B, h) =

TRUE}
(c) If |V | ≤ 2

√|H|, then let V ∗ := V ∗ ∪ V

4. Return B

Function x∗
i (H)

1. Let V := H. For every h ∈ H let νh := 1

2. If |H| ≤ 9d2, then return x∗
s(H)

3. Else repeat the following until V = ∅:
(a) Choose R ⊂ H at random according to weights νh, |R| = 9d2

(b) Let B := x∗
s(R).

(c) Let V := {h ∈ H | Violation(B, h) = TRUE}
(d) If ν(V ) ≤ 2ν(H)/(9d− 1), then for every h ∈ V let νh =: 2νh

4. Return B
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As Amenta notes in [1], Clarkson’s randomized algorithm for solving an LP-type
problem (H,ω) improves the running time by separating the dependence on d and on
n. He uses a three-level algorithm, with a “base-case” algorithm at the lowest level
(x∗

s) solving subproblems of size up to 9d2.
The higher two levels x∗

m and x∗
i reduce the problem to smaller problems using

the following idea. Take a sample R ⊆ H, find a basis B for R by calling the next
lower level algorithm, and then find the subset V ⊆ H of all of the constraints which
violate B. If V is empty, Observation 2.5 tells us that B is a basis for H as well.
Otherwise, by the monotonicity condition ω(H) > ω(B). Let B′ be a basis for H,
and let H ′ = B∪B′. Clearly ω(H) = ω(H ′), so B′ is a basis for H ′ as well. Applying
Observation 2.5 for H ′ and B we get that there exists a constraint in B′ which violates
B. We’ve just proved the following lemma.

Lemma 2.8 (Lemma 3.1 in [8]). If the set V is nonempty, then it contains at
least one constraint from every basis B for H.

The purpose of the top level x∗
m is to get the number of constraints down so we

can apply the second level (x∗
i ), which is more efficient in d but less efficient in n. In

the top level we take a random sample R, with |R| = d
√
n so that E[|V |] = O(

√
n);

that is, we take a big random sample which gives an expected small set of violators.
This is a consequence from the following lemma.

Lemma 2.9 (Lemma 3.2 in [8]). Let V ∗ ⊂ H, and let R ⊂ H \ V ∗ be a random
subset of size r, with |H \ V ∗| = n. Let V ⊂ H be the set of constraints which violate
R ∪ V ∗. Then the expected size of V is no more than d(n− r + 1)/(r − d).

We iterate, keeping the violators in a set V ∗ and finding a basis B′ for R ∪ V ∗.
At every iteration in the “repeat-until” loop of x∗

m, we add the violators to V ∗, so
that after d iterations V ∗ contains a basis B for H and E[|V ∗|] = d

√
n. Solving the

subproblem on V ∗ then gives the answer.
All recursive calls from the first level x∗

m call the second level algorithm x∗
i , which

uses small random samples of size 9d2. Initially the sample R is chosen using the
uniform distribution, but then we double the weights of elements in V and iterate.
Since at least one basis element always ends up in V , eventually they all become so
heavy that we get B ⊆ R. The analysis shows that the expected number of samples
before B ⊆ R is O(d log n). Since we need O(n) work at each iteration to compare
each constraint with the basis B′ of R, without the first phase this algorithm alone
would be O(n log n). All of the recursive calls from this reweighting algorithm are
made to some “base-case” algorithm x∗

s.
Recall that tv is the time required for a violation test, and let ts(n) be the time

required for function x∗
s to run on n constraints. In his paper, Clarkson chooses x∗

s to
be the simplex algorithm for linear programming on sets of 9d2 elements and estimates
its running time by ts(9d

2) = d
d
2 +O(1), using Stirling’s approximation. Given a set H

of n elements and a basis B (which in linear programming is equivalent to a point in
Rd), the time needed for a single call to function Violation(B, h) is d. Thus the time
needed to execute the line

V ← {h ∈ H | Violation(B, h) = TRUE}

in the algorithm is dn, or ntv.
In his time complexity analysis, Clarkson also uses a lemma to show that progress

will be made during the execution of the algorithm. We say that an execution of the
loop in x∗

m (x∗
i ) is successful if the test |V | ≤ 2

√|H| (ν(V ) ≤ 2ν(H)/(9d−1)) returns
“true.”
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Lemma 2.10 (Lemma 3.3 in [8]). The probability that any given execution of a
loop body is successful is at least 1/2, and so on average two executions are required
to obtain a successful one.

Let Ti(n) (Tm(n)) be the expected time required by x∗
i (x∗

m) for a problem with
n constraints.

Theorem 2.11 (Theorem 3.4 in [8]). Given an LP-type problem, the iterative
algorithm x∗

i requires

Ti(n) = O(d log n(ntv + ts(9d
2)))

expected time, where the constant factors do not depend on d.
Theorem 2.12 (Theorem 3.5 in [8]). Given an LP-type problem, algorithm x∗

m

requires

Tm(n) = O(d(Ti(d
√
n) + ntv)) = O(d2 log n(

√
ntv + ts(9d

2)) + dntv)

expected time, where the constant factors do not depend on d.
We can see Clarkson’s algorithm as a tool for reducing an LP-type problem with

many constraints to a collection of small problems with a few constraints.

2.2.2. Sharir and Welzl’s algorithm. As Amenta notes in [1], the algorithm of
Sharir and Welzl [31] for solving an LP-type problem (H,ω) is a monotone algorithm;
i.e., the sequence of values resulted by the calls the algorithm makes to the basis
calculation primitive is monotone increasing. The idea is to select a random constraint
h ∈ H and recursively find a basis B for H\{h}. If h doesn’t violate B, then output B;
otherwise solve the problem recursively starting from a basis for B∪{h}. Although the
statement of the algorithm does not include a set of tight constraints (i.e., the set of
constraints which the current minimum must satisfy), Observation 2.7 demonstrates
that every basis found in the recursive call will include h. So the dimension of the
problem is effectively reduced. They show that the algorithm requires expected O(n)
calls to the Basis primitive on subproblems with d + 1 constraints and O(n) calls to
the Violation primitive, when the constant depends exponentially on d.

For the sake of completeness we state their algorithm. Function lptype is called
with an initial basis C which they call a candidate basis. C is not necessarily a basis
for H. It can be viewed as some auxiliary information one gets for the computation
of the solution. Note that C can have influence on the running time and output of
the algorithm (e.g., when there are several optimal bases).

Function lptype(H,C)

1. If H = C, then return C

2. Else

(a) Choose h ∈ H \ C uniformly at random

(b) Let B := lptype(H \ {h}, C)

(c) If Violation(B, h) = TRUE, then return lptype(H,Basis(B ∪{h}))
(d) Else return B

Matoušek, Sharir, and Welzl [28] cite explicitly all of the properties which are needed
for the correctness and time analysis of their algorithm

Lemma 2.13 (see [28]). Let (H,ω) be an abstract problem. The correctness and
time analysis of algorithm lptype applied on (H,ω) as described in [28] are valid, if
for all F,G ⊆ H, F ⊆ G, and h ∈ H:
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1. ω(G) ≥ ω(F ).
2. If ω(G) = ω(F ) > −∞, then h violates G if and only if h violates F .
3. If ω(G) <∞, then any F ⊆ G has at most d extreme constraints.
4. If ω(G) <∞, then every basis B ⊆ G for G has exactly d constraints.

We note that a d-dimensional basis-regular LP-type problem (H,ω) satisfies all
of the above properties: The monotonicity condition yields property 1. Corollary 2.4
yields property 2, the d-dimensionality of the (H,ω) together with Observation 2.6
yield property 3, and property 4 (which is needed only for the time analysis) results
because (H,ω) is basis-regular.

A simple inductive argument shows that the procedure returns the required an-
swer. This happens after a finite number of steps, since the first recursive call decreases
the number of constraints, while the second call increases the value of the candidate
basis (and there are only finitely many different bases).

Recall that tv denotes the time required for a violation test and tb denotes the
time required for the Basis primitive on subproblems with d + 1 constraints. Let
nv (nb) be the number of violation tests (basis computations) performed throughout
the execution of the algorithm. Matoušek, Sharir, and Welzl (see section 4 in [28])
show that nv ≤ nbn, which implies a crude upper bound of O(nb(tvn + tb)) for the
running time of the algorithm. They [28] give a careful and complicated analysis of
this algorithm for the case where n is not much larger than d (e.g., d ≤ n ≤ √ded/4)
and show that nb = eO(

√
d ln d). Hence, for this case, the algorithm of [31] runs in

randomized O(eO(
√
d ln d)(tvn + tb)) time, i.e., subexponential in the dimension d of

the problem. (Actually they use property 4 only for showing the subexponential bound
in d.) Since, for linear programming, both the violation test and the basis calculation
can be performed in time polynomial in both n and d, this gives a subexponential
randomized algorithm for linear programming. Using this as the base-case algorithm

at the third level of Clarkson’s algorithm (i.e., x∗
s) gives expected O(eO(

√
d ln d) log n)

basis computations and expected O(dn+ d2 log neO(
√
d ln d))) violation tests. When d

is constant, the running time of the combined algorithm is O(tvn+ tb log n). We will
use this expression in the analysis of the running times of many of our applications.

2.3. Helly-type theorems and their relations to LP-type problems. The
first works to systematically study the relations between Helly-type theorems and LP-
type problem were those of Amenta [1, 2]. In this subsection we summarize her results.

An LP-type problem (H,ω) with combinatorial dimension k is an abstract prob-
lem with combinatorial dimension k such that ω obeys monotonicity. Therefore the
theorem below implies that there is a Helly-type theorem corresponding to the con-
straint set of every fixed-dimensional LP-type problem.

Theorem 2.14 (see [2]). Let (H,ω) be an abstract problem with combinatorial
dimension k such that ω obeys monotonicity, and let λ ∈ Λ be arbitrary. H has the
property ω(H) ≤ λ if and only if every G ⊆ H with |G| ≤ k + 1 has the property
ω(G) ≤ λ.

The main theorem in [2] goes in the other direction. Before stating it we need
some definitions.

A set system is a pair (X,H), where X is a set and H is a set consisting of subsets
of X. We say (X,H) is a Helly system if there exists a finite integer k such that H
has Helly number k with respect to the intersection predicate. Most Helly theorems
can be restated in terms of the intersection predicate. For example, let us consider
the following Helly-type theorem.
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Theorem 2.15 (radius theorem). A family H of points in the Euclidean d-
dimensional space Ed is contained in a unit ball if and only if every d + 1 or fewer
points from H are contained in a unit ball.

Here the family of objects is the set of points in Ed, the predicate is that a
subfamily is contained in a (closed) unit ball, and the Helly number is d + 1. In
order to restate this theorem in terms of the intersection predicate, we apply the
following duality transformation. We transform every point h ∈ H into the set D(h)
of centers of unit balls containing h. In this way D(h) is a unit ball centered at h.
Let D(H) = {D(h) | h ∈ H}. From the definition of this duality transformation we
get that the points in H are contained in a unit ball if and only if the unit balls in
D(H) have a nonempty intersection (see Figure 2.2). Since balls are a special case of
convex sets, the radius theorem derives directly from Helly’s theorem.

�� ���
��

⇔ ��
��

��
��

��
��

Fig. 2.2. The 3 points on the left side are contained in a unit ball if and only if the 3 unit balls
on the right side intersect.

Recall that the range Λ of an LP-type problem can be any totally ordered set, and
let (X,H) be a set system. We call ω′ : X → Λ a ground set objective function. We
call ω : 2H → Λ the objective function induced by ω′ on (X,H) if, for every G ⊆ H,
ω(G) is the least value λ∗ ∈ Λ for which there exists x∗ ∈ ⋂

G such that ω′(x∗) = λ∗,
i.e., ω(G) = min{ω′(x) | x ∈ ⋂

G}. If
⋂
G = ∅, we define ω(G) = ∞. For example,

when formulating lexicographic linear programming in the LP-type framework, the
value of ω on a subset G of constraints is the minimum value that the ground set
objective function ω′ achieves on the points that are feasible with respect to G.

A mathematical programming problem is a triple (X,H, ω′), where X is a ground
set, H is a set of subsets of X, and ω′ is a ground set objective function to a totally
ordered set Λ. We call the pair (H,ω), where ω is the objective function induced by
ω′ on (X,H), the induced abstract problem. If |{t ∈ ⋂

G | ω′(t) = ω(G)}| = 1 for all
G ⊆ H, then we say that ω′ satisfies the unique minimum condition (UMC).

Let (X × Λ, H̄) be a set system where Λ is a totally ordered set which contains
a maximal element ∞. We call a ground set objective function ω′ a natural ground
set objective function if, for all (x, λ) ∈ X × Λ, ω′(x, λ) = λ. We call an objective
function ω natural if it is induced by a natural ground set objective function. For every
particular constraint h̄ ∈ H̄ and λ ∈ Λ we write hλ = {x ∈ X | ∃ν ≤ λ s.t. (x, ν) ∈ h̄}
for the projection into X of the part of h̄ with Λ-coordinate no greater than λ. Also,
for a subfamily of constraints Ḡ ⊆ H̄, we write Gλ as shorthand for {hλ | h̄ ∈ Ḡ}. We
call an indexed family of subsets {hλ | h̄ ∈ Ḡ}, such that hα ⊆ hβ , for all α, β ∈ Λ
with α < β, a nested family.

Figure 2.3 (based upon Figure 1 in [2]) is a schematic diagram of a parameterized
Helly system. The whole stack represents X × Λ, and each of the cones represents a
set h̄ ∈ H̄. Each h̄ is a subset of X × Λ. Since all of the h̄ are indexed with respect
to Λ, the cross section at λ (represented by one of the planes) is equivalent to the
Helly system (X,Hλ). Notice that if Ḡ ⊆ H̄ does not intersect at some value λ2, then
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Fig. 2.3. A parameterized Helly system.

Ḡ also fails to intersects at all λ1 < λ2, and if Ḡ ⊆ H̄ intersects at λ1, then Ḡ also
intersects at all λ2 > λ1.

In her paper, Amenta [2] relates Helly-type theorems and LP-type problems by
parameterization (a similar parameterization appears in [27] under the name “concrete
LP-type problem”).

Definition 2.16. A set system (X×Λ, H̄) is a parameterized Helly system with
Helly number k, when

1. {hλ | λ ∈ Λ} is a nested family for all h̄ ∈ H̄;
2. (X,Hλ) is a Helly system, with Helly number k for all λ.

So the function ω′ is just the projection into the Λ coordinate, and, for Ḡ ⊆ H̄,
ω(Ḡ) = min{λ | ⋂Gλ 
= ∅}, or ω(Ḡ) =∞ if Ḡ does not intersect at any value of λ.

Amenta [1] notes that it is almost always useful to think of Λ as time, so that
a subfamily Gλ is a “snapshot” of the situation at time λ. Usually we can think of
some initial time 0 at which G0 does not intersect and then envision the hλ growing
greater with time, so that λ∗ = ω(Ḡ) is the first “moment” at which Gλ intersects.

As an example, let us consider how the Helly system (X,H) for the radius theorem
can be extended to a parameterized Helly system. (Recall that the ground set X of
the Helly system representing the radius theorem is the set of centers of unit balls in
Ed (which is equivalent to Rd) and that each h = h(p) ∈ H is the set of centers of
unit balls which contain point p; i.e., h(p) is a unit ball centered at p.) We define
a parameterized Helly system (X × Λ, H̄), where Λ = R+ is the set radii, and each
hλ = h(p)λ ∈ Hλ is the set of centers at which a ball of radius at most λ contains
a particular point p. The nested family h̄ = h̄(p) is the set of all balls containing
p. The ground set X × Λ is the set of all balls in Ed, and H̄ is the family of nested
families for all points (see Figure 2.3).

The natural objective function for this parameterized Helly system ω(Ḡ) returns
the smallest radius at which there is a ball containing all of the points corresponding
to constraints h̄ ∈ Ḡ. So (X × Λ, H̄, ω′) is the following mathematical programming
problem:

Problem: Smallest enclosing ball
Input: A finite family H of points in Ed.
Output: The smallest ball enclosing H.

In Figure 2.3 we see the parameterized Helly system corresponding to an instance H
of the smallest enclosing ball problem consisting of 3 points. Each nested family h̄ is
a cone whose base is a point from H.

