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Abstract

We consider a system consisting of two not necessarily identical
exponential servers having a common Poisson arrival process. Upon
arrival, customers inspect the first queue and join it if it is shorter than
some threshold n. Otherwise, they join the second queue. This model
was dealt with, among others, by Altman et al. (2004). We first derive
an explicit expression for the Laplace-Stieltjes transform of the distri-
bution underlying the arrival (renewal) process to the second queue.
Second, we observe that given that the second server is busy, the two
queue lengths are independent. Third, we develop two computational
schemes for the stationary distribution of the two-dimensional Markov
process underlying this model, one with a complexity of O(n log ±−1),
the other with a complexity of O(logn log2 ±−1), where ± is the toler-
ance criterion.

1 Introduction

We consider the following model. A single stream of Poisson arrivals feeds
two first-come first-serve (FCFS) exponential servers. Upon arrival at the
system, customers join the queue in front of the first server if it is shorter



than some threshold value n. Otherwise, they join the second queue (re-
gardless of its length). Future regrets are not possible. This model was
considered in the past, both from a computational and from a decision mak-
ing viewpoints. For the latter case the decision problem is which value for
the threshold should be selected by selfish customers who wishes to minimize
his/her waiting time (first option), or by a central planner who minds the
overall mean waiting time across all customers (second option). See [2] or [5].
This is, for example, the decision making faced by a driver who inspects the
line at the first among two gas stations in a highway and he/she has to decide
whether to get through there or to move to the next one. In assessing both
options (after observing the first queue), the relevant consideration is the ex-
pected queue length in front of the second server, given the queue length in
front of the first server. Note that this value is a function of the behavior of
previously arrived customers who might have adopted a common threshold
strategy. The model coupled with some known fact on it are presented in
Section 2.

As was observed before, e.g., [2], the arrival times to the second queue
form a renewal process, making this queue a G/M/1 queue. Our first contri-
bution, given in Section 3, is to derive an explicit expression for the Laplace-
Stieljies Transform (LST) of the distribution of the interarrival time to the
second queue. This LST is derived by solving a system of second order
difference equations. Our derivation improves upon [3] who developed a
non-polynomial recursion (in the threshold value) for the LST.

In Section 4 we develop a computational scheme for solving the station-
ary distribution of the resulting Markov process. Our derivation leads to
an explicit expression for the stationary distribution of the two-dimensional
Markov process underlying this model. Based on that we are able to conclude
that given that the second server is busy, the two queue lengths are inde-
pendent.1 Our derivation, given in Section 4, utilizes the matrix-geometric
technique. Specifically, using matrix-geometric terminology, we consider a
quasi-birth and death process with the second queue size being its level and
the number of those in the first line being its phase. While applying the
matrix-geometric machinery, we have exploited three features of the model
under consideration: (1) the level and the phase cannot change simultane-
ously, (2) the transition from a given level to a higher one is possible only via
one value for the phase (which is the phase corresponding to the threshold

1An alternative proof is given in [7]. Yet, our findings here preceded those in [7].
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value at the first line), and (3) the boundary transition rates, namely those
corresponding to the current level being zero, are a straightforward trunca-
tion of the main transition rates. Indeed, our technique is applicable for any
model which possesses these three features.2 This is an alternative approach
to the one designed in [2] which is based on utilizing partial generating func-
tions. We find the matrix-geometric technique quite effective here and more
efficient then the one suggested in [2]. Specifically, in [2] all is stated in terms
of an eigensystem (without giving any further details on how this eignesys-
tem is computed). We state explicitly a polynomial Pn(⋅) whose root is a
key feature here. Moreover, this polynomial is computed in an O(n2) effort,
when n is the buffer size at the first server. In fact, a recursive procedure we
developed finds all such polynomials for all buffer sizes m, 1 ≤ m ≤ n, with
an O(n2) effort.3 More importantly, we show that computing Pn(x) for any
given value of x is an O(n) task (which can be done without first comput-
ing the coefficients of the polynomial). Using then a bisection procedure for
finding the unique root of this polynomial which is known to lie in a bounded
interval comes with a complexity of O(n log ±−1) when ± is the required tol-
erance level. A related procedure is also suggested, now with a complexity
of O(log n log2 ±−1). Section 5 concludes with a numerical example.

