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Abstract

This paper shows that in the G/M/1 queueing model, condition-
ing on a busy server, the age of the inter-arrival time and the number
of customers in the queue are independent. Explicit expressions for
the density functions of this age conditioning on a busy server and
conditioning on an idle server are given. Moreover, we show that this
independence property, which we prove by elementary arguments, also
leads to an alternative proof for the fact that given a busy server, the
number of customers in the queue follows a geometric distribution.
Also, we show that the residual inter-arrival time and the number
of customers in the system given the server is busy are independent.
Moreover, we give an explicit form for the density function of the
conditional residual inter-arrival time given a busy and given an idle
server. This is also repeated for the total inter-arrival time. We con-
clude with a derivation for the Laplace Stieltjes Transform (LST) of
the age of the inter-arrival time in the M/G/1 queue.

1 Introduction

Consider the G/M/1 queueing model. Let G(x) be the cumulative distri-
bution function of the inter-arrival time and assume that it is an absolute
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continuous function. Denote by µ the rate of service. Assume 1/µ < x where
the latter is the mean inter-arrival time. Denote (µx)−1 by ρ and note that ρ
is the limit probability that the server is busy. Let G∗(s) be the LST of the
inter-arrival time, namely G∗(s) =

∫∞
x=0 e−sxg(x) dx where g(x) is the density

function of the inter-arrival time. Also, let σ be the unique value between
zero and one satisfying σ = G∗(µ(1− σ)). For brevity, let η = µ(1− σ).
Assume that the system is in steady-state. Let πi be the steady-state prob-
ability that an arrival finds i customers at the system upon arrival. It is
well-known, see e.g. [4], p. 208, that πi = (1−σ)σi, i ≥ 0. Also, let ei be the
steady-state probability for having i customers in the system at a random
time. Then, e0 = 1 − ρ and ei = ρ(1 − σ)σi−1, i ≥ 1. Note that given a
busy server, the probability at random times that the number of customers
in the queue is i equals the probability that an arrival finds i in the system
upon his arrival, i ≥ 0. Recall that in the case of a first-come first-served
(FCFS) regime, the sojourn time in a G/M/1 queue follows an exponential
distribution with parameter η (see e.g., [4], p.229).

Consider the age of the inter-arrival time. By that we mean the time
elapsed since the previous arrival. Denote this random variable by A. It is
standard by renewal theory to observe that the corresponding density fA(a)
equals G(a)/x where G(a) = 1−G(a). Also, denoting by A∗(s) its LST, it is
well-known that A∗(s) = (1−G∗(s))/(xs). In particular, by trivial algebra,

A∗(η) = E(e−ηA) = ρ = (µx)−1. (1)

Finally, note that the residual of the inter-arrival time, namely the time until
the next arrival, follows the same distribution as its age.

Of course, any information given on the system itself changes this prior
distribution of the age. This is, for example, the case if the number of
customers in the system is given. Indeed, below we derive the conditional
density of A given this number. As it turns out, for any positive number of
customers in the system, the conditional density is the same. Put differently,
given that the server is busy, the age of the inter-arrival time and the number
of customers in the queue are independent. This result, which is proved in the
next section, looks quite counter intuitive, as one might think that the larger
the number of customers is, the smaller is the time elapsed since the last
arrival. Our proof is coupled with an explicit expression for the distribution
of the age of the inter-arrival time under these two cases. It is then shown
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that this independence property is sufficient for the number of customers
in the queue, given a busy server, to follow a geometric distribution. As
we have established this independence property by primitive arguments, this
can serve as an alternative proof for the geometric distribution phenomenon
in the G/M/1 queue. We conclude Section 2 with deriving the corresponding
results for the conditional residual and total length of the inter-arrival time,
both enjoying the same above-mentioned independence property. Note that
although the age and the residual of the inter-arrival time are identically
distributed, this by no means is carried over to the conditional distributions.
Finally, in Section 3 we derive the LST of the age of the inter-arrival time
given the number of customers in the system for the M/G/1 queue. The
conditional distribution of the past service time of the one currently in service,
given the number of customers in the system in the M/G/1 queue, and the
joint transform of these two random variables, were analyzed by Adan and
Haviv [2].