We say a ball is realized by points of H if it is the smallest volume ball enclosing



14 NIR HALMAN

the points on its boundary. Assuming that the points in H are at general positions,
such that no two different congruent balls are realized by points of H, the theorem
below implies that the smallest enclosing ball in Ed problem can be formulated as a
d-dimensional LP-type problem (H̄, ω).

Theorem 2.17 (main theorem in [2]). Let (X ×Λ, H̄) be a parameterized Helly
system with Helly number k, natural ground set function ω′, and natural objective
function ω. If ω′ meets the UMC, then (H̄, ω) is an LP-type problem of combinatorial
dimension k.

Amenta showed that, without requiring the UMC, the theorem is not correct
by giving an example of a Helly system with no fixed combinatorial dimension [2].
The theorem above is applied in [2] to get linear time solution algorithms for various
geometric problems.

In her paper [2], Amenta investigates lexicographic objective functions. Let
(X × Λ, H̄) be a parameterized Helly system with Helly number k and natural ob-
jective function ω. For all λ ∈ Λ, we assume a function νλ : 2Hλ → Λ′, where Λ′

is a totally ordered set containing a maximal element ∞, such that (Hλ, νλ) is an
LP-type problem of combinatorial dimension at most d. The functions νλ may them-
selves be lexicographic. Amenta [2] imposes a lexicographic order on Λ × Λ′ with
(λ, κ) > (λ′, κ′) if λ > λ′ or if λ = λ′ and κ > κ′. She defines a lexicographic objective

function ν : 2H̄ → Λ×Λ′ in terms of ω and the functions νλ as seen in the following.
Theorem 2.18 (see [2]). Let Λ′ be a totally ordered set. If (X × Λ, H̄) is a

parameterized Helly system with Helly number k and natural objective function ω, and
if, for every λ, (Hλ, νλ) is an LP-type problem of combinatorial dimension d, where
νλ : 2Hλ → Λ′, then (H̄, ν) is an LP-type problem of combinatorial dimension ≤ k+d,
where ν : 2H̄ → Λ× Λ′ is defined as ν(Ḡ) = (ω(Ḡ), νω(Ḡ)(Gω(Ḡ))) for all Ḡ ⊆ H̄.

Certainly, this bound on the combinatorial dimension is not always tight. For d-
dimensional linear programming, for instance, this theorem gives an upper bound of
2d−1 on the combinatorial dimension, since each Hλ is the constraint set of a (d−1)-
dimensional linear program, and (Ed, H̄) is a parameterized Helly system with Helly
number d. Nonetheless, the theorem provides the best general bound as shown in [2].

3. Dual LP-type problems.
Definition 3.1. A dual LP-type problem is an abstract problem (H,ω) that

obeys the following conditions (when we write <, ≤, = etc., we mean under the
totally ordered set Λ):

1. Monotonicity: For all F ⊆ G ⊆ H : ω(F ) ≥ ω(G) (so the special element ∞
is such that ω(∅) =∞).

2. Locality: For all F ⊆ G ⊆ H, with ω(G) = ω(F ) 
=∞, and for each h ∈ H,
if ω(G ∪ {h}) < ω(G), then ω(F ∪ {h}) < ω(F ).

Let G ⊆ H be arbitrary. If ω(G) = ∞, we say G is infeasible; otherwise we call
G feasible. If ω(G) = −∞, we say G is unbounded ; otherwise we call G bounded. A
basis B is a set B ⊆ H, with ω(B′) > ω(B) for all proper subsets B′ of B. A basis
for G is a basis B ⊆ G, with ω(B) = ω(G). We note that due to the monotonicity
condition a basis for G, for every G ⊆ H, always exists.

The combinatorial dimension d of a dual LP-type problem is the maximum car-
dinality of every basis for any bounded subfamily G. We note that the basis for every
infeasible set is the empty set. A dual LP-type problem of combinatorial dimension d,
where d is independent of |H|, is called fixed-dimensional. We choose the term dual
LP-type (which should not be confused with the term dual in linear programming)
because of the following.



ON THE POWER OF DISCRETE HELLY THEOREMS 15

Observation 3.2. The abstract problem (H,ω) is a dual LP-type problem if and
only if (H,−ω) is an LP-type problem.

Looking at (H,ω), in order to prevent confusion between LP-type problems and
their dual versions, we will denote by (D,ω) LP-type problems and by (S, ω) dual
LP-type problems. The motivation for the choice of the letters “D” and “S” is as
follows. We use the letter “D” in the LP-type problem (D,ω) since we look at D
as a set of demand elements (d-elements), or constraints on the feasible region, on
which the minimum value is ω(D). Adding demand elements to D may increase
the minimum solution of the problem and will never decrease its value. We use the
letter “S” in the dual LP-type problem (S, ω) since we look at S as a set of supply
elements (s-elements), or relaxations on the feasible region, on which the minimum
value is ω(S). Adding supply elements to S may decrease the minimum solution of
the problem and will never increase its value. In the next section we define discrete
LP-type problems by using the same ω in a primal and a dual LP-type problem.

4. Discrete LP-type problems.
Definition 4.1. A discrete abstract problem is a triple (D,S, ω), where D and

S are finite sets of elements and ω is an objective function from 2D × 2S \ {(∅, ∅)} to
some totally ordered set Λ which contains a special maximal (minimal) elements ∞
(−∞). The goal is to compute ω(D,S).

Definition 4.2. Let (D,S, ω) be a discrete abstract problem. For every D′, D′′ ⊆
D and S′, S′′ ⊆ S let αS′(D′′) = ω(D′′, S′), and let βD′(S′′) = ω(D′, S′′). We say
that (D,S, ω) is a discrete LP-type problem (DLP-type, in short) when (D,αS′) is an
LP-type problem and (S, βD′) is a dual LP-type problem for all D′ ⊆ D and S′ ⊆ S.
We say that (D,αS′) ( (S, βD′)) is an induced LP-type (dual LP-type) problem of
(D,S, ω).

We note that we do not include (∅, ∅) in the domain of ω since this will result
in the trivial ordered set Λ = {−∞,∞}, where −∞ = ∞: To see this, recall that
the definition of LP-type problems implies that α∅(∅) = −∞, the definition of dual
LP-type problems implies that β∅(∅) = ∞, and the definition of DLP-type problems
implies that α∅(∅) = ω(∅, ∅) = β∅(∅).

Throughout this paper, whenever we call (D,α) ((S, β)) the induced LP-type
(dual LP-type) problem of (D,S, ω), we mean that α = αS (β = βD). It is easy to
see that the following definition for a DLP-type problem is equivalent to the former
one.

Definition 4.3. A DLP-type problem is a discrete abstract problem (D,S, ω)
which for all S′ ⊆ S and for all D′ ⊆ D obeys the following conditions (when we write
<, ≤, =, etc., we mean under the ordered set Λ):

1. Monotonicity of demand: For all D′′ ⊆ D′ ⊆ D : ω((D′′, S′)) ≤ ω((D′, S′)).
2. Monotonicity of supply: For all S′′ ⊆ S′ ⊆ S : ω((D′, S′′)) ≥ ω((D′, S′)).
3. Locality of demand: For all D′′ ⊆ D′ ⊆ D such that ω((D′, S′)) = ω((D′′, S′))

> −∞ and for each h ∈ D, if ω((D′ ∪ {h}, S′)) > ω((D′, S′)), then ω((D′′ ∪
{h}, S′)) > ω((D′′, S′)).

4. Locality of supply: For all S′′ ⊆ S′ ⊆ S such that ω((D′, S′)) = ω((D′, S′′)) <
∞ and for each h ∈ S, if ω((D′, S′ ∪ {h})) < ω((D′, S′)), then ω((D′,
S′′ ∪ {h})) < ω((D′, S′′)).

Before continuing any further, we give an example of a DLP-type problem.
Problem: Discrete point set width
Input: A finite set D of points in Ed and a finite set S of permissible direc-
tions.
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Output: The minimal width of the set in the permissible directions (i.e., the
minimal width of a band with a permissible direction which contains all the
points in D).

We assume general positions of the points and directions; that is, all |S| (|D|
2

)
distances (in each one of the |S| permissible directions) between pairs of points are
different. For every set D of points and set S of permissible directions we define
ω(D,S) to be the minimal width of the points in D in the permissible directions from
S. Clearly (D,S, ω) is a discrete abstract problem. Let S′ ⊆ S. We show now that
(D,αS′) is an LP-type problem for every choice of S′. Since adding points to a set can
only increase its width, (D,αS′) meets the monotonicity condition. Let D′′ ⊂ D′ ⊆ D
be such that αS′(D′′) = αS′(D′). Due to the general position assumption there are
unique d1, d2 ∈ D′′ and s ∈ S′ such that the width of (D′′, S′) and of (D′, S′) is the
distance between d1 and d2 in direction s. (In other words, the width of (D′, S′) and
of (D′′, S′) is the width of the band in direction s between d1 and d2 in which all of the
points of D′ lie.) If for h /∈ D′ αS′(D′∪{h}) > αS′(D′), then point h is not inside this
band, so there must be another triple of two points and one direction which realizes the
width αS′(D′′ ∪ {h}). Due to the monotonicity condition, αS′(D′′ ∪ {h}) ≥ αS′(D′′),
and from the general position assumption we get that αS′(D′′ ∪ {h}) > αS′(D′′), so
(D,αS′) meets the locality condition as well and thus is an LP-type problem.

Let D′ ⊆ D. It remains to show that (S, βD′) is a dual LP-type problem for every
choice of D′. (S, βD′) satisfies the monotonicity condition since adding directions to
the set of permissible directions can only decrease the width. Let S′′ ⊂ S′ ⊆ S be
such that βD′(S′′) = βD′(S′), and let h /∈ S′. If βD′(S′ ∪ {h}) < βD′(S′), then the
width βD′(S′∪{h}) must be realized by a band in direction h, that is, βD′(S′∪{h}) =
βD′({h}). Hence we must have βD′(S′′ ∪ {h}) = βD′({h}) < βD′(S′) = βD′(S′′), so
(S, βD′) satisfies the locality condition as well and thus is a dual LP-type problem.

We now give more definitions. Let G = (D′, S′) ∈ 2D×2S be arbitrary. Through-
out this paper, if not explicitly specified otherwise, we choose G such that ω is defined
on G, i.e., G 
= (∅, ∅). If ω(G) =∞, we say G is infeasible; otherwise we call G feasible.
If ω(G) = −∞, we say G is unbounded ; otherwise we call G bounded. We extend the
terms “violates” and “extreme” in a natural way: We say that a d-element h ∈ D\D′

(s-element h ∈ S \S′) violates G if h violates D′ (S′) in the induced LP-type problem
(D,αS′) (induced dual LP-type problem (S, βD′)). A d-element h ∈ D′ (s-element
h ∈ S′) is extreme in G if h is extreme in D′ (in S′) in its induced LP-type problem
(D′, αS′) (induced dual LP-type problem (S′, βD′)). We define bases in the following
natural way.

Definition 4.4. Let (D,S, ω) be a DLP-type problem, let α and β be as defined
in Definition 4.2, and let G = (D′, S′) ∈ 2D×2S. B = (BD, BS) ∈ 2D

′×2S
′
is a basis

for G in (D,S, ω) if BD is a basis for D′ in its induced LP-type problem (D,αS′),
and BS is a basis for S′ in its induced dual LP-type problem (S, βD′).

We note that there always exists a basis B = (BD, BS) for any G.
Observation 4.5. Let (D,S, ω) be a DLP-type problem, and let G = (D′, S′) ∈

2D × 2S . If B is a basis for G, then ω(B) = ω(G), and no h ∈ D′ ∪ S′ violates B.
This follows from both monotonicity conditions. ω(B) = ω(G) since ω(G) =

ω(BD, S′) ≤ ω(BD, BS) ≤ ω(D′, BS) = ω(G). h ∈ D′ doesn’t violate B since ω(G) =
ω(BD, BS) ≤ ω(BD ∪ {h}, BS) ≤ ω(D′, BS) = ω(G), and in a similar way h ∈ S′

doesn’t violate B. In order to illustrate the term “basis” let us consider the following
instance of the discrete point set width problem.

Example 4.6. Let G = (D,S), where D = {(0, 0); (2, 1); (1, 5)} and S =
{horizontal, vertical}, be an instance of the discrete point set width problem. The
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minimal width is achieved by a vertical strip of width 2. Let (D,α) and (S, β) be
its induced LP-type and induced dual LP-type problems, respectively. At first glance
one may be tempted to suggest B = (BD, BS) = ({(0, 0); (2, 1)}, {vertical}) as a basis
for G, since ω(B) = ω(G). This B is not a basis for G, since BD is not a basis
for (D,α) (because of the horizontal direction: α(BD) = ω(BD, {horizontal}) = 1 
=
ω(BD ∪ {(1, 5)}, {horizontal, vertical})). The other subsets of (D,S) on which the
value of ω is 2 are (D,S) and (D, {vertical}). (D,S) fails to be a basis for G because
S is not a basis in (S, β) (β(S \ {horizontal}) = β(S)). It is easy to verify that D is
a basis for D in (D,α) and {vertical} is a basis for S in (S, β). Thus, (D, {vertical})
is a basis for G.

A “discrete” version of Observation 2.5 is as follows.

Observation 4.7. Let (D,S, ω) be a DLP-type problem. Let G = (D′, S′) ∈
2D × 2S , and let B = (BD, BS) ∈ 2D

′ × 2S
′

be such that ω(B) = ω(G). If ω(B) 
=
ω(D,S), then there exists an element in either D \D′ or S \ S′ which violates B.

To see this suppose first that the inequality is ω(B) < ω(D,S). Considering the
induced LP-type problem (D,αBS

), and since ω(D,S) ≤ ω(D,BS), this implies that
αBS

(BD) < αBS
(D). Applying Observation 2.5 on (D,αBS

), D′, and BD, we get
that there exists h ∈ D \D′ that violates BD in (D,αBS

). Hence h violates B. The
case where the inequality is ω(B) > ω(D,S) is treated similarly by considering the
induced LP-type problem (S, βBD

).

Corollary 4.8. Let (D,S, ω) be a DLP-type problem. Let G = (D′, S′) ∈
2D × 2S, and let B ∈ 2D

′ × 2S
′
be a basis for G. If no h ∈ (D \D′)∪ (S \S′) violates

B, then B is a basis for (D,S) as well.

Proof. We need to prove that BD is a basis for D in the induced problem (D,α)
and that BS is a basis for S in the induced problem (S, β). We prove the first part.
The proof of the second part is similar. We first show that BD is a basis in (D,α).
Let B′

D be a proper subset of BD.
(4.1)
α(B′

D) = ω(B′
D, S) ≤ ω(B′

D, S′) < ω(BD, S′) = ω(BD, BS) = ω(BD, S) = α(BD).

The first inequality follows from monotonicity of supply, the second (strict) inequality
follows from the fact that B is a basis for G, and therefore BD is a basis in (D′, αS′),
the following equality is due to the fact that B is a basis for G, and the next equality
is due to Observation 2.5 applied on (S, βBD

) (BS is a basis for S′ in this dual
LP-type problem). It remains to show that α(BD) = α(D). From (4.1) we have
α(BD) = ω(BD, S) = ω(BD, BS). We conclude by deriving from Observation 4.7
that ω(BD, BS) = ω(D,S) = α(D).

We now define a condition sufficient for a DLP-type problem (D,S, ω) to satisfy a
discrete version of Observation 2.7. This condition is used in the proof of correctness
of our DLP-type algorithms.

Definition 4.9. We say that the DLP-type problem (D,S, ω) satisfies the vio-
lation condition (VC) if for every (D′, S′) ∈ 2D × 2S and (D′′, S′′) ∈ 2D

′ × 2S
′
with

ω(D′, S′) = ω(D′′, S′′) the following properties hold:

1. For every h ∈ D, if ω(D′′ ∪ {h}, S′′) > ω(D′′, S′′), then ω(D′ ∪ {h}, S′) >
ω(D′, S′);

2. for every h ∈ S, if ω(D′′, S′′ ∪ {h}) < ω(D′′, S′′), then ω(D′, S′ ∪ {h}) <
ω(D′, S′).