2 The model

The first queue in our model is an M/M/1/n queue with a finite buffer of
size n where its overflow constitutes the arrival process to the second queue.
The analysis of the former queue is straightforward, being in fact a birth
and death process with {0, 1, . . . , n} as its state space. In turn, the second
queue is a G/M/1 model as its arrival process is a renewal process. This
G/M/1 model and the matrix-geometric technique will be utilized in order
to investigate the system’s characteristics at steady state. Among them are
the joint distribution of the number of customers at both queues and the
corresponding marginal distributions. A formal statement of the model is

2Two more models who share this properties appear in [4] and in [8]. In the latter
model the level changes down only through one value for the phase.

3This is a reduced complexity in comparison with general methods for computing char-
acteristic polynomials (usually done with O(n3) classical methods, although the best to
our knowledge is the Keller-Gehrig fast algorithm which has a complexity of O(n!) where
2.5 ≤ w < 3. See[10]).
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given next.
Assume a Poisson arrival process with a rate of ¸. Let ¹1, ¹2 be the

service rates of the first and of the second server, respectively, and assume
that service times are exponentially distributed. Suppose everybody uses
the same pure threshold strategy n ≥ 1.4 In particular, the largest possible
number of customers lining up at the first server (inclusive of the one in
service) is n. When this threshold is reached, the arrivals join the other
line. Thus, the state space of the resulting irreducible Markov process is
{(i, j) : 0 ≤ i ≤ n, j ≥ 0} when i denotes the number of customers at
the first line and j is the number at the second. See Figure 1. Assuming
stability, and hence the existence of a stationary distribution, let ¼ij be the
limit probability of state (i, j). The requirement ¸/(¹1 + ¹2) < 1, which is
necessary and sufficient for stability in the case, for example, where the two
servers are pooled and one line is formed, is not sufficient for stability here:
The stability condition should be threshold dependent. More considerations
on this issue are given later.

Let Pℎ (for phase) and L (for level) be the random variable describing
the number of customers in the first line and the second line, respectively.
For 0 ≤ i ≤ n, let ¼i. = P(Pℎ = i) = Σ∞

j=0¼ij be the marginal probability of
the first queue length being equal to i. Because the number in front of the
first server is a birth and death process with elastic boundaries at 0 and n,
with birth rates of ¸, 0 ≤ i ≤ n− 1, and death rates of ¹, 1 ≤ i ≤ n,

¼i. =
1− ¸/¹1

1− (¸/¹1)n+1
(¸/¹1)

i, 0 ≤ i ≤ n. (1)

In particular, stability is not an issue here. The queue length process in front
of the second line is not a birth and death process and the two stochastic
processes representing queue lengths at both lines, are not independent.

The arrival process to the first server inclusive of the overflow to the
second line, is Poisson with rate ¸. The arrival process to the second line
is a renewal process but it is not a Poisson process. Its rate equals ¸¼n.,
where ¼n. can be read from (1). Hence, a necessary and sufficient condition
for stability is

¸¼n. < ¹2 (2)

4The case where n = 0 makes the first server always idle and the second line becomes
an M/M/1 queue.
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as ¹2 is the service rate in the second line. Denote by ½n the utilization level
of the second server.5 Thus,

½n =
¸¼n.

¹2

. (3)

3 The arrival process to the second queue

The model, among others, assumes the following: (1) the external arrival
process is Poisson, (2) the service times at the first server follow exponen-
tial distribution and (3) all use the same threshold joining strategy. All of
these lead to independent and identically distributed interarrival times to
the second queue. In other words, the arrival process to the second queue
is a renewal process. Finally, as service times here follow an exponential
distribution, the second queue is in fact an G/M/1 queue. We suggest below
a procedure for finding the LST of the distribution underlying this arrival
process. This can be considered as an alternative for the derivation made
in [2, 3]. As we discuss below, our technique is more explicit and more
efficient to use.