2 The G/M/1 case

This section deals with the conditional age, residual and total length of the
inter-arrival time, given the number of customers in the system for the G/M/1
model. Note that we do not need to specify the queueing regime and it can
be any regime as long as it is work-conserving (namely, the total work in the
system is as under the FCFS regime) and it is not-anticipating (namely, the
decision who gets service and when (preemption included), does not depend
on actual service requirements). Finally, we denote by L the random variable
stating the number of customers in the system.

2.1 The conditional age of inter-arrival time

=

Theorem 2.1 Let fA|L=n(a) be the density function of the age of the inter-
arrival time, given that L = n, where a, n ≥ 0. Then, in the G/M/1 queue,

fA|L=n(a) = G(a)µe−ηa, a ≥ 0, n ≥ 1. (2)
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In particular, given that the server is busy, the age and the number of cus-
tomers in the queue are independent. Also,

fA|L=0(a) =
G(a)

x

1− e−ηa

1− ρ
, a ≥ 0. (3)

Proof. Recall that the probability to find m customers in the queue upon
arrival equals (1 − σ)σm, m ≥ 0, and the probability of such an event at
random times is ρ(1− σ)σm−1 for m ≥ 1, and 1− ρ for m = 0. Thus, for the
case where n ≥ 1,

fA|L=n(a) =
fA(a)

P(L = n)
P(L = n|A = a)

=
G(a)

x

ρ(1− σ)σn−1

∞∑

m=n−1

(1− σ)σme−µa (µa)m−n+1

(m− n + 1)!
.

Note that the summation is based on the fact that in order to see n, n ≥ 1,
customers given that the age of the inter-arrival time equals a and that
the previous arrival saw m ≥ n − 1 ≥ 0 upon arrival, one needs to have
exactly m− n + 1 service completions during the past a units of time. The
probability of this event is e−µa(µa)m−n+1/(m−n+1)!. Some trivial algebra
now concludes the proof of (2). As for proving (3), note that

fA(a) =
G(a)

x
= (1− ρ)fA|L=0(a) + ρfA|L≥1(a).

Since fA|L≥1(a) appears in (2), the rest is just simple algebra. 2

Remark 2.1 Let Y be a random variable which follows the same distribu-
tion as that of an inter-arrival time and let S follow an exponential distri-
bution with parameter η (as the sojourn time in G/M/1 in case of FCFS).
Assume that Y and S are independent. Then, the density function given in
(2) is as that of S|S ≤ Y . Thus, A|L ≥ 1 is distributed as the sojourn time
of the last customer in a busy period.

Remark 2.2 As there is no distribution function G(x), for which the ex-
pressions in (2) and in (3) coincide for all values of a, a ≥ 0, we conclude
that in the G/M/1 model, the age of the inter-arrival time and the number
of customers in the system are not independent.
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Remark 2.3 Next we give a stand-alone proof for the independence prop-
erty mentioned in Theorem 2.1, namely a proof which does not use the fact
that conditioning on a busy server, the queue length follows a geometric
distribution. Consider the last-come first-served G/G/1 queue with the
preemption-resume service policy (LCFS-PR). We next argue that the in-
dependence property mentioned in Theorem 2.1 applies to this model too.
Specifically, assume the server is busy and tag the customer who currently
receives service. It is clear that any event or random variable, say Y , which
is defined on the period which lasts from the arrival of the tagged customer
until his/her departure, and the number of customers he/she has found upon
arrival, are independent. Note that the latter random variable coincides with
the current number of customers in the queue. An example for Y is the age
of the inter-arrival time. Hence, this random variable and the queue length,
given a busy server, are independent. This property also holds in the G/M/1
queue under any work-conserving and non-anticipating queue regime since
at all of them the number of customers in the system follows the same dis-
tribution. For more on the G/G/1 LCFS-PR and such intuitive arguments
see [10].

