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Abstract— In a pay-per-view scheme, a service provider
multicasts the program for which it has the rights on
demand only to those who have paid for it. However, once
payments are made it is tempting to broadcast the program
to all. This occurs both in order to increase advertising
revenues (due to a higher rating) and due to the extra costs
associated with multicasting in comparison with broadcast-
ing. Of course, this can be done only once as reputation
will then be lost. We describe a pricing mechanism which
results in broadcasting while still causing those willing to
pay, to do so and at the monopoly price.

I. PRICING IN A ONE SHOT GAME

Consider a commodity which is owned and sold by
a monopoly. For example, think of a tv channel that
bought the broadcasting rights for the final match of
the European soccer cup. The channel is not obliged
to broadcast it but can deliver it (i.e., multicast) only to
those who pay the price it sets (known as a pay-per-view
scheme). Suppose that the value of the commodity across
potential buyers is subjective. Let F (x) be the proportion
of those who value it by at most x. We assume that this
function is continuous and strictly increasing, and that
F (0) = 0. Let also F (x) = 1 − F (x). If the monopoly
is to set a single price, then in order to maximize its
profit, it should set the price equal to

xmo = arg max
x

xF (x) .

Of course, the assumption here is that only those who
value the commodity by more than the set price will
purchase it.

We consider next two variations of the model and
obtain for each of them the gain for broadcasting instead
of multicasting. 1

∗INRIA, 2004 Route des Lucioles, 06902 Sophia-Antipolis Cedex,
France. E-mail: Eitan.Altman@sophia.inria.fr. The work of this au-
thor was supported by the European EuroNF network of excellence
¦Department of Statistics, The Hebrew University of Jerusalem,

91905 Jerusalem, Israel, E-mail: haviv@huji.ac.il.
1We consider each one of the models separately but they can be

dealt with in a single model in which both are introduced to the
model simultaneously.

a) Variation of the model: income from adver-
tisements: Suppose it is possible to advertise during
broadcasting or multicasting. In particular, let g(p) be
the provider’s gain in the case of a rating to p. Then the
optimization problem faced is

xad = arg max
x
{xF (x) + g(F (x))} .

Remark: We assume here that the presence of
advertisement does not diminish the will to watch the
match. This may be the case when the advertisements
are restricted to the break.

Yet, it is tempting here, once payments are collected,
to broadcast to all and collect the advertising revenue
of g(1) (and not only g(F (xad))). If this is the case,
then it is even better to charge xmo (rather then xad)
and collect even more revenue due to higher intake in
payments.

b) Variation of the model: cost for multicasting:
There is another feature which is common in mul-
ticasting operations. Multicasting, in comparison with
broadcasting, comes with an added cost, borne by the
monopoly. This is due to having to ship the com-
modity to the customers. Assume further that the cost
is linear with the number of customers receiving it
and denote this cost per customer by c. However, if
the commodity is shipped to all, then shipping costs
nothing. This of course is not in line with standard
assumptions in economics. However, it represents the
reality where multicasting vs. broadcasting is concerned.
In both cases a coded transmission is shipped to all. In
case of broadcasting a decoding key is added (at zero
added cost). However, multicasting, comes with an extra
cost per viewer borne by the operator. This is due to
having to keep record of all those who paid (and then
mailing the key to all of them (and only them)). They will
then be able to decode the otherwise coded broadcast.
The optimization problem faced then is

xmu = arg max
x≥c

(x− c)F (x) .

Yet, here too it is tempting for the operator, once
payments are collected, to broadcast the program and



save on multicasting costs. As in the case of possible
advertisements, had this been possible, the announced
price of xmo would lead to an even bigger gain, namely
to a gain of xmoF (xmo).

Of course, the policy of promising pay-per-view and
then to broadcast is shortsighted and unsustainable: Cus-
tomers can be fooled only once. They will soon learn that
those who did not pay, watched the match for free so next
time they too will try to be free riders. Thus, it seems that
the most operators can do is to charge xad and have a
revenue less than xmoF (xmo)+g(1) (in the first version),
or to charge xmu and have a revenue which is less than
xmoF (xmo) (in the second version). In particular, in both
cases the end result will be multicasting only to those
who pay the price of xad, in the first version, or xmu, in
the second. Yet, we argue below that more can be done
with the help of a mechanism that we designed.

II. BROADCASTING WHILE STILL MAINTAINING

CREDIBILITY

In spite of all of the above, we claim next that
the operator can still charge xmo per viewer, gain
xmoF (xmo) and broadcast the match to all (payers as
well as non-payers). In the case where advertisements
are allowed, there will be an extra gain of g(1). This can
be achieved as follows. Suppose this scheme is designed.
The operator announces a pair of numbers composed of
a price x and a fraction q and says (honestly): Those
who pay x will be able to view the match (through
multicasting or broadcasting). Moreover, if (and only if)
at least a fraction of q of the potential subscribers pay
this price of x, than the match will be broadcasted to
all (including to those who did not pay). What is the
optimal choice for x and q for the operator given this
scheme?