Note that due to Corollary 2.4 this condition is always satisfied whenever either
S′ = S′′ or D′ = D′′. The lemma below is a discrete version of Observation 2.7.
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Lemma 4.10. Let (D,S, ω) be a DLP-type problem which satisfies the violation
condition. Let G = (D′, S′) ∈ 2D × 2S, and let B = (BD, BS) ∈ 2D

′ × 2S
′
be a basis

for G. If h ∈ D (h ∈ S) violates B, then h is extreme in (D′∪{h}, S′) ( (D′, S′∪{h}))
and is a member of every basis for this set.

Proof. We will prove the case where h ∈ D. The proof for h ∈ S is similar. If
h ∈ D violates B, i.e., ω(BD ∪ {h}, BS) > ω(B), then due to the VC

(4.2) ω(D′ ∪ {h}, S′) > ω(B) = ω(D′, S′),

so h is extreme in (D′ ∪ {h}, S′). To see that h is a member for every basis B′ =
(B′

D, B′
S) for (D′∪{h}, S′), we use the fact that B′

D is a basis for the induced LP-type
problem of (D′ ∪ {h}, S′) (so ω(B′) = ω(B′

D, S′)) and (4.2) to get

(4.3) ω(B′
D, S′) = ω(D′ ∪ {h}, S′) > ω(D′, S′).

We conclude the proof by noting that if h is not a member in B′
D, then B′

D ⊆ D′ and
due to monotonicity of demand ω(B′

D, S′) ≤ ω(D′, S′), in contradiction to (4.3).
The demand combinatorial dimension kD (d-dimension, in short) of (D,S, ω) is

the combinatorial dimension of its induced LP-type problem. A DLP-type problem
of d-dimension kD, where kD is independent of |D|+ |S|, is called fixed d-dimensional.
We define the terms supply combinatorial dimension (s-dimension, in short) and fixed
s-dimensionality analogously. We call a DLP-type problem which is both fixed s-
dimensional (of dimension kS) and fixed d-dimensional (of dimension kD) (kD, kS)-
dimensional. A (kD, kS)-dimensional DLP-type problem where both its induced LP-
type problem and induced dual LP-type problem are basis regular is called a (kD, kS)-
dimensional basis-regular DLP-type problem.

We note that the discrete point set width problem is not fixed-dimensional. To
see this, suppose by negation that it is k-d-dimensional. Consider an instance of the
problem with n = 2k d-elements, consisting of k pairs of antipodal points which are
located on a unit circle. Let the s-elements be the n directions perpendicular to the
one-unit length segments connecting the antipodal points. Clearly, each proper subset
of the d-elements admits a width of less than one unit, whereas the width of the whole
set is one unit. Therefore, the number of d-elements in any basis is at least 2k, in
contradiction to our assumption that the problem is k-d-dimensional.

If the problem were fixed-dimensional, the DLP algorithms stated in the next
section would solve the problem in (randomized) linear time. The variable dimen-
sionality of the problem is not surprising, since the problem admits an Ω(n log n)
(deterministic) lower bound under the algebraic computation tree model due to a
linear time reduction from:

Problem: Set equality
Input: Sets A and B of n real numbers each.
Output: “true” if and only if A = B.

Lemma 4.11 (see [3]). Solving set equality requires Ω(n log n) operations under
the algebraic computation tree model.

Lemma 4.12. Solving discrete point set width requires Ω(n log n) operations under
the algebraic computation tree model.

Proof. Consider without loss of generality two sets A and B of n positive numbers
each and a unit circle with center at the origin. We construct from A and B an instance
(D,S) of discrete point set width. The numbers of A are transformed into points in D,
and the numbers of B are transformed into directions in S as follows. We transform
each number a ∈ A into the two intersection points of the unit circle with the line
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with slope a that passes through the origin. We transform each number b ∈ B into
the direction vertical to a line with slope b. It is easy to see that the solution of the
instance (D,S) of the discrete point set width is 1 if and only if A ≡ B.

We now define a condition sufficient for a DLP-type problem (D,S, ω) to be fixed
s-dimensional.

Definition 4.13. Let (D,S, ω) be a discrete abstract problem, and let p ∈ N.
We say that (D,S, ω) is a p-supply problem if for every G = (D′, S′) ∈ 2D×2S there
exists S′′ ⊆ S′ such that |S′′| ≤ p and ω(D′, S′′) = ω(G).

Lemma 4.14. A DLP-type problem (D,S, ω) which is a p-supply problem is p-s-
dimensional.

Proof. Let (S, β) be its induced dual LP-type problem. Suppose by negation that
there exists a bounded S′ ∈ 2S and a basis B for S′ with |B| > p. From the definition
of a basis in dual LP-type problems, for every proper subset B′ ⊂ B, β(B′) > β(B) =
β(S′). This contradicts the fact that (D,S, ω) is a p-supply problem.

Integer programming can be formulated as a DLP-type problem where D is a set
of half-hyperplanes and S = Zk. There is one problem with this formulation: The set
S is not finite. We can overcome this by noting that, when given an instance of an IP
problem, it is always possible to bound the integer lattice by a big box (whose radius
depends exponentially on the input size), such that the solution of the IP problem, if
it exists, is found inside the bounding box (see, for example, Theorem 17.2 in [30]).
Because of the above, solving IP by the DLP-type model is not efficient.

5. DLP-type algorithms. Given an instance (D,S, ω) of a (kD, kS)-dimen-
sional DLP-type problem, let n = |D| and m = |S|. Similarly to the assumptions made
with the LP-type model, we assume two primitive operations. A basis computation
Basis(D′, S′) takes an ordered pair G = (D′, S′), with |D′| ≤ kD + 1 and |S′| ≤ 9k2

S ,
and finds a basis for G. A violation test Violation(B, h) takes a basis B and a
constraint h and returns true if and only if h violates B. Let tb be the time required
for a basis computation and tv be the time required for a violation test.

We observe that, when changing (by deleting or adding elements) the set D (S)
while keeping the set S (D) unchanged, the problem behaves like an LP-type (dual
LP-type) problem. Thus, while “fixing” the set S (D) one can use LP-type algorithms
in order to solve the induced LP-type (dual LP-type) problem on D (S).

In Chapter 6 in [17] we have developed several randomized algorithms that solve
fixed-dimensional DLP-type problems that satisfy the VC in linear time. The algo-
rithms differ in the choice of the LP-type algorithms used to solve the induced LP-type
and dual LP-type problems and in the decision rules when and with which input to
call these algorithms.

The 4-layer algorithm given below uses this observation. In the first layer, i.e.,
in Function DLP, the set of s-elements does not change, so Function DLP resembles
Function x∗

m in Clarkson’s algorithm [8] applied on the induced LP-type problem.
In the second layer, i.e., in Function M, the set of d-elements does not change, so
Function M (as well as its name) resembles Function x∗

m in Clarkson’s algorithm [8]
applied on the induced dual LP-type problem. The purpose of Function DLP (Func-
tion M) is to get the number of constraints (relaxations) down, so we can apply the
third level Function I, which resembles (as well as its name) Function x∗

i in [8] and
is more efficient in kS but less efficient in |D| and |S|. The fourth layer Function
Demand is called only when the cardinality of the s-element set is bounded by 9k2

S

and it behaves similarly to Sharir and Welzl’s algorithm [31], applied on the induced
LP-type problem.
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Function DLP(D,S)

1. Let V ∗ := ∅, let V := D, and find a candidate basis CD for D in the

induced LP-type problem of (D,S, ω)

2. If |D| ≤ 9k2
D, then return M(D,S,CD)

3. Else repeat the following until V = ∅:
(a) Choose R ⊂ D \ V ∗ uniformly at random, |R| = kD

√|D|
(b) Find a candidate basis CD for R ∪ V ∗ in the induced LP-type

problem of (R ∪ V ∗, S, ω)

(c) Let B := M(R ∪ V ∗, S, CD), and let V := {d ∈ D |
Violation(B, d) = TRUE}

(d) If |V | ≤ 2
√|D|, then let V ∗ := V ∗ ∪ V

4. Return B

Function M(D,S,CD)

1. Let V ∗ := ∅, let V := S

2. If |S| ≤ 9k2
S , then return Demand(D,S,CD)

3. Else repeat the following until V = ∅:
(a) Choose R ⊂ S \ V ∗ uniformly at random, |R| = kS

√|S|
(b) Let B := I(D,R∪V ∗, CD), and let V := {s ∈ S | Violation(B, s) =

TRUE}
(c) If |V | ≤ 2

√|S|, then let V ∗ := V ∗ ∪ V

4. Return B

Function I(D,S,CD)

1. For every s ∈ S let νs := 1

2. If |S| ≤ 9k2
S , then return Demand(D,S,CD)

3. Else repeat the following until V = ∅:
(a) Choose R ⊂ S at random according to weights νs, |R| = 9k2

S

(b) Let B := Demand(D,R,CD)

(c) Let V := {s ∈ S | Violation(B, s) = TRUE}
(d) If ν(V ) ≤ 2ν(S)/(9kS − 1), then for every s ∈ V let νs =: 2νs

4. Return B

Function Demand(D,S,CD)

1. If D = CD, then return Basis(CD, S)

2. Else

(a) Choose a random d ∈ D \ CD

(b) Let B = (BD, BS) := Demand(D \ {d}, S, CD)

(c) If Violation(B, d) = TRUE, then return Demand(D,S, the first

coordinate of Basis(BD ∪ {d}, S))

(d) Else return B
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We will first show that Function Demand returns the required answer by showing that
all of the arguments of [28] apply here as well. We can view Function Demand applied
on the DLP-type problem (D,S, ω) as a function applied on its induced LP-type
problem (D,α). This is true since the s-elements set S does not change throughout the
execution of Function Demand. In this way all of the conditions stated in Lemma 2.13
are satisfied.

Function Demand is similar, but not identical, to Function lptype of Sharir and
Welzl, only because of line 2(c). Due to Corollary 2.4, the violation test in Function
lptype, Violation(B, h), returns true if and only if B is not a basis for H. If in
Function Demand we called Function Violation((BD, S), d) instead of calling Function
Violation(B, d), then we would get exactly Function lptype applied on the induced
LP-type problem (D,α) (but the running time would increase by a big constant
depending on kS). Because of this difference we need to prove Lemma 5.1.

Lemma 5.1. Let (D,S, ω) be a (kD, kS)-dimensional DLP-type problem which
meets the VC, and suppose ω(D,S) = ω(B) > −∞. Let B = (BD, BS) be a basis for
(D \ {d}, S). Let (D,α) be the induced LP-type problem of (D,S, ω). The violation
test Violation(B, d) in Function Demand applied on (D,S, ω) returns true if and only
if BD is not a basis for D in (D,α).

Proof. If d does not violate B, then, due to Corollary 4.8, B is a basis for (D,S).
Hence, BD is a basis for D in (D,α). If d does violate B, then due to the VC we get
that α(D) > α(D \ {d}) = α(BD), which implies that BD is not a basis for D.

So this lemma implies that Function Demand correctly computes a basis for (D,S)
whenever (D,S, ω) meets the VC. We now compute tD, the time needed for Func-
tion Demand to run. Let tvD (tbDS) be the time required for the violation test
Violation(B, d) (the basis calculation BasisDS). Using the analysis in [28], Function
Demand calls Functions BasisDS and Violation O(|D|) times where the constant de-
pends (exponentially) on kD, so the running time of Function Demand is

(5.1) tD = O(|D|(tvD + tbDS)).

If the violation test and basis calculation are done in constant time, Function Demand
runs in O(n) time.

We next show that Functions M and I return the required value. In order to
prove this we need to show that Lemmas 2.8, 2.9, and 2.10 and Theorem 2.11 can be
modified for the DLP-type framework. We also rely, of course, on the correctness of
Function Demand. Lemma 2.10 and Theorem 2.11 are straightforwardly adapted to
the DLP-type case. We provide proofs for the first 2 lemmas.

Lemma 5.2 (adaptation of Lemma 3.1 in [8]). In Functions M and I, if the set
V is nonempty, and if (D,S, ω) satisfies the VC, then V contains an element from
B′

S, where B′ = (B′
D, B′

S) is any basis of (D,S).
Proof. We prove the correctness of Function M. The proof for Function I is similar.

Let S∗ = R∪ V ∗, and let B = (BD, BS) be a basis for (D,S∗). Let NV be the set of
s-elements in S \S∗ that do not violate B; i.e., S decomposes into S = S∗ �NV � V .
If V is not empty, then there exists s ∈ V such that ω(BD, BS ∪{s}) < ω(B). Hence,
since (D,S, ω) satisfies the VC and s violates B, it also violates (D,S∗), that is,
ω(D,S∗ ∪ {s}) < ω(B). From the monotonicity of supply condition we get

(5.2) ω(D,S) < ω(B).

None of s ∈ NV violates B, so, by Corollary 4.8, B is a basis for (D,S∗ ∪NV ). Let
us consider an arbitrary basis B′ = (B′

D, B′
S) for (D,S). If B′

S does not contain an
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element from V , then B′
S ⊆ S∗ ∪NV , so by the monotonicity of supply condition we

get

ω(D,S) = ω(B′) = ω(D,B′
S) ≥ ω(D,S∗ ∪NV ) = ω(B),

in contradiction to (5.2).
Note that the above lemma is the sole reason for which the VC is required to

derive a linear time solution. (The discussion in the paragraph preceding Lemma 5.1
implies that, if the VC were not satisfied, it would still be possible to modify Function
Demand to work correctly at an additional constant cost.)

Lemma 5.3 (adaptation of Lemma 3.2 in [8]). Let R ⊂ S be a random subset of
size r, where |S| = m. If V ⊂ S is the set of elements violating a basis of (D,R),
then its expected size is no more than kS(m− r)/(r + 1).

Proof. The probability that a random element s ∈ S \R violates a basis of (D,R)
is not more than kS/(r + 1), since |BS | ≤ kS for every basis (BD, BS) and the total
size of the sample R with the element s is r + 1. From the linearity of expectation
the expected size of V is not more than kS(m− r)/(r + 1).

We now compute the complexity of Functions M and I. Theorem 2.12 tells
us that Function M calls Function I O(kS) times (with an s-element set of size
O(

√|S|)) and calls Function Violation O(kS |S|) times. Function I (when called with
|S| elements) calls Function Demand O(kS log |S|) times and calls Function Violation
O(kS |S| log |S|) times.

If Function Demand runs in tD time, then the total running time of Function M
is O(kS |S|tvS + k2

S log |S|tD)), where the constant factors do not depend on kD and
kS . Using (5.1), we get that the total running time of Function M is O(kS |S|tvS +
k2
S(log |S|)|D|(tvD + tbDS)), where the constant depends exponentially on kD.

After proving that Functions M, I, and Demand are correct and calculating their
running times, it remains to consider Function DLP. In order to prove that Function
DLP works correctly, we need to show that Lemmas 2.8, 2.9, and 2.10 and Theo-
rem 2.11 can be modified for the DLP-type framework. This is done similarly to the
way it was proved for Functions M and I.

It remains to consider the running time of Function DLP. Due to Theorem 2.12,
Function DLP calls Function M (with a d-element set of size kD

√|D|) O(kD) times
and calls Function Violation O(kD|D|) times. In this way Function Demand is called
O(kDk2

S log |S|) times, with an s-element set of constant size C and a d-element set

of size O(kD
√|D|). If Function Demand is implemented in tD time, then the total

running time of Function DLP is O(kD(|D|tvD + kS |S|tvS + k2
S log |S|tD)), where the

constant factors do not depend on kD and kS . Using (5.1), we get that the total
running time of Function DLP is O(kD(|D|tvD + kS |S|tvS + k2

S log |S|√|D|(tvD +
tbDS))), where the constant depends exponentially on kD. If the violation tests and
basis calculations are done in constant time, this algorithm runs in O(|D|+ |S|) time.
We have proved the following.