Let the sequence of continuous random variables G
(n)
i , 0 ≤ i ≤ n, corre-

spond to the time elapsed from the instant when there are i customers at the
first queue (including the one in service when i ≥ 1) until the first arrival to
the second queue occurs when the size of the buffer at the first queue equals
n. In particular, G(n)

n represents the interarrival time to the second queue
and this is the random variable we are after.

With minimal abuse of notation, let us now denote by G
(n)
i the distri-

bution function of this random variable. It is possible to see that G
(n)
i ,

0 ≤ i ≤ n, satisfies the following identities (among distributions). Denote by
A and S exponentially distributed random variables with parameters ¸ and
¹1, respectively. Assume that A and S are independent. Then,

G
(n)
0 =̃A+G

(n)
1

G
(n)
i =̃min{A, S}+ 1{A<S}G

(n)
i+1 + 1{A≥S}G

(n)
i−1, 1 ≤ i ≤ n− 1

G(n)
n =̃min{A, S}+ 1{A<S}0 + 1{A≥S}G

(n)
n−1

5The subscript of n is in order to emphasize the dependence of this utilization level of
n.
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Note that all operations above are between independent random variables.
Let G

(n)∗
i (s) be the LST of G

(n)
i , 0 ≤ i ≤ n. It is easy to see from the above

equalities, that G
(n)∗
i (s), 0 ≤ i ≤ n, obey the following system of difference

equations:

G
(n)∗
0 (s) =

¸

¸+ s
G

(n)∗
1 (s) (4)

G
(n)∗
i (s) =

¸

¸+ ¹1 + s
G

(n)∗
i+1 (s) +

¹1

¸+ ¹1 + s
G

(n)∗
i−1 (s), 1 ≤ i ≤ n (5)

G(n)∗
n (s) =

¸

¸+ ¹1 + s
+

¹1

¸+ ¹1 + s
G

(n)∗
n−1(s) (6)

Equations (4), (5) and (6) form a system of difference equations of the second
order, where (5) is the main (and homogeneous) difference relationship, and
where (4) and (6) are the boundary conditions. The solution for this system
provides us with the all important G(n)∗

n (s).
The system is solved as follows. The characteristic equation of (5) is

¸x2(s)− (¸+ ¹1 + s)x(s) + ¹1 = 0 and its roots are

x1,2(s) =
¸+ ¹1 + s±

√
D(s)

2¸
(7)

where D(s) = (¸+ ¹1 + s)2 − 4¸¹1. Then, the common form of the solution

is G
(n)∗
i (s) = ®

(n)
1 (s)xi

1(s) + ®
(n)
2 (s)xi

2(s), 0 ≤ i ≤ n, where the multipliers

®
(n)
1 (s) and ®

(n)
2 (s) are to be found from the boundary equations (4) and (6).

Substituting the common form of the solution into (4), yields the identity

®
(n)
2 (s) = −c(s)®

(n)
1 (s), where

c(s) =
¸+ s− ¸x1(s)

¸+ s− ¸x2(s)
. (8)

Then, G
(n)∗
i (s) = ®

(n)
1 (s)[xi

1(s) − c(s)xi
2(s)], 0 ≤ i ≤ n. Substituting this

into (6) (first with i = n and then with i = n − 1) yields an expression for

®
(n)
1 (s), namely,

®
(n)
1 (s) =

¸

¸+ ¹1 + s
⋅ 1

xn
1 (s)− c(s)xn

2 (s)− ¹1

¸+¹1+s
(xn−1

1 (s)− c(s)xn−1
2 (s))

and the solution to the system (4) - (6) is given by

G
(n)∗
i (s) =

¸

¸+ ¹1 + s
⋅ xi

1(s)− c(s)xi
2(s)

xn
1 (s)− c(s)xn

2 (s)− ¹1

¸+¹1+s
(xn−1

1 (s)− c(s)xn−1
2 (s))
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for 0 ≤ i ≤ n. In particular,