A. The game among potential subscribers
Before answering the above question we have to agree

on how potential subscribers behave once a pair (any
pair) of x and q is being announced. The first thing to
observe is that the whereabouts of potential subscribers
interact, and hence they are facing a non-cooperative
game of which they are its players. Also, no dominant
strategy exists to any one of them. For example, one
who values the match by more than x will pay if all
others do not pay, and he will not pay if all others do
so. Thus, the solution concept to adopt here is that of
Nash equilibrium, namely a strategy profile such that if
adopted by all, no individual has an incentive to play
other than what is prescribed for him by the profile.

The following observation is quite straightforward and
thus a formal proof will not be given.

Observation 2.1: Given a price x and a fraction q, the
equilibrium behavior among the customers is unique in
the case where x ≥ F

−1(q). In particular, those who
value it by x or more, pay, while the rest do not pay.
Otherwise, there are many equilibria, among them pay if
and only if your value is not smaller than x.2 However,
in any of these equilibria a fraction of F (x) pay while
the others do not pay.

B. The optimal pricing policy

Assuming the above behaviour among the potential
subscribers, the next observation is immediate from the
previous one.

Observation 2.2: In the case where the operator an-
nounces the pair of x and q, its intake under Nash
equilibrium behaviour of the customers (regardless if the
latter is unique or not), equals

xmin{F (x), q} (1)
Assuming that (1) is indeed the intake of the provider

once he announces x and q, the question next is what is
the pair of x and q which maximise (1). Specifically, the
philosophy of sequential equilibrium and subgame per-
fection (also, called backwards induction), see, e.g.,[5],
pp.268–292 or [7], pp.222–231, says that once a pair of
x and q are announced (and the operator cannot renege
from it), the other players, in our case the customers,
play in accordance to a Nash equilibrium associated
with the resulting subgame. This behaviour, in turn,
will lead to some payoff to the operator. Things in our
model simplify a bit further since there is no ambiguity
regarding this payoff (see (1)). This is the case here
even if the equilibrium is not unique. Knowing that, the
operator will select his move, namely his announced pair
of x and q, so as to maximise his gain as given in (1).

The next theorem says what is the optimal pair of x
and q.

Theorem 2.1: The optimal pair of (x, q) is
(xmo, F (xmo)). In particular, the operator’s intake
is as of the monopoly. Moreover, the program is
broadcasted to all.
Proof. Given customers’ response to any pair of x and
q is as described in Observation 2.1, and hence given
the corresponding intake by the provider as stated in
Observation 2.2, the provider needs to look into the pair
of x and q that maximises (1). Clearly, an optimal value
q for the provider, given the price x and under such cus-

2In summary, to pay if and only if your value is not smaller than
max{x, F

−1
(x)} is always an equilibrium.



tomers’ behaviour, is q = F (x).3 The provider’s profit is
hence xF (x)+g(1) (in the first version) or xF (x) (in the
second) as broadcasting is now guaranteed. Optimizing
now with respect to x, brings us back to the monopoly’s
problem! Thus, the optimal pair for x and q is xmo

and F (xmo), respectively. Customers’ reaction to that is
that F (xmo) among them pay, making the intake equal
to xmoF (xmo). Finally, as the proportion of customers
who pay equals the announced fraction, the program is
broadcasted to all. ¦

We like to be a bit more formal regarding the game
played. The set of strategies for the provider corresponds
to all possible pairs of x and q. The set of strategies for
the player is for each pair of x and q, and given the
value of the program y, to pay or not to pay. Above we
proved that the following is a SPE:

1) The provider: announce xmo and F (xmo).
2) A potential subscriber whose value is y: for any

announced x and q, if y ≥ max{x, F
−1(q)} pay.

Otherwise, do not pay.
Any SPE is an equilibrium but not the other way

around. We next show, via an example, that multiple
equilibria exist here. Suppose, xmo = 20 and F (20) =
0.8. Tag a potential subscriber whose value is 10. Hence,
the following is an equilibrium: All do as the SPE
prescribes but the tagged customer pays only if the an-
nounced x is 25 or above. This is an equilibrium profile.
In particular, the tagged subscriber behaves in an optimal
way given all behave as stated (due to the fact that
x = 25 will never be announced). Indeed, it is common
in cooperative games that non-optimal behaviour outside
the equilibrium path (namely, at those possibilities that
will not be reached, given all play according to the
equilibrium profile), is sometimes a luxury that some
may afford. In any case, it is worth noting that the
resulting payoffs do not change and they coincide with
those of the SPE. Moreover, the prescription for the
provider is the same across all equilibria.