Theorem 5.4. Let (D,S, ω) be a (kD, kS)-dimensional DLP-type problem which
meets the VC. Function DLP solves it in O((|S|+ |D|)tv +

√|D| log |S|tb) randomized
time, where tv (tb) is the time needed for the violation test (basis calculation of a set
consisting of kD + 1 d-elements and 9k2

S s-elements) primitive.
We summarize the structure of our algorithm in the following table (recall that

|D| = n and |S| = m):
The constants in the above algorithm may depend exponentially on kD and kS . We
can get a linear time algorithm where the constants depend subexponentially on kD
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Function Input |D| Input |S| # iterations Sample from Sample size

DLP n m kd D
√
n

M
√
n m ks S

√
m

I
√
n

√
m logm S const

Demand
√
n const

√
n D 1

and kS when (D,S, ω) is basis regular. The idea is to call the modified algorithm
of Sharir and Welzl only after the sizes of both the d-element set and the s-element
set are reduced to constants and use the fact that this algorithm runs in linear time
where the constants depend subexponentially on the dimension of the problem, when
the problem is basis regular. Recall that Function I is a modified version of Function
x∗
i in [8], applied on the s-element set. Instead of calling Function Demand in lines

2 and 3(b), we change it to call a new and similar Function I’, which is a modified
version of Function x∗

i in [8], applied on the d-element set. Function I’ will call
Function Demand in the lines corresponding to lines 2 and 3(b) in Function I. Thus
Function Demand is called with both d-element and s-element sets of constant size.
Recall that Function Demand is a modified version of Function lptype in [31], applied
on the d-elements set. Instead of calling Function Basis in lines 1 and 2(c), we change
it to call a new and similar Function Supply, which is a modified version of Function
lptype in [31], applied on the s-element set. Function Supply will call Function Basis
in the lines corresponding to lines 1 and 2(c) in Function Demand. Using similar
arguments to the ones mentioned earlier in this section, we get that the resulting
6-layer algorithm proves the following theorem.

Theorem 5.5. Let (D,S, ω) be a (kD, kS)-dimensional DLP-type problem which
meets the VC. (D,S, ω) is solved in O((|S| + |D|)tv +

√|D||S| log |D| log |S|tb) ran-
domized time, where tv (tb) is the time needed for the violation test (basis calculation
of a set consisting of at most kD + 1 d-elements and kS + 1 s-elements) primitive. If
(D,S, ω) is basis regular, then the constants depend subexponentially on kD and kS.

6. Continuous lexicographic Helly-type theorems and their relations to
the LP-type model. Amenta [2] concludes her paper with “The major open problem
is to characterize the Helly systems (X,H) for which there is an objective function ω
that gives a fixed-dimensional LP-type1 problem (H,ω).” We give a partial answer
for her question in this section, by showing that every lexicographic Helly system
(to be defined below) admits an objective function ω that gives a fixed-dimensional
LP-type problem (H,ω).

Let (X × Λ, H̄) be a parameterized Helly system with Helly number k and ω be
a natural objective function. If ω meets the UMC, then, by Theorem 2.17, (H̄, ω) is
an LP-type problem of combinatorial dimension k. If ω does not satisfy the UMC, in
order to get a fixed-dimensional LP-type problem, one normally uses the following two
“tricks.” If possible, assume that the input is in such a general position that ω satisfies
the UMC. Alternatively, explicitly change ω to be a lexicographic function ν whose
first parameter is ω. The resulting LP-type problem (H̄, ν) has usually combinatorial
dimension greater than k (see [2, 32]).

Consider, for instance, LP. As noted in section 3 in [2], the parameterized Helly
system corresponding to LP does not generally satisfy the UMC, but by using a lexi-
cographic objective function, it does. As an additional example, consider the smallest

1Amenta uses the term GLP rather than LP-type.
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enclosing ball problem defined in section 2.3. This problem does not necessarily sat-
isfy the UMC. When we assume that the points in H are in general positions, such
that no two different congruent balls are realized by points of H, this problem does
satisfy the UMC.

Our approach is different. We provide a machinery which converts any param-
eterized lexicographic Helly system (to be defined below) into an LP-type problem.
In this way, instead of extending the objective function, using (standard) Helly the-
orems, assuming UMC, and applying Theorem 2.17, we use lexicographic objective
functions, lexicographic Helly theorems, and our framework. Unlike Theorem 2.17,
this machinery does not require that the natural objective function meets the UMC.

We give some definitions first. For every totally ordered set Λ and d ∈ N we impose
a lexicographic order on Λd such that for any x = (x1, . . . , xd), y = (y1, . . . , yd) ∈ Λd

we say that x <L y (x is lexicographically smaller than y (lsmaller, in short)) if
x1 < y1 or there exists d ≥ k > 1 such that xi = yi for i = 1, 2, . . . , k − 1, and
xk < yk. We say that x ≥L y if x <L y does not hold. For every X ⊆ Λd and x ∈ Λd

we let Xx = {x′ ∈ X | x′ ≤L x} and let Xx = {x′ ∈ X | x′ ≥L x}. We note that if X
is a convex set, then for every x ∈ X, Xx and Xx are convex sets as well.

Definition 6.1. Let Λ be a totally ordered set. A Helly system with lexicographic
Helly number l is a set system (X,H), where X ⊆ Λd for some positive integer d,
such that, for any x ∈ X, (X, {h∩Xx | h ∈ H}) is a Helly system with Helly number l.

This means that for any x ∈ X, whenever every l or less elements of H have a
common point which is not lgreater than x, we get that all elements of H have a
common point which is not lgreater than x.

In order to get LP-type problems from lexicographic Helly theorems, we impose
a lexicographic order on the ground set X and parameterize the Helly system (X,H)
with lexicographic Helly number l.

Definition 6.2. A set system (X×X, H̄) is a parameterized Helly system with
lexicographic Helly number l if there exists a Helly system with lexicographic Helly
number l, (X,H), such that, for all h ∈ H, h̄ = {(y, x) | x ∈ X, y ∈ h ∩ Xx} and
H̄ = {h̄ | h ∈ H}.

From the definitions it is easy to verify the following.
Observation 6.3. Let (X × X, H̄) be a parameterized Helly system with lexi-

cographic Helly number l. For every x, y ∈ X and h̄ ∈ H̄ the following attributes
hold:

1. {hx | x ∈ X} is a nested family for all h̄ ∈ H̄.
2. (X,Hx) is a Helly system with lexicographic Helly number l.
3. (X ×X, H̄) is a parameterized Helly system with Helly number l.
4. (y, x) ∈ h̄→ (y, y) ∈ h̄.
5. (y, x) ∈ h̄→ y ≤L x.

The importance of lexicographic Helly theorems follows partly from the following
two results.

Theorem 6.4. Let (X×X, H̄) be a parameterized Helly system with lexicographic
Helly number l. If ω is its natural objective function, then (H̄, ω) is an LP-type
problem of combinatorial dimension l.

Proof. We show that all of the conditions of Theorem 2.17 are satisfied. Due
to attribute 3 in Observation 6.3, (X ×X, H̄) is a parameterized Helly system with
Helly number at most l. It remains to show that the natural objective function ω
meets the UMC. Suppose on the contrary that there is Ḡ ⊆ H̄, with ω(Ḡ) = x, such
that there are two different points x′, x′′ ∈ X such that both (x′, x), (x′′, x) ∈ ⋂

Ḡ
realize ω(Ḡ). Due to attribute 5 in Observation 6.3, x′, x′′ ≤L x. Without loss of
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generality x′′ <L x′. Hence x′′ <L x, and from attribute 4 in Observation 6.3 we get
that (x′′, x′′) ∈ ⋂

Ḡ, so ω(Ḡ) ≤L x′′ <L x in contradiction.
Theorem 6.5. Let (X×Λ, H̄) be a parameterized Helly system with Helly number

k and natural objective function ω. If, for every λ ∈ Λ, (X,Hλ) is a Helly system
with lexicographic Helly number l, then there is a function ν : 2H̄ → Λ×X such that
for all Ḡ ⊆ H̄ the first part of ν(Ḡ) is ω(Ḡ) and (H̄, ν) is an LP-type problem of
combinatorial dimension ≤ k + l.

Proof. For every λ ∈ Λ we parameterize the Helly system (X,Hλ) such that
(X × X, H̄λ) is a parameterized Helly system with lexicographic Helly number l. If
its natural objective function νλ is not well-defined, we symbolically compactify the
space X by representing points at infinity. Due to Theorem 6.4 the resultant abstract
problem (Hλ, νλ) is an LP-type problem of combinatorial dimension l. We conclude
our proof by using Theorem 2.18.

This theorem is useful when we want to omit general position assumptions. For
instance, we reconsider the smallest enclosing ball problem. In the beginning of this
section we represented this problem on the set H of points in Rd as a parameterized
Helly system with Helly number d+ 1, (X ×Λ, H̄), where Λ = R+ is the set of radii,
and each hλ ∈ Hλ is the set of centers at which a ball of radius at most λ contains a
particular point h ∈ H. The natural objective function ω is just the minimal radius of
a ball which encloses all of the points in H. By assuming that the input points are in
general positions, we caused the natural ground set function ω′ to meet the UMC. In
this way all of the conditions of Theorem 2.17 are met, and (H̄, ω) is a d-dimensional
LP-type problem.

Using the lexicographic version of Helly’s theorem, Theorem 1.2, we note that the
Helly system (X,H) representing the radius theorem (i.e., the ground set X = Rd is
the set of centers of unit balls in Ed, and H is a family of unit balls) has lexicographic
Helly number d + 1. In this way we get that, for every λ ∈ Λ = R+, (X,Hλ) (i.e.,
X = Rd and Hλ is a family of balls of radius at most λ) is a Helly system with
lexicographic Helly number d + 1. Applying Theorem 6.5, we get that (H̄, ν) is an
LP-type problem of combinatorial dimension ≤ 2(d+ 1), where the first parameter of
the objective function ν is the radius of the smallest enclosing ball of H.

It is possible to bound the combinatorial dimension of the resulting LP-type
problem even further. We give some more definitions first. In the Helly system
(X,H) representing the radius theorem, every h = h(p) ∈ H is a unit ball centered
at p. We call such p a reference point. For every positive scaling factor λ ∈ R+ we let
λh = λh(p) be the λ-units ball centered at p and λH = {λh | h ∈ H} be the set of
λ-units balls with the same centers as the balls in H.

Theorem 6.6. Let d ∈ N, and let H be a finite family of compact subsets in
Rd with a reference point for each one of them. If, for every scaling factor λ0 ∈ R+,
(Rd, λ0H) is a Helly system with lexicographic Helly number l, and (Rd, λ0 Int(H))
is a Helly system with Helly number k, where Int(H) = {Int(h) | h ∈ H} is the
family of the interiors of the sets in H, then (Rd × R+ × Rd, H̄) is a parameterized
Helly system with Helly number m = max{k, l}, where, for all h ∈ H and for all
λ = (λ0, x) ∈ R+ × Rd, hλ = (λ0h ∩Xx) ∪ (λ0 Int(h)). Moreover, if ω is its natural
objective function, then (H̄, ω) is an LP-type problem of combinatorial dimension
m = max{k, l}.

In Figure 6.1 below, d = 2, h is a rectangle of length 2 and width 1 centered
at the origin, and λ = (1, 0, 0). h(1,0,0) is a rectangle whose closure is h itself. The
dashed line and the open circles do not belong to h(1,0,0) = (h∩R2

(0,0))∪ Int(h), while
the solid line and the black point do.
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Fig. 6.1. h and h(1,0,0).

Proof. In order to prove that (Rd×R+×Rd, H̄) is a parameterized Helly system
with Helly number m = max{k, l}, we need to show that {hλ | λ ∈ R+ × Rd} is
a nested family and, for every λ ∈ R+ × Rd, (Rd, Hλ) is a Helly system with Helly
number m.

Let α = (λ0, x), β = (λ′
0, x

′) ∈ R+ × Rd be such that α <L β. If λ0 = λ′
0, then

x <L x′, so Xx ⊂ Xx′ , and, from the definition of hλ, hα ⊆ hβ . Otherwise (λ0 < λ′
0),

λ0h ⊂ λ′
0 Int(h), so again hα ⊆ hβ . Hence {hλ | λ ∈ R+ × Rd} is a nested family.

We show now that, for every λ = (λ0, x) ∈ R+ × Rd, (Rd, Hλ) is a Helly system
with Helly number m = max{k, l}. If every m elements in Hλ intersect in Xx, since
(Rd, λ0H) is a Helly system with lexicographic Helly number l ≤ m, then there is a
point x′ ∈ Xx common to all of the sets in λH. Hence x′ is common to all hλ ∈ Hλ.
If every m elements in Hλ intersect in Rd \Xx, then from the definition of hλ every
m elements in λ0 Int(H) intersect. Since (Rd, λ0 Int(H)) is a Helly system with Helly
number k ≤ m, all of the sets in λ Int(H) have a point in common. Hence there is
a point common to all hλ ∈ Hλ. In this way we get that (Rd, Hλ) is a Helly system
with Helly number m and (Rd × R+ × Rd, H̄) is a parameterized Helly system with
Helly number m.

We will now apply Theorem 2.17 on the parameterized Helly system with Helly
number m, (Rd×R+×Rd, H̄). For this we need to show that the natural ground set
objective function ω′ meets the UMC. We observe that, due to the definition of hλ,
for every λ0 ∈ R+, h̄ ∈ H̄, and x, y ∈ Rd

(6.1) (y, λ0, x) ∈ h̄→ (y, λ0, y) ∈ h̄

holds. Second, we note that if λ∗ = (λ∗
0, x

∗) is the value of the optimal solution over
Ḡ ⊆ H̄, that is, ω(Ḡ) = ω′(x, λ∗) = λ∗, then, for every point (y, λ∗) ∈ Rd × R+ × Rd

realizing this value, there exists h′ ∈ H such that y lies on the boundary of λ∗
0h

′∩X∗
x .

(Otherwise, y must be in ∩h∈H λ∗
0 Int(h), and we can decrease λ∗

0 slightly, say, to λ′
0,

and still have a nonempty intersection (y, λ′
0, x

∗) ∈ ⋂
Ḡ, so ω(Ḡ) ≤L ω′(y, λ′

0, x
∗) =

(λ′
0, x

∗) <L λ∗ in contradiction to the optimality of λ∗.) Thus we have for every
y ∈ Rd

(6.2) (y, λ∗
0, x

∗) ∈
⋂

Ḡ→ y ≤L x∗.

Suppose on the contrary that there exists Ḡ ⊆ H̄, with ω(Ḡ) = λ∗ = (λ∗
0, x

∗), and
there are two different points y′, y′′ ∈ Rd such that both (y′, λ∗), (y′′, λ∗) ∈ ⋂

Ḡ
realize ω(Ḡ). Due to (6.2), y′, y′′ ≤L x∗. Without loss of generality y′′ <L y′.
Hence y′′ <L x∗, and (6.1) implies that (y′′, λ∗

0, y
′′) ∈ ⋂

Ḡ, so ω(Ḡ) ≤L (λ∗
0, y

′′) <L

(λ∗
0, x) = λ∗ in contradiction to the optimality of λ∗. Hence ω′ satisfies the UMC

on (Rd × R+ × Rd, H̄), and, by Theorem 2.17, (H̄, ω) is an LP-type problem of
combinatorial dimension m.
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Considering once again the smallest enclosing ball problem, we note that, for every
λ0 ∈ R+, (X,λ0H) (X = Rd and λ0H is a family of balls of radius λ0) is a Helly
system with lexicographic Helly number d+1. Since Helly’s theorem is valid for finite
families of open convex sets, (X,λ0 Int(H)) is a Helly system with Helly number
d + 1. Applying the theorem above, we get that (H̄, ω) is an LP-type problem of
combinatorial dimension d + 1, where the first coordinate (parameter) of ω is the
radius of the smallest enclosing ball of the points in H, and the remaining parameters
are its center location. We demonstrate the usage of Theorem 6.6 in the next section.

7. Solving the planar lexicographic rectilinear p-center problem. In the
lexicographic rectilinear p-piercing decision problem (p-lpiercing decision problem, in
short) we are given a finite set B of closed axis-parallel boxes in Rd and a p-tuple
A = (a1, . . . , ap) of p points in Rd, with ai ≤L aj for all i < j. We need to decide
whether there exists a p-tuple A′ = (a′1, a

′
2, . . . , a

′
p) such that {a′1, a′2, . . . , a′p} p-pierces

B and A′ ≤L A. If such a p-tuple A′ exists, we say that B is A-p-pierceable and call
A′ a p-piercing vector of B.