Theorem 1 The LST of the interarrival times to the second queue equals,
G(n)∗

n ,

¸

¸+ ¹1 + s
⋅ xn

1 (s)− c(s)xn
2 (s)

xn
1 (s)− c(s)xn

2 (s)− ¹1

¸+¹1+s
(xn−1

1 (s)− c(s)xn−1
2 (s))

where x1,2(s) is given in (7) and where c(s) is given in (8).6

Remark 1. Computing G(n)
n (s) for an individual value for s can be done

with log n operations.
Remark 2. It is well-known that for a G/M/1 queue (for example, see [16],
pp. 179-180), under steady-state conditions, the number of customers at
epochs of arrivals follows a geometric distribution with a parameter ¾n, where
¾n is the unique solution of the equation in s

s = G(n)∗
n (¹2(1− s)) (9)

with s ∈ [0, 1). Also, the corresponding distribution of the number of cus-
tomers at random times is given by

¼.j =

{
1− ½n, j = 0

½n(1− ¾n)¾
j−1
n , j ≥ 1

(10)

where ½n = ¸¼n./¹2 is the utilization level of the second server (see (1)).
We next give some details on the procedure for deriving G(n)∗

n (s) given
in [2, 3]. Let H∗

m(s) be the LST for the time it takes for the number in
the first queue to increase from m to m + 1, 0 ≤ m ≤ n. Note that an
increase from n to n+1 corresponds to an arrival to the second queue. Also
note that H∗

m(s), 0 ≤ m ≤ n, are not functions of n. Finally, observe that
H∗

n(s) = G(n)∗
n (s) but H∗

m(s) ∕= G(n)∗
m (s) for 0 ≤ m ≤ n− 1. Then, as shown

in [3],

H∗
m(s) =

¸

¸+ s+ ¹1(1−H∗
m−1(s))

, 1 ≤ m ≤ n. (11)

with H∗
0 (s) = ¸/(¸ + s). It is hence deduced that (11) leads to a non-

polynomial recursive derivation for H∗
n(s)(= G(n)∗

m (s)). The computational
complexity for computing H∗

n(s) in this way for any given value for s is O(n).

6Note that the terms given in (7) and in (8) are not functions of n.
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Figure 1: Transition rates diagram
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Remark 3. Let H∗
∞(s) = limn→∞H∗

n(s). Then, by (11),

H∗
∞(s) =

¸

¸+ s+ ¹1(1−H∗∞(s))
.

We can now conclude that H∗
∞(s) is the LST of a busy period of an M/M/1

queue with arrival rate ¹1 and service rate ¸. See, e.g., [11], p.18. This fact
has the following interpretation. In an M/M/1 queue, the time it takes for
the number of customers to be dropped by one is distributed as a single busy
period. Here, we need the number of customers to go up by one (from the
threshold n), swapping the roles of the arrival and the service rates. The
phenomenon holds, though, only at the limit, since the boundary at zero
makes the above explanation being incorrect for any finite n. Yet, when
n → ∞, the effect of this boundary vanishes.

4 The stationary distribution via matrix ge-

ometric

The transition rates diagram of the Markov process we deal with is depicted
in Figure 1. In fact, this is the formal statement of our model.
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Writing the balance equations in a matrix form as done next, we see
that the generator of the Markov chain has a block partition form. Hence,
the underlying irreducible Markov process is a quasi-birth and death process.
Using the main theorem of matrix-geometric [14] p.7, a numerical solution
for its stationary distribution ¼ij is presented below. Using special features
of this model, we develop an efficient algorithm for solving for ¼ij, 0 ≤ i ≤
n, j ≥ 0, which is the joint probability for i customers at the first queue
(including the one in service when i ≥ 1) and j at the second one. For the
case where j > 0, the (main) balance equations are

(¸+ ¹1 + ¹2)¼ij = ¸¼i−1,j + ¹1¼i+1,j + ¹2¼i,j+1, 1 ≤ i ≤ n− 1, j ≥ 1. (12)

(¸+ ¹1 + ¹2)¼nj = ¸¼n−1,j + ¹2¼n,j+1 + ¸¼n,j−1, j ≥ 1. (13)