III. BUILDING CREDIBILITY

The issue of honesty on the provider’s side is valid
since looking at each match in isolation, multicasting
only to those who pay in the event that less than a
fraction of q pay for the service, is not part of a subgame
perfect equilibrium strategy profile in the case where the
provider can renege from his promises. This is the case
since broadcasting is always the best response, given
any payments were made. Thus, in order to enforce this

3Note that if q > F
−1

(x) then the net profit is xF (x) + g(F (x))

in the first version or is (x− c)F (x) in the second.

policy, a credible mediator is needed. In particular, if
the service provider wants to gain credibility for future
such scenarios, he may hire a respected body who will
monitor his behavior and will inform potential clients in
cases where the provider does not meet its promises. Of
course, in spite of all of the above, the provider needs
to keep and maintain its multicasting technology: This
is needed in order to make his threat to multicast only
to fee payers credible. Note that credibility issues exists
in related models. One example is a firm who offers
lottery based promotion and hence calls for monitoring.
Another, is a firm who offers huge discounts for the first,
say, one hundred buyers.

The implementation of these policies during a long
series of such scenarios, each of which with its own
demand function F (x), will lead to situations where a
fraction of the customers always pay (a fraction that
depends on the actual F (x)), while the provider always
broadcasts. One can claim that a few instances of mul-
ticasting is needed in order to gain some credibility so
announcing q which is larger than F (xmo) periodically
might be needed. Note also that in practice (and after
credibility is achieved), the firm should charge somewhat
less than xmo: If announcing xmo and a less than the
fraction of F (xmo) of potential customers pay, the firm
will suffer a quantum cost of g(1) − g(F (xmo)) (in
the first version) or cF (xmo) (in the second) due to
multicasting. Charging a bit less will only lead to an
infinitesimal loss in revenue.4

IV. DISCUSSION

c) Fairness issues: Some may find this price mech-
anism as unjust or discriminatory due to the large number
of free riders. This claim can be refuted by observing
that many pricing schemes which are used today were
unheard of just a few years ago. For example, nobody
raises objections when airline passengers pay different
prices for the same flight. Another example are the lower
prices for services or products obtained by efficient users
who purchase via the Internet. This occurs not only
because effort invested in a web search is rewarding,
but because vendors deliberately design two (or more)
webpages offering the same item with a different price
stated in each page. They may charge more if the site is
linked through a paid ad in the portal of a search engine
and charge less for the same item in a site where one

4As stated in Observation 2.1, charging a bit less than xmo will lead
to multiple equilibria. Yet, the equilibria differ only by the identities
of the free riders: Their fraction among the entire population is fixed
and hence the profits are invariant with the executed equilibrium.



needs to invest more time and/or effort in searching in
order to make a ‘hit’.

d) Related work: A related paper to this is [9]
which considers the above version in which multicasting
comes with an extra cost. They deal with a similar
situation in which many tv programs exist, each of which
with its own demand function. In their model, a pair of
(x, q) is announced: The price x is charged and a lottery
decides whether to broadcast or multicast, the former
with a probability q (and the latter with a probability
1−q). The values for x and q are uniform and they do not
vary with the offered program. In case of multicasting,
only those who pay can watch the program. They show
how to derive the optimal q given (a common) x for a
given set of distributions over the demand functions.

In the framework of our above model, it is possible
to see that if a pair of a price x and a probability q
are announced (and broadcasting takes place with prob-
ability q regardless of customers’ payment behavior),
then only those who value the program by more than
x/(1− q) pay.5 Thus, the optimal pair of x and q in this
scheme with lottery for the model with income from
advertisements is

arg max
x,q

xF (x/(1−q))+qg(F (1))+(1−q)g(F (x/(1−q))).

A similar optimization model holds for the case where
multicasting is costly.

e) Economic context: The free riding phenomenon
has been identified and considered by economists for a
long time, see e.g. [4], [11]. With the appearance of P2P
networks, this phenomenon has started to attract attention
of many computer scientists [1], [3] as well, and credit
based mechanisms have been proposed and deployed in
order to diminish this phenomenon.

Another relevant issue in economic theory is that of
public good. Public good can be the construction of
a bridge, treating public waste, laying communication
infrastructure, or, back to our model, broadcasting. The
society at large has the option of going for it or not.
In the former case, an added question is who is to foot
the bill. It makes sense that those who gain from the
common good, will pay for it. Moreover, the larger the
gain, the larger should be the payment. Hence, many
questions arise. Among them is how is it possible to
tell among participants who is who, or how one can
make those who gain more, reveal their true identity
(and pay). After all, they too would prefer to be free
riders. A good introduction to this issue appears in [5],

5This is the value which makes one indifferent between paying or
not. Namely, it solves for y, y − x = qy.

Chapter 11. With public goods, contributors’ benefits are
public or available to all, while provision costs impact
only the contributors [8], [6], [10]. When the operator, as
in our problem, decides to broadcast the program to all
users, the program can be considered as a public good.
Here, as in a public good, if not enough resources are
allocated by all, the good is not made available to all.
What is unique in our model is that the good is always
made available to those who contribute, regardless of
how much is collected in total.

Assurance mechanisms that induce or strengthen co-
operation, necessary for gathering an amount of individu-
als that is sufficient for the construction of a public good,
are the issue of [10]. Our problem differs from the setting
in [10] in the following. In our problem, (i) users are not
symmetric and value differently the public good, (ii) the
operator that broadcasts or multicasts a program is part
of the game where as in [10] the assurance mechanism is
only a tool for coordination and is not related to another
player’s utility.
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