In the lexicographic rectilinear p-piercing optimization problem (p-lpiercing opti-
mization problem, in short) we are given a finite set B of closed boxes in Rd with edges
parallel to the coordinate axes and need to find the lexicographically least p-tuple A
such that A p-pierces B. If no such p-tuple exists, we return a special symbol ∞.

The Helly-type theorem related to these problems is about the least hL(p) such
that, for all A, B is A-p-pierceable if each B′ ⊆ B, with |B′| ≤ hL, is A-p-pierceable.

Theorem 7.1 (Theorem 2.7 in [20]). Let B be a finite set of axis-parallel closed
rectangles in the plane and A = (a1, . . . , ap) be a p-tuple of p points in Rd, with
ai ≤L aj for all i < j. For p = 1, 2, 3 the rectangles in B are A-p-pierceable if every
subfamily G ⊂ B of size at most hL(p) is A-p-pierceable, where hL(1) = 2, hL(2) = 6,
and 16 ≤ hL(3) ≤ 34.

Its corresponding nonlexicographic Helly-type theorem is the following.

Theorem 7.2 (see [9]). Let B be a finite set of axis-parallel rectangles in the
plane such that all of the rectangles are either closed or open. For p = 1, 2, 3 the
rectangles in B are p-pierceable if every subfamily G ⊂ H of size at most h(p) is
p-pierceable, where h(1) = 2, h(2) = 5, and h(3) = 16.

In this section we solve the planar lexicographic weighted p-center problem for
p = 1, 2, 3 in randomized linear time by applying Theorem 7.2 on open rectangles,
using its corresponding lexicographic version Theorem 7.1, and Theorem 6.6.

We start by defining the parameterized Helly system corresponding to our prob-
lem. Let the ground set of all possible p-centers be

Xp = {(x1, y1, . . . , xp, yp) | x1, y1, . . . , xp, yp ∈ R} = R2p,

where (x1, y1), . . . , (xp, yp) are the p centers. Let the range of the objective function
be the radius, so Λ = R+.

We consider the 2p-dimensional space Xp. For each reference point h = hj =
(x0, y0) ∈ H we define hp = ∪pi=1 h

i
p, where

(7.1) hi
p =

{
(x1, y1, . . . , xp, yp)

∣∣∣∣ |xi − x0| ≤ 1

wj
; |yi − y0| ≤ 1

wj

}

is the set of all points in Xp such that the ith center is at weighted distance at most 1
from h. We let Hp = {hp | h ∈ H}. For every λ1 ∈ R+ and h = hj ∈ H we define
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λ1hp as hp scaled by λ1, that is, λ1hp = ∪pi=1 λ1h
i
p, where λ1h

i
p = {(x1, y1, . . . , xp, yp) |

|xi − x0| ≤ λ1

wj
; |yi − y0| ≤ λ1

wj
}.

Due to Theorem 7.1, for every scaling factor λ0 ∈ R+, the set system (Xp, λ0Hp)
is a Helly system with lexicographic Helly number 2 (6, a constant bounded by 34) for
p = 1 (p = 2, 3). Due to Theorem 7.2 (applied on open rectangles) (Xp, λ0 Int(Hp))
is a Helly system with Helly number 2 (5, 16) for p = 1 (p = 2, 3). Theorem 6.6
implies that (Xp × R+ × Xp, H̄p), where for all hp ∈ Hp and for all λ = (λ0, x) ∈
R2p+1, hpλ = (λ0hp ∩Xx) ∪ (λ0 Int(hp)) is a parameterized Helly system with Helly
number 2 (6, a constant bounded by 34) for p = 1 (p = 2, 3). Moreover, if ωp is its
natural objective function, the theorem says that (H̄p, ω) is an LP-type problem of
combinatorial dimension 2 (6, 34) for p = 1 (p = 2, 3).

Theorem 7.3. The lexicographic weighted planar p-center problem with an l∞
norm is solvable in (randomized) linear time for p = 1, 2, 3.

Proof. Until now we have shown that the lexicographic planar p-center problem
with an l∞ norm is an LP-type problem of dimension at most 2 (6, 34) for p = 1
(p = 2, 3). We solve this problem by using the LP-type randomized algorithms, such as
the one of Sharir and Welzl (see section 2.2.2). In order to obtain a linear running time
it remains to show how to implement the violation test and basis calculation primitives
such that they run in constant time. We slightly change the structure of these two
primitives: We implement the basis calculation primitives such that when called with
input (B, h) it returns, in addition to a basis B(B ∪ {h}) for B ∪ {h}, also the value
ω(B∪{h}) of the objective function on B∪{h} and the point x(B∪{h}) which realizes
this value (there is only such a point since the objective function is lexicographic).
The input for the violation tests consists of x(B) in addition to B (i.e., we call
Violation(B, h, x(B))). The violation test primitive checks whether x(B) ∈ h̄p(h).
This is done in constant time since h̄p(h) is of constant complexity. We implement
the basis calculation primitive Basis(B, h) in constant time as follows. For any proper
subset B′ ⊂ B ∪ {h} we calculate explicitly ω(B′) and the point x(B′) realizing this
value. Then for every h ∈ B ∪ {h} \ B′ we call Violation(B′, h, x(B′)). B′ is a basis
for B ∪ {h} if and only if all of these calls return “false.”

We note that, since the optimal solution for the lexicographic planar p-center
problem is an optimal solution for the nonlexicographic problem, we get an alternative
solution to the one of [32]. We summarize as follows.

Corollary 7.4. The planar p-center problem with an l∞ norm is solvable in
(randomized) linear time for p = 1, 2, 3.

We note that the combinatorial dimension of the lexicographic problem is smaller
than the combinatorial dimension given by [32] for the corresponding nonlexicographic
problems (6 instead of 13 for the case p = 2 and 34 instead of 43 for the case p = 3).

8. Discrete Helly-type theorems and their relations to the DLP-type
model.

8.1. DLP-type problems specialized to mathematical programming. In
the DLP-type framework both D and S are sets of abstract objects, and the objective
function applies to elements of 2D × 2S . We consider an extended version of math-
ematical programming which is a quadruple (X,D, S, ω′), where X is a ground set
(usually Rd), D is a set of d-elements, S is a set of s-elements (both of which are
subsets of the ground set), and ω′ is an objective function from X to some totally
ordered set Λ. We call the elements of X points. For G = (D′, S′) ∈ 2D × 2S we
write

⋂
G for (

⋂
D) ∩ (

⋃
S). The points in

⋂
(D,S) are called feasible. The goal is
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to minimize ω′ over the set of feasible points.
One can think of a discrete mathematical programming problem (X,D, S, ω′) as a

mathematical programming problem on a grid made by
⋃
S, that is, the mathematical

programming problem (X∩(
⋃
S), D∩(

⋃
S), ω′). However, our definition of a discrete

mathematical programming problem enables us to solve fixed-dimensional DLP-type
problems efficiently, as explained later.

To simplify our proofs later, we will make a few observations about the DLP-type
framework specialized to mathematical programming.

Definition 8.1. Let (X,D, S, ω′) be a discrete mathematical programming prob-
lem. For G = (D′, S′) ∈ 2D × 2S, let ω(G) = ∞ when

⋂
G = ∅ and ω(G) =

min{ω′(m) | m ∈ ⋂
G} elsewhere. We call ω : 2D × 2S → Λ the induced subfamily

objective function of (X,D, S, ω′) and call the triple (D,S, ω) the induced discrete
abstract problem.

For instance, in the discrete 1-center problem on the real line we are given two
finite sets of real numbers H1 and H2. We need to find a point h ∈ H2 which
minimizes the maximum distance between points in H1 and h. We call this point
a center and call the distance it realizes the radius. We formulate this problem as
a discrete mathematical programming problem (X,D, S, ω′), where X = R2, D is
the set of π

4 radians cones whose origins are the points of H1, S is a set of vertical
rays whose origins are the points of H2, and, for all (x, y) ∈ R2, ω′(x, y) = y. In
Figure 8.1 we have an instance of the problem where H1 = {5, 9} (the black points)
and H2 = {4, 8} (the white points). In the solution of this problem the center is 8,
and the radius is 3. If the center is not restricted to be a point of H2, the radius
realized by choosing a center at 7 will be 2. In the next section we will discuss in
detail other p-center problems such as the 1-center problem in Rd with either l1 or l∞
norm.
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Fig. 8.1. An instance of the general 1-center problem.

Observation 8.2. Let (X,D, S, ω′) be a discrete mathematical programming prob-
lem. The induced discrete abstract problem (D,S, ω) satisfies both monotonicity
conditions of the DLP-type framework.

This follows from the fact that adding a d-element (i.e., a constraint) eliminates
only feasible points, so the value of the minimum on the remaining feasible points
cannot decrease. Adding an s-element (i.e., a relaxation) increases the set of feasible
points, so the value of the minimum on the new enlarged set of feasible points cannot
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increase.
Observation 8.3. Let (X,D, S, ω′) be a discrete mathematical programming prob-

lem. Its induced discrete abstract problem (D,S, ω) is a 1-supply problem which
satisfies both monotonicity conditions and the locality of supply condition.

Proof. In order to show that (D,S, ω) is a 1-supply problem, it is sufficient to
show that for every feasible G = (D′, S′) ∈ 2D×2S there exists S′′ ⊆ S, with |S′′| = 1
such that ω(G) = ω(D′, S′′). Since (D,S, ω) is an induced discrete abstract problem,
there exists x ∈ ⋂

G such that ω(G) = ω′(x). From the definition of
⋂
G, there is

h ∈ S′ such that x ∈ h so x ∈ ⋂
(D′, {h}) and ω(D′, {h}) = ω(G). Hence we choose

S′′ = {h}.
By Observation 8.2, (D,S, ω) obeys both monotonicity conditions.
We now show that (D,S, ω) satisfies the locality of supply condition. Let G =

(D′, S′) ∈ 2D × 2S be feasible, and let S′′ ⊆ S′ such that ω(D′, S′) = ω(D′, S′′).
We need to show that, for every h ∈ S, ω(D′, S′ ∪ {h}) < ω(G) implies ω(D′,
S′′∪{h}) < ω(G). Since (D,S, ω) is a 1-supply problem, ω(D′, S′∪{h}) < ω(G) only
if ω(D′, {h}) < ω(G). From the monotonicity of supply condition we conclude that
ω(D′, S′′ ∪ {h}) ≤ ω(D′, {h}) < ω(G).

Definition 8.4. Let (X,D, S, ω′) be a discrete mathematical programming prob-
lem, and let (D,S, ω) be a discrete abstract problem, where ω is the objective function
induced by ω′. If, for all G = (D′, S′) ∈ 2D × 2S, |{x ∈ ⋂

G | ω′(x) = ω(G)}| = 1, we
say that ω′ satisfies the UMC.

This definition says that every subfamily not only has a minimum but that this
minimum is achieved by a unique point. There is one simple sufficient condition to
satisfy the UMC.

Observation 8.5. If ω′(x) 
= ω′(y) for any two distinct points x, y ∈ X, then ω′

satisfies the UMC.
Lemma 8.6. Let (X,D, S, ω′) be a discrete mathematical programming problem.

If its ground set function ω′ meets the UMC on (X,D, S), then its induced abstract
problem (D,S, ω) is a 1 s-dimensional DLP-type problem.

Proof. By Observation 8.3, (X,D, S) is a 1-supply problem which satisfies both
monotonicity conditions as well as the locality of supply condition.

We prove now that the locality of demand condition is satisfied. Let G =
(D′, S′) ∈ 2D×2S be bounded, and let D′′ ⊆ D′ such that ω(G) = ω(D′′, S′). We need
to show that for all h ∈ D, ω(D′∪{h}, S′) > ω(G)→ ω(D′′∪{h}, S′) > ω(G). Due to
the UMC, the value ω(D′, S′) = ω(D′′, S′) is achieved at a single point x ∈ X. This
means that ω(D′∪{h}, S′) > ω(G) only if x /∈ h, in which case ω(D′′∪{h}, S′) > ω(G),
so the locality of demand condition is satisfied, and (D,S, ω) is a DLP-type problem.
By Lemma 4.14 it is 1 s-dimensional.

We concentrate for a moment on lexicographic integer programming (lex IP, for
short) in Zd. The corresponding discrete mathematical programming formulation is
(Zd, D, S, ω′), where D is a finite set of half-spaces in Zd, S is the (exponentially large)
set of the integer lattice points inside a “bounding box” around the problem, and ω′

is defined for every x ∈ Zd as ω′(x) = x. Since S is finite and ω′ satisfies the UMC, we
get from Lemma 8.6 that (D,S, ω) is a 1 s-dimensional DLP-type problem. It remains
to consider its d-dimension. Alternatively, we consider the combinatorial dimension
of its induced LP-type problem (D,α). Suppose its combinatorial dimension is k and
that the optimal value is α(D) = x∗. We will first show that k ≤ 2d. Suppose on
the contrary that k > 2d. This means that if B is a basis for D, then every proper
subset of B, B′ ⊂ B has α(B′) <L x∗. Let xmax = max{α(B′) | B′ ⊂ B} be the
maximal value of α on proper subsets of B. Since B is finite, xmax is well-defined, and
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xmax <L x∗. Since the lexicographic version of Theorem 1.3 has Helly number 2d (see
Theorem 2.5 in [20]), applying it on B and xmax implies that the half-spaces in B have
a common point which is not lexicographically greater than xmax, in contradiction.

We now give a lower bound of 2d− 1 on the combinatorial dimension k of lex IP.
Theorem 8.7 below applied on lex IP tells us that the special case of the lexicographic
version of Theorem 1.3 over half-spaces has a Helly number of at most k + 1. Since
it is known (see section 2 in [20]) that this special case has Helly number 2d, we get
that 2d ≤ k + 1 as needed.

8.2. (Nonlexicographic) discrete case. We first show that there is a discrete
Helly theorem corresponding to the constraint set of every fixed-dimensional DLP-
type problem.

Theorem 8.7. Let (D,S, ω) be a (kD, kS)-dimensional DLP-type problem. For
every λ ∈ Λ, H = (D,S) has the property ω(H) ≤ λ if and only if every BD ⊆ D,
with |BD| ≤ kD + 1, has the property ω(BD, S) ≤ λ. Moreover, H has the prop-
erty ω(H) ≥ λ if and only if every BS ⊆ S, with |BS | ≤ kS + 1, has the property
ω(D,BS) ≥ λ.

Proof. We prove the first part of the theorem. The proof of the second part of
the theorem is analogous. Let ω(H) ≤ λ. By the monotonicity of demand condition,
ω(BD, S) ≤ ω(H) ≤ λ. Going in the other direction, H must contain a basis B =
(BD, BS), with |BD| ≤ kD + 1, and ω(BD, S) = ω(H) (if H is feasible, |BD| ≤ kD;
otherwise, every subset of BD is feasible, so |BD| ≤ kD + 1). So if every subfamily
(BD, S), with |BD| ≤ kD + 1, has ω(BD, S) ≤ λ, then ω(H) = ω(BD, S) ≤ λ.

We next show how to get fixed-dimensional DLP-type problems from discrete
Helly-type problems.

We first “discretize” set systems and Helly systems. A discrete set system is a
triple (X,D, S), where X is a set and D,S are families of subsets of X. A discrete
set system (X,D, S) is a discrete Helly system if there exists a finite integer k such
that the intersection of every k or less d-elements of D has a common element in

⋃
S

implies that
⋂
D ∩ (

⋃
S) 
= ∅. Let (X × Λ, D̄, S̄) be a discrete set system, where Λ

is a totally ordered set which contains a maximal element ∞. For every λ ∈ Λ and
h̄ ∈ D̄ ∪ S̄, we write hλ = {x ∈ X | ∃ν ≤ λ s.t. (x, ν) ∈ h̄} for the projection into X
of the part of h̄ with Λ-coordinate no greater than λ. Also, for G ∈ 2D× 2S , we write
Gλ as a shorthand for {hλ | h̄ ∈ Ḡ}.

We next discretize parameterized Helly systems.
Definition 8.8. A discrete set system (X×Λ, D̄, S̄) is a discrete parameterized

Helly system with Helly number k, when
1. {hλ | λ ∈ Λ} is a nested family for all h̄ ∈ D̄ ∪ S̄, and
2. (X,Dλ, Sλ) is a discrete Helly system, with Helly number k for all λ.