(¸+ ¹2)¼0j = ¹1¼1j + ¹2¼0,j+1, j ≥ 1 (14)

For the case where j = 0, the (boundary) balance equations are

(¸+ ¹1)¼i0 = ¸¼i−1,0 + ¹1¼i+1,0 + ¹2¼i1, 1 ≤ i ≤ n− 1 (15)

(¸+ ¹1)¼n0 = ¸¼n−1,0 + ¹2¼n1 (16)

¸¼00 = ¹1¼10 + ¹2¼01 (17)

Define three matrices Q0,Q1 and Q2 in R(n+1)×(n+1) by

Q0(st) =

{
¸, s = t = n
0, otherwise

Q1(st) =

⎧
⎨
⎩

−(¸+ ¹2), s = t = 0
−(¸+ ¹1 + ¹2), 1 ≤ s = t ≤ n

¸, 0 ≤ s ≤ n− 1, t = s+ 1
¹1, 1 ≤ s ≤ n, t = s− 1
0, otherwise

and

Q2(st) =

{
¹2, 0 ≤ s = t ≤ n
0, otherwise
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Or,

Q0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 ⋅ ⋅ ⋅ 0 0 0
0 0 ⋅ ⋅ ⋅ 0 0 0
...

... ⋅ ⋅ ⋅ ...
...

...
0 0 ⋅ ⋅ ⋅ 0 0 0
0 0 ⋅ ⋅ ⋅ 0 0 ¸

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Q1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−¸− ¹2 ¸ 0 ⋅ ⋅ ⋅ 0 0 0
¹1 −¸− ¹1 − ¹2 ¸ ⋅ ⋅ ⋅ 0 0 0
0 ¹1 −¸− ¹1 − ¹2 ⋅ ⋅ ⋅ 0 0 0
...

. . . . . . . . .
...

...
...

0 0 0 ⋅ ⋅ ⋅ ¹1 −¸− ¹1 − ¹2 ¸
0 0 0 ⋅ ⋅ ⋅ 0 ¹1 −¸− ¹1 − ¹2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

Q2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

¹2 0 0 ⋅ ⋅ ⋅ 0 0
0 ¹2 0 ⋅ ⋅ ⋅ 0 0
...

...
. . . ⋅ ⋅ ⋅ ...

...
0 0 0 ⋅ ⋅ ⋅ ¹2 0
0 0 0 ⋅ ⋅ ⋅ 0 ¹2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= ¹2I

Let the probability vector of all states (i, j) with a fixed value for the
level j be ¼j = (¼0j, ¼1j, ⋅ ⋅ ⋅ , ¼nj). It is easy to see that the main balance
equations can be written as

¼jQ0 + ¼j+1Q1 + ¼j+2Q2 = 0, j > 0 (18)

The system of linear equations defined in (18) does not hold for the case
where j = 0. Equations (15), (16), (17), written in a matrix form, are

¼0P1 + ¼1Q2 = 0 (19)

where

P1(st) =

⎧
⎨
⎩

−¸, s = t = 0
−(¸+ ¹1), 1 ≤ s = t ≤ n

¸, t = s+ 1, 0 ≤ s ≤ n− 1
¹1, t = s− 1, 1 ≤ s ≤ n
0, otherwise
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or,

P1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−¸ ¸ 0 ⋅ ⋅ ⋅ 0 0 0
¹1 −(¸+ ¹1) ¸ ⋅ ⋅ ⋅ 0 0 0
0 ¹1 −(¸+ ¹1) ⋅ ⋅ ⋅ 0 0 0
...

. . . . . . . . .
...

...
...

0 0 0 ⋅ ⋅ ⋅ ¹1 −(¸+ ¹1) ¸
0 0 0 ⋅ ⋅ ⋅ 0 ¹1 −(¸+ ¹1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

We assume a lexicographic order of the elements of the state-space {(i, j)∣ 0 ≤
i ≤ n, j ≥ 0}, first by the level and then by the phase, that is, state (i1, j1)
precedes state (i2, j2) if j1 < j2, or if j1 = j2 and i1 < i2. Thus, the generator
of the Markov process, can be written as

⎛
⎜⎜⎜⎜⎝

P1 Q0 0 0 ⋅ ⋅ ⋅
Q2 Q1 Q0 0 ⋅ ⋅ ⋅
0 Q2 Q1 Q0 ⋅ ⋅ ⋅
...