Example: M/M/1. In the case where the arrival process is Poisson, i.e.,
the inter-arrival times follow an exponential distribution, G(x) = e−λx for
some constant λ < µ. Moreover, x = λ−1, ρ = λ/µ, G∗(s) = λ/(λ + s) and
σ = ρ. In this case, (2) and (3) become

fA|L=n(a) = µe−µa, a ≥ 0, n ≥ 1, (4)

and

fA|L=0(a) =
λµ

µ− λ
(e−λa − e−µa), a ≥ 0, (5)

respectively. Note that (4) is an exponential density function with parameter
µ while (5) is the density function of the sum of two independent and expo-
nentially distributed random variables, one with parameter λ and one with
parameter µ. These special cases for the M/M/1 queue are not a surprise
given the fact that an M/M/1 queue length process is time-reversible. Specif-
ically, since in the time-reversed process an arrival corresponds to a departure
in the original process, and vice versa, the age of the inter-arrival time in the
original process corresponds to its residual time until departure in the time-
reversed process. Thus, by the fact that the process is time-reversible, the
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time until the next departure in the time-reversed process follows an expo-
nential distribution with parameter µ in case of a busy server. In case of an
idle server, one needs to add an arrival time which follows an exponential
distribution with parameter λ.

Remark 2.4 It is interesting to observe that in the M/M/1 case, given that
the server is busy, the distribution of the age of the inter-arrival time is a
function of the arrival rate λ only through the requirement that it should be
smaller than the service rate µ (and not through its exact value).

Application: A two servers system where the first has a finite
buffer. Consider the following queueing model. Two servers provide ser-
vice to a common arrival process, which is assumed to be Poisson. Service
times follow an exponential distribution with server dependent rates. The
arrivers join the queue in front of the first server as long as it is shorter
than some agreed threshold (can be size of the waiting room). Otherwise,
they join the other line. No regrets take place afterwards and each customer
receives service from the server whose line he/she joins upon arrival. Note
that the inter-arrival times for the second queue (which are arrivals epochs
to the system when the first queue is full) are independent, as the number
of customers in the first queue is a Markov process, and hence given the
first server is full, the past and the next time that an arriver will find it
full, are independent. Moreover, the times between such consequent epochs
are identically distributed (again, due to the Markovian property). Thus,
the second line process follows a G/M/1 model. In [8] (see also [3]) it was
stated and proved that given that the second server is busy, the two queue
lengths are independent. The proof there was based on deriving explicitly
the limit probabilities of the corresponding two dimensional Markov process,
from which this independence property is easily observed. Theorem 2.1 leads
to an alternative and much simpler proof. Specifically, let L1 and L2 denote
the number of customers in front of server 1 and server 2, respectively. Also,
let A be the age of the inter-arrival time to L2. It is easy to see (for exam-
ple, by conditioning on the number of customers in front of server 2 at the
instant of the last arrival to this queue) that given A, L1 and L2 are inde-
pendent. Thus, given {A,L2 ≥ 1}, L1 and L2 are independent too. But,
by Theorem 2.1, given L2 ≥ 1, L2 and A are independent. Hence, given
L2 ≥ 1, L1 and L2 are independent too. We write the latter chain in terms

6



of probabilities (although in a non formal way) to clarify the idea. First,

P(L1, L2|A) = P (L1|A)P(L2|A). (6)

Then,

P(L1, L2|A, L2 ≥ 1) = P(L1|A)P (L2|A,L2 ≥ 1) = P(L1|A)P(L2|L2 ≥ 1)

where the last equality is due to Theorem 2.1.

In the following theorem we compare stochastically the marginal distribu-
tion of the age of the inter-arrival time and its two conditional distributions,
first given that the server is busy and second, when it is not.