We say that Ḡ = (D̄′, S̄′) ∈ 2D̄×2S̄ intersects at λ if
⋂
D′

λ∩(
⋃
S′
λ) 
= ∅. ω(D̄′, S̄′)

is then the least value in Λ at which Ḡ = (D̄′, S̄′) intersects, i.e., ω(D̄′, S̄′) = λ∗ =
inf{λ | ⋂D′

λ ∩ (
⋃
S′
λ) 
= ∅}, and ω(D̄′, S̄′) =∞ if Ḡ fails to intersect at all λ ∈ Λ.

Figure 8.2 is a schematic diagram of a discrete parameterized Helly system. The
whole stack represents X ×Λ, each of the pyramids represents a set h̄ ∈ D̄, and each
of the vertical lines represents a set h̄ ∈ S̄. Each h̄ is a subset of X × Λ. Since all
of the h̄ are indexed with respect to Λ, the cross section at λ (represented by one of
the planes) is equivalent to the discrete Helly system (X,Dλ, Sλ) corresponding to
Theorem 1.4. The discrete parameterized Helly system drawn in this figure is related
to the discrete weighted 1-center problem with an l∞ norm, which we solve in the next
section. ω(D̄, S̄) is the smallest value in Λ at which the intersection of the pyramids
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Fig. 8.2. A discrete parameterized Helly system.

in D̄ “touches” a vertical line from S̄.
We extend the main theorem in [2] to the discrete case and get the following.
Theorem 8.9. Let (X × Λ, D̄, S̄) be a parameterized discrete Helly system with

Helly number k, a natural ground set function ω′, and a natural objective function
ω. If ω′ meets the UMC, then (D̄, S̄, ω) is a DLP-type problem of combinatorial
dimension (k, 1).

Proof. Since ω is induced by the natural ground set objective function ω′ on the
space X × Λ, and since ω′ meets the UMC on (X × Λ, D̄, S̄, ω′) (Definition 8.4), by
Lemma 8.6 (D̄, S̄, ω) is a 1 s-dimensional DLP-type problem.

It remains to prove that (D̄, S̄, ω) is k-d-dimensional. Consider any feasible Ḡ =
(D̄′, S̄′) ∈ 2D̄×2S̄ and a basis B̄ = (B̄D, B̄S) for Ḡ. Let (D̄′, αS′) be the induced LP-
type problem of (D̄′, S̄′, ω). B̄D is then a basis for D̄′. We need to prove that |B̄D| ≤ k.
From the minimality of a basis we get that, for any h̄ ∈ B̄D, αS′(B̄D\{h̄}) < αS′(B̄D).
Let λmax = max{αS′(B̄D \ {h̄}) | h̄ ∈ B̄D}. Since D̄′ is finite, so is B̄D, and this
maximum is guaranteed to exist.

The basis B̄ does not intersect at λmax, but for any h̄ ∈ B̄D, αS′(B̄D\{h̄}) ≤ λmax,
which means that (B̄D \ {h̄}, S̄′) intersects at λmax. Since (X,Dλmax , Sλmax) is a
discrete Helly system with Helly number k, B̄D must contain some subfamily Ā, with
|Ā| ≤ k, such that (Ā, S̄′) does not intersect at λmax. Every h̄ ∈ B̄D must be in Ā,
since otherwise it would be the case that Ā ∈ (B̄D \ {h̄}) for some h̄. This cannot be,
because (Ā, S̄′) does not intersect at λmax, while every (B̄D \{h̄}, S̄′) does. Therefore
B̄D = Ā and |B̄D| ≤ k.

8.3. Lexicographic-discrete case. In this rather technical section we dis-
cretize the results in section 6. We start by “lexifying” discrete Helly systems.

Definition 8.10. A discrete Helly system with lexicographic Helly number ld
is a discrete set system (X,D, S) such that, for every x ∈ X, (X, {d ∩Xx | d ∈ D},
{s ∩Xx | s ∈ S}) is a discrete Helly system with Helly number ld.

This means that for every x ∈ X, whenever every ld or less elements of D have a
common point in S which is not lgreater than x, we get that all elements of D have
a common point in S which is not lgreater than x.

We next discretize Theorem 2.18. Let (X × Λ, D̄, S̄) be a parameterized discrete
Helly system with Helly number k and natural objective function ω. For all λ ∈ Λ, we
assume a function νλ : 2Dλ × 2Dλ → Λ′, where Λ′ is a totally ordered set containing
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a maximal element ∞ such that (Dλ, Sλ, νλ) is a DLP-type problem of d-dimension
at most d and s-dimension 1. The functions νλ may themselves be lexicographic.
Similarly to [2], we impose a lexicographic order on Λ × Λ′ with (λ, κ) > (λ′, κ′)
if λ > λ′ or if λ = λ′ and κ > κ′. We define a lexicographic objective function
ν : 2D̄ × 2S̄ → Λ× Λ′ in terms of ω and the functions νλ as seen in the following.

Theorem 8.11. Let Λ′ be a totally ordered set. Let (X × Λ, D̄, S̄) be a parame-
terized discrete Helly system with Helly number k and natural objective function ω. If,
for all λ, (Dλ, Sλ, νλ) is a DLP-type problem of combinatorial dimension (d, 1), where
νλ : 2Dλ×2Sλ → Λ′, then (D̄, S̄, ν) is a DLP-type problem of d-dimension ≤ k+d and

s-dimension 1, where ν : 2D̄×2S̄ → Λ×Λ′ is defined as ν(Ḡ) = (ω(Ḡ), νω(Ḡ)(Gω(Ḡ)))

for all Ḡ ⊆ D̄ × S̄.
Proof. Due to Observation 8.2, (D̄, S̄, ω) obeys both monotonicity conditions.

For every λ, (Dλ, Sλ, νλ) obeys both monotonicity conditions. Hence, since ν is a
composition of monotone functions, we get that (D̄, S̄, ν) obeys both monotonicity
conditions as well. We next show that (D̄, S̄, ν) obeys both locality conditions.

Consider D̄′′ ⊆ D̄′ ⊆ D̄ and S̄′ ⊆ S̄, with ν(D̄′′, S̄′) = ν(D̄′, S̄′) = (λ∗, κ∗)
and ν(D̄′ ∪ {h̄}, S̄′) = (λ, κ) > ν(D̄′, S̄′). We must have either λ > λ∗ or κ > κ∗. If
λ > λ∗, by the definition of ω, νλ∗(D′

λ∗∪{hλ∗}, S′
λ∗) =∞, so νλ∗(D′

λ∗∪{hλ∗}, S′
λ∗) >

νλ∗(D′
λ∗ , S′

λ∗). Otherwise, κ > κ∗, that is, νλ∗(D′
λ∗ ∪ {hλ∗}, S′

λ∗) > νλ∗(D′
λ∗ , S′

λ∗).
In either case, by the locality of demand condition on νλ∗ , νλ∗(D′′

λ∗ ∪ {hλ∗}, S′
λ∗) >

νλ∗(D′′
λ∗ , S′

λ∗) and ν(D̄′′ ∪ {h̄}, S̄′) > ν(D̄′′, S̄′). So the lexicographic function ν also
satisfies the locality of demand condition.

We now consider the locality of supply condition. We note that, due to Ob-
servation 8.3, (D̄, S̄, ω) is a 1-supply problem which meets the locality of supply
condition. For every λ, (Dλ, Sλ, νλ) obeys both locality conditions. We will show
that, since ν is a composition of functions satisfying the locality of supply condition,
(D̄, S̄, ν) meets the locality of supply condition. Let S̄′′ ⊆ S̄′ ⊆ S̄ and D̄′ ⊆ D̄,
with ν(D̄′, S̄′′) = ν(D̄′, S̄′) = (λ∗, κ∗) and ν(D̄′, S̄′ ∪ {h̄}) = (λ, κ) < ν(D̄′, S̄′).
We need to show that ν(D̄′, S̄′′ ∪ {h̄}) < (λ∗, κ∗). Clearly, we must have either
λ < λ∗ or κ < κ∗. If λ < λ∗, since (D̄, S̄, ω) obeys the locality condition of sup-
ply, ω(D̄′, S̄′′ ∪ {h̄}) < λ∗, so ν(D̄′, S̄′′ ∪ {h̄}) < (λ∗, κ∗), as needed. Otherwise,
κ < κ∗, that is, νλ∗(D′

λ∗ , S′
λ∗ ∪ {hλ∗}) < νλ∗(D′

λ∗ , S′
λ∗). In this case, by the lo-

cality of supply condition on νλ∗ , νλ∗(D′
λ∗ , S′′

λ∗ ∪ {hλ∗}) < νλ∗(D′
λ∗ , S′′

λ∗) and again
ν(D̄′, S̄′′ ∪ {h̄}) < ν(D̄′, S̄′′), as needed.

We now consider the combinatorial s-dimension. It is sufficient to show that, for
every feasible (D̄′, S̄′) ∈ 2D̄×2S̄ and every basis B̄ = (B̄D, B̄S) for (D̄′, S̄′), |B̄S| = 1.
Since B̄ is a basis for (D̄′, S̄′), we have ν(B̄) = ν(D̄′, S̄′) = (λ∗, κ∗). Let Bλ∗ =
(BD′

λ∗ , BS′
λ∗) be a basis for (D′

λ∗ , S′
λ∗) in the DLP-type problem (D′

λ∗ , S′
λ∗ , νλ∗).

Since the s-dimension of (D′
λ∗ , S′

λ∗ , νλ∗) is 1, there is h̄′ ∈ S̄′ such that BS′
λ∗ = {h′

λ∗}.
Let S̄′′ ⊆ S̄′ be the set of all such h̄′. Since (D̄′, S̄′, ω) is an induced discrete abstract
problem, there is a feasible point x ∈ ⋂

(D̄′, S̄′) such that ω(D̄′, S̄′) = ω′(x) = λ∗,
x ∈ h′

λ∗ (so x ∈ h̄′), and

(8.1) ν(D̄′, S̄′) = ν(D̄′, {h̄′}).

Let BD′′
λ∗ be a basis for Dλ∗ in the induced LP-type problem of (Dλ∗ , Sλ∗ , νλ∗) such

that BD′′
λ∗ ⊆ BDλ∗ . It is possible to choose such a basis since νλ∗(BDλ∗ , S′

λ∗) =
κ∗. Similarly, let BS′′

λ∗ be a basis for Sλ∗ in the induced dual LP-type problem of
(Dλ∗ , Sλ∗ , νλ∗) such that BS′′

λ∗ ⊆ BSλ∗ . It is possible to choose such a basis since
νλ∗(D′

λ∗ , BSλ∗) = κ∗. Due to the definition of a basis (Definition 4.4), (BD′′
λ∗ , BS′′

λ∗)
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is a basis for (D′
λ∗ , S′

λ∗). Hence S̄′′ ∩ ¯BS′′ 
= ∅, and consequently S̄′′ ∩ B̄S 
= ∅, so
there exists

(8.2) h̄′ ∈ S̄′′ ∩ B̄S.

We claim that B̄S = {h̄′}. Since (B̄D, B̄S) is a basis for (D̄′, S̄′) we get

(8.3) ν(D̄′, S̄′) = ν(D̄′, B̄S).

Combining (8.1) and (8.3) together implies that ν(D̄′, B̄S) = ν(D̄′, {h̄′}). Since B̄S
is a basis for the induced dual LP-type problem (S̄′, β), the last equality implies that
B̄S = {h̄′}, so (D̄, S̄, ν) has s-dimension 1.

Finally, we consider the combinatorial d-dimension. We note that, since B̄ is a
basis, ν(B̄D \ {h}, S̄′) = (λ, κ) < ν(B̄) = (λ∗, κ∗) for any h̄ ∈ B̄D. Let the subset
B̄1 = {h̄ ∈ B̄D | ν(B̄D \ {h̄}, S̄′) = (λ, κ) and λ < λ∗}. Since the d-dimension of
(Bλ∗ , νλ∗) is d, B̄D \ B̄1 contains at most d constraints. If B̄1 = ∅, we are done.
Otherwise, we let

λmax = max{λ | ν(B̄D \ {h̄}, S̄′) = (λ, κ), h̄ ∈ B̄1}.

Since λmax < λ∗, B̄D fails to intersect with S′ at λmax and hence must contain a set Ā
of size ≤ k that also fails to intersect. Every h̄ ∈ B̄1 must also be in Ā, since B̄D\{h̄}
intersects with S′ at λmax and Ā does not, so Ā � B̄D \ {h̄}. So |B̄1| ≤ |Ā| ≤ k and
|B̄D| ≤ k + d.

In order to get DLP-type problems from lexicographic-discrete Helly theorems,
we impose lexicographic order on the ground set X and parameterize the discrete
Helly system (X,D, S) with lexicographic Helly number ld (see Definition 8.10) in
the following way (recall that Xx = {x′ ∈ X | x′ ≤L x}).

Definition 8.12. A discrete set system (X×X, D̄, S̄) is a parameterized discrete
Helly system with lexicographic Helly number ld if there exists a discrete Helly system
with lexicographic Helly number ld, (X,D, S), such that for all h ∈ D, h̄ = {(y, x) |
x ∈ X, y ∈ h ∩Xx}, D̄ = {h̄ | h ∈ D}, and for all h ∈ S, h̄ = {(y, x) | x ∈ X, y ∈ h},
S̄ = {h̄ | h ∈ S}.

From the definitions it is easy to verify the following.
Observation 8.13. Let (X × X, D̄, S̄) be a parameterized discrete Helly system

with lexicographic Helly number ld. For every x, y ∈ X and h̄ ∈ D̄ ∪ S̄ the following
attributes hold:

1. {hx | x ∈ X} is a nested family for all h̄ ∈ D̄ ∪ S̄.
2. (X,Dx, Sx) is a discrete Helly system with lexicographic Helly number ld.
3. (X×X, D̄, S̄) is a parameterized discrete Helly system with Helly number ld.
4. (y, x) ∈ h̄→ (y, y) ∈ h̄.
5. (y, x) ∈ h̄→ y ≤L x.

We give the discrete versions of Theorems 6.4 and 6.5 and prove them similarly
to the way we proved the continuous versions.

Theorem 8.14. Let (X×X, D̄, S̄) be a parameterized discrete Helly system with
lexicographic Helly number ld and ω be its natural objective function. Then (D̄, S̄, ω)
is a DLP-type problem of combinatorial dimension (ld, 1).

Proof. We show that all of the conditions of Theorem 8.9 are satisfied. Due to at-
tribute 3 in Observation 8.13, (X ×X, D̄, S̄) is a parameterized discrete Helly system
with Helly number at most ld. It remains to show that the natural objective function
ω meets the UMC. Suppose on the contrary that there is Ḡ = (D̄′, S̄′) ∈ 2D̄ × 2S̄ ,



ON THE POWER OF DISCRETE HELLY THEOREMS 35

with ω(Ḡ) = x, such that there are two different points x′, x′′ ∈ X ∩ (
⋃
S′) so that

both (x′, x), (x′′, x) ∈ ⋂
Ḡ realize ω(Ḡ). Due to attribute 5 in Observation 8.13,

x′, x′′ ≤L x. Without loss of generality x′′ <L x′. Hence x′′ <L x, and from at-
tribute 4 in Observation 8.13 we get that (x′′, x′′) ∈ ⋂

Ḡ, so ω(Ḡ) ≤L x′′ <L x in
contradiction.

Theorem 8.15. Let (X ×Λ, D̄, S̄) be a parameterized discrete Helly system with
Helly number k and natural objective function ω. If, for every λ ∈ Λ, (X,Dλ, Sλ) is
a discrete Helly system with lexicographic Helly number ld, then there is a function
ν : 2D̄ × 2S̄ → Λ×X such that for all Ḡ ∈ 2D̄ × 2S̄ the first part of ν(Ḡ) is ω(Ḡ) and
(D̄, S̄, ν) is a DLP-type problem of d-dimension ≤ k + l and s-dimension 1.