. . . . . . . . . . . .

⎞
⎟⎟⎟⎟⎠

making its block form more apparent.
For a quasi-birth and death process, as we have above, where the positive

transition rates when the level is zero, coincide with the corresponding rates
at all other levels, the stationary distribution subvectors (when exist) ¼j,
j ≥ 0, obey the relationship

¼j = ¼0R
j, j ≥ 0

for some square and nonnegative matrix R, called the rate matrix. This
matrix is the minimal nonnegative solution of the matrix-quadratic equation7

X2Q2 +XQ1 +Q0 = 0 . (20)

See [14], p.9.
Next we develop an explicit expression for R. This was not done in [2] as

an alternative method for computing the limit probabilities was chosen. In
particular, we show that all the entries in R, but those in the last row, are
zeros. Such a relatively simple shape provides an efficient way to compute the
rest of the entries in R. Having it at hand, coupled with the boundary balance
equations (19), one is able to compute the entire stationary distribution.

7That means that for any other solution X∗, R ≤ X∗ and the inequality is entry-wise.
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4.1 Solving for the rate matrix

The special structure of the matrix Q0, namely that it is a matrix all its
entries but one, (Q0)nn, are zeros, will be helpful in constructing the rate
matrix R. We like to note that this is a special case of the model dealt with
in [15] where the corresponding Q0 is assumed to be a rank-one matrix. See
also [13, ?, 4] for more on this case and for some further examples with a
rank-one matrices Q0.

What is said next is true for any quasi-birth and death process. Let c be a
constant with c ≥ maxs ∣(Q1)ss∣. Then, define the three nonnegative matrices
A0, A1 and A2 as follows: Let A0 = Q0/c, A2 = Q2/c, and (A1)st = (Q1)st/c,
t ∕= s with (A1)ss = 1−Σt(A0+A2)st−Σt ∕=s(A1)st.

8 Initializing withX(0) = 0
and defining, recursively,

X(k + 1) = X2(k)A2 +X(k)A1 + A0, k ≥ 0

then in an elementwise fashion X(k + 1) ≥ X(k), k ≥ 0, and

R = lim
k→∞

X(k). (21)

Finally, Rst is the expected number of visits in state (t, j + 1) before first
re-entering level j for a process which initiates in state (s, j) for any j ≥ 0.

When one approximates the solution of (20) with the entry-wise mono-
tonic matrix sequence {X(k)∣k ≥ 0} defined through the recursion

X(k + 1) = X2(k)A2 +X(k)A1 + A0

which initiates with X(0) = 0, one gets X(1) = A0. Due to the shape of Q0,
all the entries of X(2), but those in the last row, are zeros too. Moreover, as
the iterative procedure continues, the same is the case with all matrices X(k),
k ≥ 0. As {X(k)}∞k=0 converges when k goes to infinity, to a solution of (20),
R itself possesses the same shape. In summary, Rij = 0 for 0 ≤ i ≤ n − 1
and 0 ≤ j ≤ n. Thus, for some vector w ∈ Rn+1

R =

⎛
⎜⎜⎜⎜⎝

0 ⋅ ⋅ ⋅ 0
... ⋅ ⋅ ⋅ ...
0 ⋅ ⋅ ⋅ 0
w0 ⋅ ⋅ ⋅ wn

⎞
⎟⎟⎟⎟⎠

8Note that A0 +A1 +A2 is a stochastic matrix. Moreover, its corresponding discrete-
time Markov chain is a uniformization of the original continuous-time Markov process.
See [16] for more on this concept.
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Note that w is the unique (up to a multiplicative scalar) left eivenvector of
R and that wn is it unique non-zero eigenvalue. Also,

Rj =

⎛
⎜⎜⎜⎜⎝

0 0 ⋅ ⋅ ⋅ 0
...