Theorem 2.2 In a G/M/1 queue, the random variable of the age of the
inter-arrival time given that the server is busy, is stochastically smaller than
the unconditional one, which in turn is stochastically smaller than this age
conditioning on an idle server.

Proof. For any function ψ we get by (2) and (1) that

E(ψ(A)|L ≥ 1) =

∞∫

a=0

ψ(a)fA|L≥1(a)da =

∞∫

a=0

ψ(a)G(a)µe−ηa da

= µx

∞∫

a=0

ψ(a)
G(a)

x
e−ηa da =

∞∫
a=0

ψ(a)fA(a)e−ηa da

E(e−ηA)
=

E(ψ(A)e−ηA)

E(e−ηA)
. (7)

Since e−ηx is a decreasing function, then for any function ψ(x) which is non-
decreasing, ψ(A) and e−ηA are negatively correlated, namely,

E(ψ(A)e−ηA) ≤ E(ψ(A))E(e−ηA).

Thus, the expression in (7) is smaller than E(ψ(A)) for any non-decreasing
function ψ(x). In summary, for any non-decreasing function ψ(x), E(ψ(A)|L ≥
1) ≤ E(ψ(A)). This is equivalent to saying that A|L ≥ 1 is stochastically
smaller than A. Finally, the fact that A|L = 0 is stochastically larger than
A is now immediate. 2
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The following theorem is well-known. It appears in virtually any queuing
text and it comes with a commonly repeated proof. An original proof is
given in [10]. It fact this proof also holds for the case of the G/G/1 queue
under the LCFS-PR regime. We give a new proof which is based on the fact,
established independently in Remark 2.3, that in a G/M/1 queue, given a
busy server, the age of the inter-arrival time and the number of customers in
the queue are independent.

Theorem 2.3 In a G/M/1 queue, given that the server is busy, the number
of customers in the queue follows a geometric distribution.

Proof. Consider the Markov process whose typical state is (n, a), where
n refers to the number of customers in the system and a to the age of the
inter-arrival time, n, a ≥ 0. The set of states sharing the same value for n,
will be referred to as the macro-state n, n ≥ 0. Note that the process among
macro-states is not a Markov process. Let π(n, a) be the limit probability-
density of state (n, a) and denote

∫∞
a=0 π(n, a) da by e(n), n ≥ 0. Clearly,

e(n) is the limit probability of the macro-state n, n ≥ 0. Also, π(n, a)/e(n),
a ≥ 0, is the conditional density function of the age given that n customers
are in the system, n ≥ 0. Denote by h(x) the hazard function of the arrival
process, namely h(x) = g(x)/G(x), x ≥ 0. Then,

λn ≡
∫ ∞

a=0

π(n, a)

e(n)
h(a) da, n ≥ 0, (8)

is the transition rate from macro-state n into macro-state n + 1, n ≥ 0. Due
to service times being exponentially distributed, the corresponding transition
rate from n into n− 1, n ≥ 1, equals µ. Although the process among macro-
states is not Markovian, its limit probabilities, namely e(n), n ≥ 0, coincide
with those of the Markov process having these transition rates. This fact
is argued for example in [7], p.814 and in [6], p. 1184, for a discrete state
space. For an example for its used in the discrete-continuous case see [5].
This auxiliary Markov process is in fact a birth and death process with (8)
being the rates of birth, and µ being the common rate of death.

Now inspect (8). Remark 2.3 says that π(n, a)/e(n) is homogeneous with
n, as long as n ≥ 1. Thus, the same is the case regarding the transition rates
(or birth rates in the auxiliary process) given in (8). The death rates are of
course homogeneous as they equal µ for any n ≥ 1. Thus, the auxiliary birth
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and death process has homogeneous transition rates as long as n ≥ 1. Hence,
e(n+1) = Ce(n) for some constant C, n ≥ 1. Hence, e(n) = Cn−1e(1), n ≥ 1,
as required. 2

Remark 2.5 Note that C as defined in the above proof equals σ as this is
the common multiplier in the geometric probabilities. Hence, λn, as defined
in (8), equals µσ, when n ≥ 1. The reason behind this is that λnπn = µπn+1

and πn+1/πn = σ, n ≥ 1. Finally, in the M/M/1 case λn = λ, n ≥ 0, where
λ is the (unconditional) arrival rate.