Proof. For every λ ∈ Λ we parameterize the discrete Helly system (X,Dλ, Sλ)
such that (X×X, D̄λ, S̄λ) is a parameterized discrete Helly system with lexicographic
Helly number ld. If its natural objective function νλ is not well-defined, we symboli-
cally compactify the space X by representing points at infinity. Due to Theorem 8.14
the resulted discrete abstract problem (Dλ, Sλ, νλ) is a DLP-type problem of combi-
natorial dimension (ld, 1). We conclude our proof by using Theorem 8.11.

It is possible to bound the combinatorial dimension of the resulting LP-type
problem further by using the following discrete version of Theorem 6.6 (whose proof
is similar to the one of Theorem 6.6).

Theorem 8.16. Let d ∈ N, D be a finite family of compact subsets in Rd

and S be a finite family of closed subsets in Rd. If, for every scaling factor λ0 ∈
R+, (Rd, λ0D,S) is a discrete Helly system with lexicographic Helly number l, and
(Rd, λ0 Int(D), S) is a discrete Helly system with Helly number k, where Int(D) =
{Int(h) | h ∈ D} is the family of the interiors of the sets in D, then (Rd × R+ × Rd,
D̄, S̄) is a parameterized discrete Helly system with Helly number m = max{k, l},
where, for all h ∈ D and for all λ = (λ0, x) ∈ R+×Rd, hλ = (λ0h∩Xx)∪ (λ0 Int(h)),
and for all h ∈ S and for all λ = (λ0, x) ∈ Rd+1, hλ = h. Moreover, if ω is its natural
objective function, then (D̄, S̄, ω) is a DLP-type problem of combinatorial dimension
(m, 1).

9. Solving the discrete weighted 1-center problem in Rd with either l1
or l∞ norm. In this section we show how to solve the discrete weighted 1-center
problem in Rd with an l∞ norm (1-center problem, in short) in linear time by formu-
lating it as a fixed-dimensional DLP-type problem which satisfies the VC.

Given an instance D,S,W of the 1-center problem, for every G = (D′, S′) ∈
2D × 2S let r(D′, S′) be the optimal radius of the 1-center problem on D′, S′,W ,
realized by making s∗(D′, S′) ∈ S′ the center.

Considering the set of boxes r(D′, S′)D′ = {r(D′, S′)di | di ∈ D′}, where

r(D′, S′)di is the box with center at di and radius r(D′,S′)
wi

, we note that s∗(D′, S′)
intersects all of the boxes of r(D′, S′)D′. The proof of Theorem 1.5 applied on the
set of boxes r(D′, S′)D′ and the set of points S′ tells us that the following 2d boxes
“define” the optimal solution:

For every i = 1, . . . , d, let Li(D
′, S′) ∈ D′ be a d-element dj(i) ∈ D′ such that

the projection of box r(D′, S′)dj(i) on the ith coordinate results in an interval [li, ri]
with the smallest ri. Let li(D

′, S′) ∈ R be the right end point of the projection of
r(D′, S′)dj(i) on the ith coordinate.

For every i = 1, . . . , d, let Gi(D
′, S′) ∈ D′ be a d-element dj(i) ∈ D′ such that

the projection of box r(D′, S′)dj(i) on the ith coordinate results in an interval [l′i, r
′
i]

with the greatest l′i. Let gi(D
′, S′) ∈ R be the left end point of the projection of

r(D′, S′)dj(i) on the ith coordinate.
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We also define C(D′, S′) ∈ S′ to be the lexicographically smallest optimal center.
We let the range of the objective function be R+ × R3d and define the objective
function to be

ω(D′, S′) = (r(D′, S′), C(D′, S′), l1(D′, S′),−g1(D
′, S′), . . . , ld(D′, S′),−gd(D′, S′)).

Clearly (D,S, ω) is a discrete abstract problem.

For every (D′, S′) ∈ 2D × 2S we let Feasible(D′, S′) denote the set of points that
intersect all of the boxes r(D′, S′)D′. From the definitions of the variables and the
optimality of the solution we get the following.

Observation 9.1. Let D,S,W be an instance of the discrete weighted 1-center
problem in Rd with an l∞ norm. For every (D′, S′) ∈ 2D × 2S , Feasible(D′, S′) is
the minimal axis-parallel box containing the 2 points (g1(D

′, S′), . . . , gd(D′, S′)) and
(l1(D

′, S′), . . . , ld(D′, S′)). Furthermore, C(D′, S′) lies on its boundary.

We show now that (D,S, ω) is a (2d, 1)-dimensional DLP-type problem. (D,S, ω)
obeys the monotonicity of demand condition since adding a new element h to D′

cannot lexicographically decrease the value, i.e., ω(D′, S′) ≤L ω(D′ ∪ {h}, S). Simi-
larly, (D,S, ω) obeys the monotonicity of supply condition since adding a new point
h cannot lexicographically increase the objective function value.

We now show that (D,S, ω) obeys both locality conditions and that it obeys
the VC. Let G = (D′, S′) ∈ 2D × 2S and F = (D′′, S′′) ∈ 2D

′ × 2S
′

be such that
ω(G) =L ω(F ) (so due to Observation 9.1 Feasible(G) = Feasible(F )). It suffices to
show that the following 3 properties hold:

1. For all h ∈ S, ω(D′, S′∪{h}) <L ω(G) if and only if ω(D′′, S′′∪{h}) <L ω(F ).
2. For all h ∈ D, ω(D′ ∪ {h}, S′) >L ω(G)→ ω(D′′ ∪ {h}, S′) >L ω(F ).
3. For all h ∈ D, ω(D′′ ∪ {h}, S′′) >L ω(G)→ ω(D′ ∪ {h}, S′) >L ω(F ).

Regarding the first property we note (for every set X ∈ Rd, let Int(X) denote its
interior, and let ∂(X) denote its boundary) that

ω(D′′, S′′ ∪ {h}) <L ω(F ) ⇐⇒ C(D′′, S′′ ∪ {h}) = h

⇐⇒ (h ∈ Int(Feasible(F ))) ∨ ((h ∈ ∂(Feasible(F )))

∧ (h <L C(F )))

⇐⇒ (h ∈ Int(Feasible(G))) ∨ ((h ∈ ∂(Feasible(G)))

∧ (h <L C(G)))

⇐⇒ C(D′, S′ ∪ {h}) = h

⇐⇒ ω(D′, S′ ∪ {h}) <L ω(G).

We now consider the remaining two properties. Let di ∈ D. ω(D′′∪{di}, S′′) >L ω(F )
if and only if one of the following cases occurs:

1. r(D′′ ∪ {di}, S′′) > r(F ), or
2. r(D′′ ∪ {di}, S′′) = r(F ) and C(D′′ ∪ {di}, S′′) >L C(F ), or
3. r(D′′ ∪ {di}, S′′) = r(F ), C(D′′ ∪ {di}, S′′) =L C(F ), and (l1(D

′′ ∪ {di}, S′′),
−g1(D

′′ ∪ {di}, S′′), . . . , ld(D′′ ∪ {di}, S′′),−gd(D′′ ∪ {di}, S′′)) >L (l1(F ),
−g1(F ), . . . , ld(F ),−gd(F )).
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Regarding case 1, we have

r(D′′ ∪ {di}, S′′) > r(F ) ⇐⇒ r(F )di ∩ Feasible(F ) ∩ S′′ = ∅
⇐⇒ (r(G)di ∩ Feasible(G) ∩ S′ = ∅) ∨ ((r(G)di ∩ ∂(Feasible(G) ∩ (S′ \ S′′)) 
= ∅)

∧ C(G) /∈ r(G)di)

⇐⇒ (r(D′ ∪ {di}, S′) > r(G)) ∨ ((r(D′ ∪ {di}, S′) = r(G))

∧ (C(D′ ∪ {di}, S′) >L C(G))).

We now consider case 2.

(r(D′′ ∪ {di}, S′′) = r(F )) ∧ (C(D′′ ∪ {di}, S′′) >L C(F ))

⇐⇒ (C(F ) /∈ r(F )di) ∧ (r(F )di ∩ ∂(Feasible(F )) ∩ S′′ 
= ∅)
⇒ (C(G) /∈ r(G)di) ∧ (r(G)di ∩ ∂(Feasible(G)) ∩ S′ 
= ∅)
⇐⇒ (r(D′ ∪ {di}, S′) = r(D′, S′)) ∧ (C(D′ ∪ {di}, S′) >L C(D′, S′)).

When S′ = S′′, the other direction of implications is also correct.

Case 3 occurs if and only C(F ) ∈ r(F )di and there exists j such that, among
the projections of the boxes in r(F )D′′ ∪ {r(F )di} on the jth coordinate, the pro-
jection of r(F )di results in an interval [l, r] with either the smallest r or the greatest
l. This happens if and only if C(G) ∈ r(G)di, and among the projections of the
boxes in r(G)D′ ∪ {r(G)di} on the jth coordinate, the projection of r(G)di results
in an interval [l, r] with either the smallest r or the greatest l. This occurs if and
only if r(D′ ∪ {di}, S′) = r(G), C(D′ ∪ {di}, S′) =L C(G), and (l1(D

′ ∪ {di}, S′),
−g1(D

′ ∪ {di}, S′), . . . , ld(D′ ∪ {di}, S′),−gd(D′ ∪ {di}, S′)) >L (l1(G),−g1(G), . . . ,
ld(G),−gd(G)).

From the above analysis we get that the last two properties are indeed satisfied.
Hence (D,S, ω) is a DLP-type problem which satisfies the VC.

It is easy to verify that B(D,S) = ({L1(D,S), G1(D,S), . . . , Ld(D,S), Gd(D,S)},
{C(D,S)}) is a basis of a feasible and bounded (D,S) and that the problem is of d-
dimension 2d and s-dimension 1.

The violation test can easily be implemented in constant time. For a basis B =
(BD, BS) and a d-element di, ω(BD ∪ {di}, BS) > ω(B) if and only if either r(B)di
does not contain C(B) or there exists j such that, among the projections of the
boxes in r(B)D′′ ∪ {r(B)di} on the jth coordinate, the projection of r(B)di results
in an interval [l, r] with either the smallest r or the greatest l. For an s-element h,
ω(BD, BS ∪ {h}) < ω(B) if and only if either h lies in the interior of Feasible(B) or
h lies on the boundary of Feasible(B) and h ≤L C(B). The basis calculation can
be implemented in constant time by calling the violation test a constant number of
times. Using a DLP algorithm such as the one stated in section 5, we conclude as
follows.

Theorem 9.2. The discrete weighted 1-center problem in Rd with an l∞ norm
is solvable in (randomized) linear time for every fixed d.

The rectilinear 1-center problem in Rd (i.e., with an l1 norm) is solved similarly by
using the rectilinear Helly-type versions of Theorems 1.4 and 1.5 (i.e., with rectilinear
“balls” instead of axis-parallel boxes), which have Helly number 2d instead of 2d. We
get the following theorem.

Theorem 9.3. The discrete weighted rectilinear 1-center problem in Rd is solv-
able in (randomized) linear time for every fixed d.
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We note that, while the Euclidean 1-center problem in Rd can be formulated
as a (d + 1)-dimensional LP-type problem and thus is solved in randomized linear
time [31], the corresponding discrete problem admits an Ω(n log n) lower bound un-
der the algebraic computation tree model and is solved in the same time bound [24].
This demonstrates that sometimes the complexity of a discrete optimization version
of a continuous optimization problem is strictly harder, as discussed also in the intro-
duction.

10. Solving problems related to line transversals in the plane.

10.1. Continuous case. We first consider the lexicographic (continuous) line
transversal of axis-parallel rectangles problem. The input is a family D = {d1, . . . , dn}
of axis-parallel (closed) rectangles in the plane, together with a set of their reference
points C = {c1, . . . , cn} such that ci lies in the interior of di for every i = 1, . . . , n. For
a particular rectangle di ∈ D, let λdi be the homothet of di that results from scaling di
by a factor of λ, relatively to ci (i.e., while keeping the point ci fixed in the plane). Let
λD = {λd | d ∈ D}. In the lexicographic (continuous) line transversal of axis-parallel
rectangles optimization problem, we are interested in the smallest scaling factor λ∗

and lexicographically smallest vector (a′′, b′′) such that the line y = a′′x+b′′ intersects
each of the scaled rectangles in λ∗D. In the corresponding (nonlexicographic) decision
problem (i.e., no scaling is allowed), we ask whether there exists a line transversal
which intersects all of the rectangles in D. We note that this decision problem is solved
in linear time via LP-type algorithms or by reducing it to linear programming [1, 2].
We are unaware of any linear time algorithms for the (nonlexicographic) optimization
problem. We solve this problem by solving the (more general) lexicographic problem
in linear time and noting that the optimal scaling factors of the lexicographic and
nonlexicographic problems are equal. We solve the lexicographic problem by using
the LP-type framework and the following two Helly-type theorems.

Theorem 10.1 (see [29]). Let D be a family of parallel open rectangles in the
plane. If every subset of at most 6 rectangles admits a line transversal, then H does
as well.

Theorem 10.2 (Theorem 2.12 in [20]). Let D be a family of axis-parallel (closed)
rectangles in the plane. For every pair of reals a′ and b′, if every subfamily of at most
6 rectangles admits a line transversal y = ax + b, with (a, b) ≤L (a′, b′), then D does
as well.

We note that, for every line direction (e.g., vertical to the x-axis), the restricted
problem of finding the smallest scaling factor λ∗, such that there exists a line trans-
versal for λ∗D in this direction, is solvable in linear time by projecting the problem
on the vertical direction (e.g., on the x-axis) and formulating it as a 2-dimensional
LP problem. Hence it is enough to solve in linear time the problem where the line
transversal must not be vertical to the x-axis.

We show that this problem is a 6-dimensional LP-type problem by formulating
it as a parameterized Helly system with lexicographic Helly number 6 and using
Theorem 6.6. Let the ground set X = R2 be the set of lines in the plane which are
not vertical to the x-axis (i.e., (a, b) ∈ X is the line Y = aX + b), and let Λ = R+.
For every d ∈ D, let t(d) be the set of lines intersecting d, let d̄ = {t(λd) | λ ∈ R+},
and let D̄ = {d̄ | d ∈ D}.

Every line that intersects the homothet λ1d also intersects λ2d for any λ2 > λ1, so
each d̄ is a nested family of lines. Due to Theorem 10.2 every (X,λD) is a Helly system
with lexicographic Helly number 6. Due to Theorem 10.1 every (X,λ Int(D)) is a Helly
system with Helly number 6. Hence, Theorem 6.6 implies that (R2×R+×R2, D̄) is a
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parameterized Helly system with Helly number 6 and that (D̄, ω) is a 6-dimensional
LP-type problem. The natural objective function ω(D̄) is the lsmallest vector λ =
(λ0, a, b) such that Dλ intersects at the point (a, b) (i.e., the line aX + b intersects
each of the scaled rectangles in λ0D). Recall that the algorithm in [28] runs in
O(tvn + tb log n) time, where tv is the time needed for a violation test and tb is the
time required for a basis calculation. Since both violation test and basis calcula-
tion primitives can easily be implemented in constant time, we have just proved the
following theorem.

Theorem 10.3. The line transversal of axis-parallel rectangles optimization prob-
lem is solvable in (randomized) linear time.

We conclude this section by considering several variants of the line transversal of a
totally separable set of convex planar objects problem (problem 3 in the introduction).
The input for the lexicographic version of this problem is a totally separable family
D = {d1, . . . , dn} of simple convex objects, a family C = {c1, . . . , cn} of reference
points such that ci lies in the interior of di for every i = 1, . . . , n, and a vector (a′, b′).
In the decision problem we want to decide whether there exists a line Y = aX+b, with
(a, b) ≤L (a′, b′), which intersects all of the objects in D. In the optimization problem
we are interested in the smallest scaling factor λ∗ and lexicographically smallest vector
(a, b) such that the line y = ax + b intersects each of the scaled objects in λ∗D.
Clearly, the answer for the decision problem is positive if and only if the solution of
the optimization problem is at most (1, a′, b′). We solve this problem in linear time
using the LP-type framework and the following two Helly-type theorems.

Theorem 10.4 (see [23]). Let D be a totally separable finite family of open
convex sets. If every subset of at most 3 sets admits a line transversal, then D does
as well.

Theorem 10.5 (Corollary 2.20 in [20]). Let D be a totally separable family of
(closed) convex sets. For every pair of reals a′ and b′, if every subfamily of at most
3 sets admits a line transversal y = ax + b, with (a, b) ≤L (a′, b′), then H does as
well.