... ⋅ ⋅ ⋅ ...
0 0 ⋅ ⋅ ⋅ 0

w0w
j−1
n w1w

j−1
n ⋅ ⋅ ⋅ wj

n

⎞
⎟⎟⎟⎟⎠
, j ≥ 1 (22)

or
Rj = wj−1

n R, j ≥ 1 . (23)

Our main task is then the computation of the vector w = (w0, w1, ⋅ ⋅ ⋅ , wn)
with a special interest in wn. As R solves (20) and as R2 = wnR, one gets
from (20) that wnRQ2 +RQ1 +Q0 = 0 and hence R = −Q0(wnQ2 +Q1)

−1.
Because of the structures of R, Q0 and Q1,

w = −¸(Q1 + wn¹2I)
−1
n. (24)

where (Q1 + wn¹2I)
−1
n. is the last row of (Q1 + wn¹2I)

−1. In particular,

wn = −¸(Q1 + wn¹2I)
−1
nn . (25)

As the righthand side of (25) is a ratio between two polynomials in wn,
both being of degree n+ 1, we conclude that wn is a root of an n+ 2 degree
polynomial. Once wn is in hand, the entire vector w ∈ Rn+1 can be computed
via (24). Clearly, 0 < wn < 1 and this is a necessary and sufficient condition
for stability. Also, wi > 0, 0 ≤ i ≤ n. Moreover, the existence of such a
vector is a necessary and sufficient condition for stability, in which case, by
the ergodic theory, such a vector is unique.

Thus, the computation of w should be started from the computation
of wn. This value plays an important role in our model: First, as we have
already seen, this is the geometric factor underlying the marginal distribution
in the second queue. Second, wn < 1 is a necessary and sufficient condition for
stability. Recall that inequality (2) is also a necessary and sufficient condition
for stability. Of course, these two conditions are equivalent. However, this
by no means implies that wn and ¸¼n./¹2 are equal.

4.2 The Steady-state probability vector

We defer the computation of w to the next subsection and assume throughout
this subsection that w was computed. Once w is in hand, computing ¼ij is

13



relatively straightforward. We do that next for the sake of completeness,
although much of what is below appears in [2]. An important by-product of
this derivation is stated in Theorem 2: Conditioning on L ≥ 1, L and Pℎ
are independent.

As ¼j = ¼0R
j, j ≥ 0, we get by (22) that

¼j+1 = wn¼j

and that
¼j = ¼n0w

j−1
n w, j ≥ 1. (26)

In other words,
¼ij = ¼n0wiw

j−1
n , 0 ≤ i ≤ n, j ≥ 1, (27)

Hence, P(L∣L ≥ 1) = wj−1
n (1 − wn), j ≥ 1. In other words, L∣L ≥ 1 is

Geom(1− wn) distributed. Also, immediate from (27) is the fact that

P(Pℎ = i∣L = j) =
wi∑n

k=0wk

, 0 ≤ i ≤ n, j ≥ 1. (28)

The next lemma states a useful observation.

Lemma 1
n∑

k=0

wk = ¸/¹2 . (29)

Proof. The stationary transition rate of seeing a level being decreased from
j + 1 to j, j ≥ 1, is ¼.j+1¹2 where ¼.j = Σn

i=0¼ij = P(L = j), j ≥ 0. The
corresponding value of the level being increased from j to j + 1 (by (28)) is
¼.j

wn

Σn
k=0

wk
¸. As the two rates coincide, we get that Σn

k=0wk = ¸/¹2. ∙

Theorem 2

P(Pℎ = i∣L = j) =
¹2

¸
wi, 0 ≤ i ≤ n, j ≥ 1. (30)

In particular, conditioning on L ≥ 1, L and Pℎ are independent. More-
over, again conditioning on L ≥ 1, L possesses a geometric distribution with
parameter 1− wn, i.e.,

P(L = j∣L ≥ 1) = (1− wn)w
j−1
n , j ≥ 1.

and

E(L∣L ≥ 1) =
1

1− wn

.