Remark 2.6 In Theorem 2.3, the age of the inter-arrival time can be re-
placed by the residual inter-arrival time. This is the case since the process
whose typical state is (n, r) where n is as above and where r is the resid-
ual inter-arrival time, is a Markov process with the same limit probabilities
defined in the proof of Theorem 2.3.

2.2 The conditional residual and total inter-arrival time

In the previous subsection we dealt with the age of the inter-arrival given
the queue-length. Here we look into similar question but now regarding the
residual and total inter-arrival time.

Corollary 2.1 Let fR|L=n(r) be the density function of the residual inter-
arrival time, given that the number of customers in the system equals n,
where r, n ≥ 0. Then, in the G/M/1 queue,

fR|L=n(r) = µ
∫ ∞

a=0
e−ηag(a + r) da, r ≥ 0, n ≥ 1. (9)

In particular, given that the server is busy, the residual of the inter-arrival
time and the number in the queue are independent. Also,

fR|L=0(r) =
1

x(1− ρ)

∫ ∞

a=0
(1− e−ηa)g(a + r) da, r ≥ 0. (10)

Proof. First,

fR|L=n(r) =
∫ r

a=0
fA=a|L=n(a)fR|A=a,L=n(r) da.
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Second, R|A and L are clearly independent. Thus,

fR|L=n(r) =
∫ r

a=0
fA=a|L=n(a)fR|A=a(r) da.

Third, fR|A=a(r) = g(a + r)/G(a). Finally, the values for fA|L=n(a) for the
cases where n ≥ 1 and n = 0 can be read from (2) and (3), respectively,
leading with trivial algebra to (9) and (10). 2

Remark 2.7 Observing the density function given in (9) we see that this
is the same density as that of the random variable Y − S|Y ≥ S where Y
has the same distribution as that of an inter-arrival time, where S follows an
exponential distribution with parameter η (as the sojourn time in G/M/1 in
case of FCFS), and where Y and S are independent. As pointed out in [1],
this is also the density function of an idle period in the G/M/1 queue.

Example: M/M/1. For the sake of completeness we state the trivial fact
that the residual inter-arrival time in case of an M/M/1 queue follows an
exponential distribution with parameter λ and this is the case conditional on
any number of customers at the system.

We conclude this section a corollary stating the conditional density func-
tions for the total inter-arrival time given the number of customers in the
system.

Corollary 2.2 Let fX|L=n(x) be the density function of the current inter-
arrival time (i.e., its age plus its residual), given that the number of customers
in the system equals n, where x, n ≥ 0. Note that X = A + R. Then, in the
G/M/1 queue,

fX|L=n(x) =
g(x)

1− σ
(1− e−ηx), x ≥ 0, n ≥ 1. (11)

In particular, given that the server is busy, the length of the current inter-
arrival time and the number of customers in the queue are independent. Also,

fX|L=0(x) =
g(x)

ηx(1− ρ)
(ηx− 1 + e−ηx), x ≥ 0.
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Proof. The proof follows the same lines as those of the proof of corollary (2.1)
while utilizing the fact that

fX|A=a(x) =

{
g(x)

G(a)
x ≥ a

0 x < a

2

Example: M/M/1 (continued). From the fact that the age and the resid-
ual time are independent in the case of exponentially distributed inter-arrival
times, it is possible to conclude that X|L = n for n ≥ 1, is the sum of two
independent and exponentially distributed random variables, one, A|L ≥ 1,
with parameter µ (see (2)) and the other, R, with parameter λ. Finally,
X|L = 0 is the sum of three such random variables, two with parameter λ
and one with parameter µ.