It is easy to show, using similar arguments to the ones mentioned earlier in this
section, that the optimization problem is indeed a 3-dimensional LP-type problem
and that it is solved in linear time. We thus have just proved the following theorem.

Theorem 10.6. The line transversal of totally separable set of convex planar
objects decision problem is solvable in (randomized) linear time.

10.2. Discrete case I—A finite number of permissible directions of line
transversals. In this section we define a discrete version for the line transversal of
axis-parallel rectangles optimization problem. We solve it in randomized linear time
by using the DLP-type framework.

Problem 10.7. Given are a set D = {d1, . . . , dn} of (not necessarily pairwise
disjoint) axis-parallel compact rectangles in the plane, together with a set of their
reference points C = {c1, . . . , cn}, such that ci lies in the interior of di, for every
i = 1, . . . , n, and a set S = {s1, . . . , sm} of permissible line directions. Find the
minimal scaling factor λ∗

1 = λ1(D,S) ∈ R+ such that λ∗
1D admits a line transversal

whose direction is in S.
If we choose S to be the (infinite) set of all possible directions, this problem

coincides with the continuous one. We can assume that S does not contain the
vertical direction and that the directions in S are such that the permissible lines
are {y = ax + b | a ∈ S}. (If S does contain a vertical direction, we will take the
minimal solution (i.e., scaling factor) among the ones of Problem 10.7 on S without
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the vertical direction and on the vertical direction alone. As already mentioned in
the previous section, the latter problem is solved in linear time by formulating it as
an LP problem.)

A special case of Problem 10.7 is when the line transversal must be nondescending.
Problem 10.8. Given are a set D = {d1, . . . , dn} of (not necessarily pairwise

disjoint) axis-parallel compact rectangles, together with a set of their reference points
C = {c1, . . . , cn}, such that ci lies in the interior of di for every i = 1, . . . , n, and a
set S = {s1, . . . , sm} of permissible line directions. Find the minimal scaling factor
λ∗

1 = λ1(D,S) ∈ R+ such that λ∗
1D admits a nondescending line transversal whose

direction is in S.
The solution of Problem 10.7 is the minimum scaling factor between the solution

of Problem 10.8 and the analog problem where the line transversal must be nonas-
cending.

10.2.1. A formulation as a discrete LP-type problem. In this section we
formulate Problem 10.8 as a fixed-dimensional DLP-type problem by using Theo-
rem 8.16 and the following Helly-type theorems.

Theorem 10.9 (Theorem 2.13 in [20]). Let D be a family of open rectangles in
the plane with edges parallel to the axes, and let S be a set of nonnegative reals (line
directions). If every subfamily of at most 4 rectangles admits a line transversal with
a slope from S, then D does as well.

Theorem 10.10 (Theorem 5.8 in [20]). Let D be a family of rectangles in the
plane with edges parallel to the axes, and let S be a set of nonnegative reals (line
directions). For every pair of reals a′ ≥ 0 and b′, and a pair of nonnegative reals
slmin ≤ slmax, if every subfamily of at most 5 rectangles admits a line transversal
y = ax+ b, with a ∈ S, slmin ≤ a ≤ slmax, and (a, b) ≤L (a′, b′), then D does as well.

Let G = (D′, S′) ∈ 2D×2S be an arbitrary set such that G 
= (∅, ∅). We first look
closely at an optimal solution for Problem 10.8 on G. Let λ∗

1 be the optimal scaling
factor. Due to Theorem 10.9 there is a direction s∗ ∈ S′ and a set D′′ ⊆ D′ of at
most 4 rectangles such that the solution of Problem 10.8 on (D′′, {s∗}) is λ∗

1. For this
solution we define the following variables:

• λ1(D
′, S′) ∈ R+ is λ∗

1, the optimal scaling factor.
• DIR(D′, S′) ∈ S is s∗, the minimal direction in S′ in which there exists a

nondecreasing line transversal for λ1(D
′, S′)D′.

• LINE (D′, S′) = (DIR(D′, S′), b(D′, S′)) is the line y = DIR(D′, S′)x +
b(D′, S′), which intersects every λ1(D

′, S′)d ∈ λ1(D
′, S′)D.

We note that, due to the optimality of λ∗
1, there exists only one line transversal to D′

with direction s∗, and this line is tangent to at least 2 rectangles in λ∗
1D

′.
In order to solve Problem 10.8, we first define and solve a lexicographic version

of it, containing 4 more parameters. Let us consider the dual space R2 of all possible
line transversals for λ∗

1D
′. In this dual space, each nonvertical line y = ax + b is

represented by the point (a, b). We will use the following observation.
Observation 10.11 (Observation 5.7 in [20]). Let D be a family of axis-parallel

rectangles in the plane, and, for every d ∈ D, let L(d) be the set of line transversals
which d admits in the dual space of line transversals. Let P (D) = ∩d∈D L(d) be the
set of line transversals which D admits. The intersection of P (D) with either the x
nonnegative or x nonpositive half-planes is a convex polygon. The slopes of line trans-
versals with nonnegative (nonpositive) slopes for D generate a slope range interval
[slmin, slmax] ([slmin, slmax]) resulted by the projection of P (D) on the nonnegative
(nonpositive) part of the x-axis, respectively. Each of the 4 end points of these two
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intervals is determined by two rectangles.
Due to this observation, the range of slopes of the possible nondecreasing line

transversals is a closed interval contained in R+. We call this interval the slope range
corresponding to λ∗

1D
′ and denote it by [SLmin(D′, S′), SLmax(D′, S′)], where

• SLmin(D′, S′) is the slope of the line transversal for λ∗
1D

′ with a minimal
nonnegative slope, and
• SLmax(D′, S′) is the slope of the line transversal for λ∗

1D
′ with a maximal

nonnegative slope.
(Due to the optimality of the scaling factor, the slope range does not contain any
direction from S′ in its interior.) We are ready to define a lexicographic version for
Problem 10.8.

Problem 10.12. Given are a set D = {d1, . . . , dn} of (not necessarily pairwise
disjoint) axis-parallel rectangles, together with a set of their reference points C =
{c1, . . . , cn}, such that ci lies in the interior of di for every i = 1, . . . , n, and a set S =
{s1, . . . , sm} of permissible line directions. Find the lexicographically minimal vector
λ = (λ1, s, b, sl

min,−slmax) such that the line y = sx + b (s ∈ S) is nondescending,
intersects all of the rectangles in λ1D, and the slope range corresponding to λ1D is
[slmin, slmax].

Clearly, the optimal solution of Problem 10.12 is an optimal solution for Prob-
lem 10.8.

We now apply Theorem 10.10 in order to construct a parameterized discrete Helly
system. Let the ground set be X = R+×R×R+×R−, the space of all nondecreasing
lines and slope ranges. In this space, each point represents a line by the geometric
duality transformation mentioned above and a slope range, as shown below. Let the
range of the objective function be Λ = R+. For every h ∈ D and λ ∈ R+ we define
(10.1)

hλ =

{
x = (a, b, slmin,−slmax) ∈ X y = ax + b is a line transversal for λh and

a ∈ [slmin, slmax].

}
.

As usual, we let h̄ = {hλ | λ ∈ Λ}.
Lemma 10.13. For all h ∈ D, h̄ is a nested family.
Proof. We need to show that for all α, β ∈ Λ, with α < β, hα ⊆ hβ , i.e., for all

x ∈ hα, x is also in hβ . This is true by monotonicity: A line transversal for αh is also
a line transversal for βh.

For every h ∈ S and λ ∈ Λ we let

hλ = {x | x is a line with direction s}.
Obviously, for every h ∈ S, h̄ = {hλ | λ ∈ Λ} is a nested family as well, and hλ does
not depend on λ.

From the definitions and Theorem 10.9 we get that, for all λ ∈ Λ, (X,Dλ, Sλ) is a
discrete Helly system with Helly number 4, and thus (X×Λ, D̄, S̄) is a parameterized
discrete Helly system with Helly number 4 (see Definition 8.8). From Theorem 10.10,
we get that, for all λ ∈ Λ, (X,Dλ, Sλ) is a discrete Helly system with lexicographic
Helly number 5. Thus all of the conditions in Theorem 8.16 are fulfilled, and (D,S, ν)
is a DLP-type problem of d-dimension at most 5 and s-dimension 1, where for all
G = (D′, S′) ∈ 2D × 2S

(10.2) ν(G) = (λ1(G),DIR(G), b(G), SLmin(G),−SLmax(G)).

We have just proved the following lemma.
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Lemma 10.14. (D,S, ν) is a (5, 1)-dimensional DLP-type problem.

Before we continue, we explain the values that the decision and optimization prob-
lems return. The decision problem returns “yes” if and only if λ∗

1 = λ1(D,S) ≤ 1. The
optimization problem returns the minimal scaling factor λ1(D,S), the minimal non-
negative direction from S such that λ1(D,S) admits a line transversal with direction
DIR(D,S) and intersection point b(D,S) with the y-axis, the slope range defined by
SLmin(D,S), SLmax(D,S), and a basis B = (BD, BS) for (D,S). We note that there
exist line transversals for λ∗

1D with each of the slopes SLmin(D,S) and SLmax(D,S).
We can view B and LINE (D,S) as witnesses for the optimality of the scaling factor
λ1(D,S). We need only to check that λ1(BD, S) = λ∗

1 (the monotonicity of demand
condition implies λ∗

1(D,S) ≥ λ∗
1) and that the line transversal LINE (D,S) intersects

each one of the rectangles λ∗
1h, h ∈ D (the monotonicity of supply condition implies

λ∗
1(D,S) ≤ λ∗

1). The first test can be executed in |S| time and the second in |D| time.

10.2.2. A linear time algorithm. In this section we apply the linear time
algorithm stated in section 5. We need to show that the conditions stated in Theo-
rem 5.4 are satisfied and implement each of the violation test and basis calculation
primitives in constant time. In the last section we formulated Problem 10.8 as a
(5, 1)-dimensional DLP-type problem. Thus, it remains to show the following.

Lemma 10.15. (D,S, ν) meets the VC (Definition 4.9).

Proof. We need to show that for every (D′, S′) ∈ 2D×2S and (D′′, S′′) ∈ 2D
′×2S

′

with ν(D′, S′) = ν(D′′, S′′) the following properties hold:

1. For every h ∈ D, if ν(D′′ ∪ {h}, S′′) > ν(D′′, S′′), then ν(D′ ∪ {h}, S′) >
ν(D′, S′).

2. For every h ∈ S, if ν(D′′, S′′ ∪ {h}) < ν(D′′, S′′), then ν(D′, S′ ∪ {h}) <
ν(D′, S′).

Let λ1 = λ1(D
′, S′) = λ1(D

′′, S′′). We define the following functions related to
P (λ1D

′), the set of line transversal which λ1D
′ admits (see Observation 10.11 for

the definition and structure of P (λ1D
′) in the dual space of line transversals). Let

lmin(D′, S′) be the unique line transversal with direction SLmin(D′, S′) that
λ1(D

′, S′)D′ admits. Let bmin(D′, S′) be its intersection point with the y-axis. In
this way (SLmin(D′, S′), bmin(D′, S′)) is the leftmost point in P (λ1D

′). We define
lmax(D′, S′) and bmax(D′, S′) similarly, so (SLmax(D′, S′), bmax(D′, S′)) is the right-
most point in P (λ1D

′).
The proof of both properties relies on the following observation which is true due

to (10.2):
(10.3)
ν(D′, S′) = ν(D′′, S′′)→ the functions SLmin, bmin, lmin, SLmax, bmax, and lmax

have the same values on (D′, S′) and on (D′′, S′′).

We first show that the first property holds. h ∈ D violates (D′′, S′′) if and only if the
set of line transversals which λ1h admits does not contain both lines lmin(D′′, S′′) and
lmax(D′′, S′′) (i.e., {(SLmin(D′′, S′′), bmin(D′′, S′′)); (SLmax(D′′, S′′), bmax(D′′, S′′))}

⊂ P (λ1h)). Using (10.3), the latter condition occurs if and only if the set of line trans-
versals which λ1h admits does not contain both lines lmin(D′, S′) and lmax(D′, S′),
which in turn occurs if and only if h ∈ D violates (D′, S′).

Regarding the second property, we observe that h ∈ S violates (D′′, S′′) if and
only if either the slope h lies in the interior of the slope range corresponding to λ1D

′′

(so the scaling factor decreases) or h is the left end point of the slope range with
h < DIR(D′′, S′′). We conclude the proof by using (10.3) again.
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We are ready to make the complexity calculations. Given a basis B = (BD, BS)
and its optimal scaling factor λ1, we compute in constant time the functions SLmin(B),
bmin(B), lmin(B), SLmax(B), bmax(B), lmax(B),DIR(B), and the set of all line trans-
versals for λ1B, P (λ1BD) = ∩h∈BD

D(λ1h) (see Observation 10.11 for the notations).
The following violation tests are implemented in constant time as follows:

tvS : A new s-element h violates B if and only if either h lies in the interior of
the slope domain (SLmin(B), SLmax(B)) or h = SLmin(B) and DIR(B) =
SLmax(B).

tvD: A new d-element h violates B if and only if D(λ1h) does not contain
{(SLmin(D′′, S′′), bmin(D′′, S′′)); (SLmax(D′′, S′′), bmax(D′′, S′′))}.

Using the violation tests it is easy to see that the basis calculation for (D′, S′) where
both |D′|, |S′| are constants can be implemented in constant time. We have proved
the following.

Theorem 10.16. Problem 10.7 is solvable in (randomized) linear time.

Corollary 10.17. The lexicographic discrete line transversal of axis-parallel
rectangles problem is solvable in (randomized) linear time.

10.3. Discrete case II—A finite number of permissible line transversals.
In this section we show that the problem below has a lower bound of Ω(n log n).

Problem 10.18. Given are a set D = {d1, . . . , dn} of (not necessarily pairwise
disjoint) axis-parallel compact rectangles, together with a set of their reference points
C = {c1, . . . , cn}, such that ci lies in the interior of di for every i = 1, . . . , n, and
a set S = {s1, . . . , sm} of permissible lines. Find the minimal scaling factor λ∗

1 =
λ1(D,S) ∈ R+ such that λ∗

1D admits a line transversal from S.

Clearly it is sufficient to show that the corresponding decision problem has that
lower bound.

Theorem 10.19. Given a set D of axis-parallel rectangles and a set S of lines,
deciding whether D admits a line transversal from S requires Ω(n log n) time under
the algebraic computation tree model (when m = n).

Proof. We reduce in linear time the set equality problem (see definition in sec-
tion 4) to this decision problem. Given an instance of the set equality problem, i.e.,
two sets A,B of n real numbers each, we act as follows. We find minA and maxA

(minB and maxB) the minimal and maximal elements in A (B), respectively. We de-

fine two new sets A′ = { 2(a−minA)
maxA −minA

− 1 | a ∈ A} and B′ = { 2(b−minB)
maxB −minB

− 1 | b ∈ B}.
All of the elements in A′ and B′ are numbers between −1 to 1, and A = B if and only
if A′ = B′. For any −1 ≤ r ≤ 1 let p(r) be the intersection point of the unit circle
and the ray originating at the origin and having an angle of r radians with the posi-
tive part of the x-axis. We define two instances for the problem. The first instance,
instance I, has a set of lines SI = S(A′) and a set of rectangles (intervals) DI = D(B′)
defined as follows. We let S(A′) = {s(a′) | a′ ∈ A′}, where s(a′) is the line tangent
to the unit circle at point p(a′). We let D(B′) = {i(b′) | b′ ∈ B′}, where i(b′) is a
horizontal interval of length M , where M is a large number (e.g., 100), whose left end
is slightly to the right of p(b′) (from a computation point of view we build the left
end of the interval at exactly p(b) but symbolically do not include this point in the
interval). From the above construction we get that D(B′) admits a line transversal
from S(A′) if and only if A 
⊂ B. The second instance, instance II, has the set of lines
SII = S(B′) and the set of rectangles DII = D(A′). We get that D(A′) admits a line
transversal from S(B′) if and only if B 
⊂ A. We conclude the proof by observing that
A = B if and only if both instances of the problem return negative responses.
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