In Theorem 2.2 we showed the stochastic order between the conditional
age and the unconditional one. Investigating the same order regarding the
residual inter-arrival times yields, unlike the case of the age in which the order
is distribution free, that an order not always exists. Moreover, when it exists,
its direction (as we show shortly) depends on the inter-arrival distribution.
We were, however, able to give a definite answer in the case of increasing
failure rate (IFR) service distributions. This is done in the theorem below.
In the case of service distributions having a decreasing failure rate (DFR),
all orders are reversed.

Theorem 2.4 In a G/M/1 queue, if the inter-arrival time distribution is
IFR, then the residual of the inter-arrival time, given that the server is busy,
is stochastically larger than the unconditional one, which in turn is stochas-
tically larger than this age conditioning on an idle server.

Proof. Let φ be a non-decreasing function. Denote ψ(A) = E(φ(R|A)).
Since given A, R and L are independent, we have

E(φ(R)|L ≥ 1) = E[E(φ(R)|A)|L ≥ 1] = E[ψ(A)|L ≥ 1]. (12)

By definition, if the inter-arrival time distribution is IFR, ψ(A) is non-
increasing with A. Thus, in the IFR case, E[ψ(A)|L ≥ 1] ≥ E[ψ(A)] and
R|L ≥ 1 is stochastically larger than R. The order between R|L = 0 and R
is now straightforward. 2.
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Remark 2.8 Theorem 2.4, coupled with the observation in Remark 2.7, give
us conditions under which the idle period in G/M/1 and the residual inter
arrival time are stochastically ordered.

Remark 2.9 For the G/M/c model, where c identical servers all serve at
the common rate µ, all of the above properties hold as long as one conditions
on all servers being busy. For example, given all servers are busy, the age of
the inter-arrival time and the number in the queue are independent. Also,
Equations (2),(9) and (11) hold for n ≥ c where µ and η are replaced by cµ
and cµ(1− σ), respectively, where now σ obeys σ = G∗(cµ(1− σ)).

3 The age of inter-arrival time in the M/G/1

In this section we deal with the same question dealt with in the previous
section, but for the M/G/1 model. Here on additional of requiring the service
regime to be work-conserving and non-anticipating, we need to assume that
no preemptions take place. Among these regimes, one can find the FCFS,
LCFS and random order regimes. It is clear that when conditioning on the
number of customers in the system, the age of the inter-arrival time follows
the same distribution under all these regimes. For simplicity, during the
rest of this section we assume a FCFS regime. Below we use the standard
notation for the M/G/1 queue. In particular, λ denotes the arrival rate,
G(x) is the cumulative distribution function of service (which is assumed to
be continuous), and G∗(s) is the corresponding LST. Also, πi is the steady-
state probability of having i customers in the system, i ≥ 0.

Next we derive the conditional age of the inter-arrival time given the num-
ber in the system. Towards this end, we first need to look into the conditional
residual service time. Specifically, denote by R such a random variable and
by Rn the corresponding residual given that there are n customers in the
system, n ≥ 1. Let rn(x) and R∗

n(s) be the corresponding density function
and LST, respectively, n ≥ 1. Recursive expressions for rn(x) and for R∗

n(s),
n ≥ 1, can be found in [9]. Here we quote only the recursion for R∗

n(s):

R∗
1(s) =

λ

s− λ

G∗(λ)−G∗(s)
1−G∗(λ)
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and

R∗
n(s) =

λ

s− λ

(
G∗(λ)

1−R∗
n−1(s)

1−R∗
n−1(λ)

−G∗(s)

)
, n ≥ 2

Recall by the PASTA property that the distributions of R at random times
and at epochs of arrival, coincide. The same is the case regarding Rn, n ≥ 1.

Theorem 3.1 Let A∗
n(s) be the LST of the age of the arrival given that there

are n customers in the system, n ≥ 0. Then, for the M/G/1 queue

A∗
0(s) =

λG∗(λ + s)

s + λG∗(λ + s)
(13)

and for n ≥ 1,

A∗
n(s) =

λ

(λ + s)πn

× (14)

(
πn−1(1−R∗

n−1(λ + s)) +
∞∑

m=n

πm(1−G∗(λ + s))(G∗(λ + s))m−nR∗
m(λ + s)

)

with R∗
0(s) = G∗(s).

Proof. We deal first with the case where n = 0. As before, we write

fA|L=0(a) =
P(L = 0|A = a)fA(a)

P(L = 0)
=

P(L = 0|A = a)λe−λa

1− ρ
. (15)

Notice that P(L = 0|A = a) is the probability, according to the FCFS
discipline, that the sojourn time of the last customer to arrive is smaller
than or equal to a. Denote the LST of this sojourn time by W ∗(s) and recall
that

W ∗(s) = (1− ρ)
sG∗(s)

λG∗(s) + s− λ
,

(see, e.g., [4], p.433). Also, recall that if F ∗(s) is the LST of a nonnegative
random variable and if F (x) is its cumulative distribution function which is
assumed to be absolute continuous, then

∫ ∞

x=0
F (x)e−sx dx =

F ∗(s)
s

.

Using all of that, multiply both hand sides of (15) by e−sa and integrate with
respect to a, 0 ≤ a < ∞. By some algebra one then gets (13).
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For n ≥ 1 we have,

fA|L=n(a) =
P(L = n|A = a)fA(a)

πn

=

∞∑
m=n−1

P(L = n|A = a, La = m)λe−λaπm

πn
(16)

where La stands for the number in the system at the point of the previous
arrival. We now develop individually each addend in this sum. For n ≥ 1 and
m = n−1, the addend in the sum given in (16) equals P(Rn−1 > a)e−λaπn−1.
For m ≥ n the addend equals

πmλe−λa

a∫

r=0

rm(r)

a−r∫

x=0

g(m−n)(x)Ḡ(a− r − x)dxdr (17)

where g(`)(x) is the density function of the sum of ` independent random
variables all having the same density function g(x). Multiplying both hand
sides of (16) by e−sa, integrating with respect to a, 0 ≤ a < ∞ and some
straightforward algebra, completes the proof. 2

Remark 3.1 Next we give a probabilistic interpretation to (14). First, recall
that the LST of a random variable can be interpreted as follows. Let F ∗(·)
be the LST of a random variable Y . Also, let S be a random variable which
follows an exponential distribution with parameter s. Assume also that Y
and S are independent. Then, F ∗(s) = P(Y ≤ S). Let X and La be an
inter-arrival time and the number of customers at the last arrival instant,
respectively. Also, let Nm(·) be the delayed renewal process with the first
renewal time distributed as Rm and the rest as the service times. Using the
fact that min{X,S} and I{X≤S} are independent, we have, by (14), that

A∗
n(s)πn =

∞∑

m=n−1

P (Nm(X) = m− n + 1, La = m,X ≤ S) . (18)

Example: M/M/1. Much is being simplified in the M/M/1 case due to
the fact that the distribution of R|L = i is the same for all i ≥ 1. In
particular, it follows an exponential distribution with parameter µ. Thus,
inserting R∗

i (s) = µ/(µ + s), i ≥ 1, and πi = (1 − ρ)ρi, i ≥ 0, in (13)
and (14) leads after some trivial algebra to A∗

0(s) = µλ/[(µ + s)(λ + s)] and
A∗

n(s) = µ/(µ+s), n ≥ 1. These results were already derived in the previous
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section where the M/M/1 model was treated as a special case of the G/M/1
model.

Remark 3.2 In the previous section we showed that having exponential
service times is a sufficient condition for the independence between the age
of inter-arrival time and the number of customers in the system, given that
the latter is positive. Here we see that in the M/G/1 this independence
property does not hold. This leads to the conclusion that having exponential
service times is also a necessary condition for this independence property to
hold.
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