14



Proof. Equation (28) coupled with (29), lead to (30). The rest of the
Theorem is as straightforward. ∙
Remark 4. Above we showed that, given L ≥ 1, L and Pℎ are independent.
Our proof was technical: The joint probabilities are the product of marginal
probabilities. We find this phenomenon quite puzzling. The fact that L
and Pℎ are ‘almost’ independent is not that intuitive and it calls for an
explanation. Such an explanation, in fact a qualitative non-technical proof,
is given in [7].
Remark 5. The fact that L∣L ≥ 1 is geometrically distributed also follows
from the fact that L is an G/M/1 model for which this phenomenon is well-
known. Theorem 2 states that 1 − wn is the parameter of this distribution.
From (27) coupled with Theorem 2, we get the following formulas:

P(L = j) = ¼.j = ¼n0
¸

¹2

wj−1
n , j ≥ 1 (31)

and

P(L ≥ 1) = ¼n0
¸

¹2

1

1− wn

. (32)

Thus, the next value we are after is ¼n0. In fact, our goal now is to deter-
mine ¼0 (in terms of w). One option is to utilize the boundary equation (19)
which now becomes

¼0P1 + ¼0RQ2 = 0,

so ¼0 spans left null space of the matrix P1 + RQ2. Yet, we next derive a
more efficient way which does not call for dealing with this null space.

From (27), we learn that

¼i. = ¼i0 + ¼n0

∞∑

j=1

wiw
j−1
n = ¼i0 + ¼n0

wi

1− wn

, 0 ≤ i ≤ n (33)

In particular, when i = n we get that

¼n. =
¼n0

1− wn

. (34)

The value for ¼n. can be read from (1) and hence9

9An alternative derivation is as follows: From (3) and (32) we learn that

1− ¼n0
¸

¹2

1

1− wn
= 1− ½n .
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¼n0 = (1− wn)
1− ¸/¹1

1− (¸/¹1)n+1
(¸/¹1)

n, 0 ≤ i ≤ n. (35)

Once ¼n0 is in hand, we can use (33) and (1) in order to find ¼i0, 0 ≤ i ≤ n.
All of these, coupled with (27), lead us to the most explicit expression we
can get for ¼ij, 0 ≤ i ≤ n, j ≥ 0, as can be seen below in our summarizing
theorem.

Theorem 3

¼i0 =
1− ¸/¹1

1− (¸/¹1)n+1
((

¸

¹1

)i − wi(
¸

¹1

)n), 0 ≤ i ≤ n,

¼ij = (1− wn)wi
1− ¸/¹1

1− (¸/¹1)n+1
(¸/¹1)

nwj−1
n , 0 ≤ i ≤ n, j ≥ 1,

P(L = j) = ¼.j = (1− wn)
¸

¹2

1− ¸/¹1

1− (¸/¹1)n+1
(¸/¹1)

nwj−1
n , j ≥ 1. (36)

The utilization level of the second server equals

P(L ≥ 1) =
¸

¹2

1− ¸/¹1

1− (¸/¹1)n+1
(¸/¹1)

n (37)

10 and the mean number of customers there equals

E(L) = E(L∣L ≥ 1)P(L ≥ 1) =
1

1− wn

¸

¹2

1− ¸/¹1

1− (¸/¹1)n+1
(¸/¹1)

n.

Comparing (10) with (36), we conclude that the geometric factors wn and ¾n

coincide.
Our final result gives the conditional expected number in the second queue

given how many are in the first queue. This is an important measure for one
who observes the first queue and needs to decide whether or not to join this
queue (given all others use the threshold strategy of joining the second queue
if and only if there are at least n in the first queue).

Hence,

¼n0
¸

¹2

1

1− wn
= ½n .

But, ½n = ¸¼n./¹1 (see (3)). Thus, ¼n0 = (1− wn)¼n..
10Although (37) can be deduced from (36) straightforwardly, we observe that it is free

of w. The argument is that the utilization level equals the arrival rate ¸¼n. (where ¼n.

can be read from (1)) divided by the service rate which equals ¹2.
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Corollary 1

E(L∣Pℎ = i) =
1

1− wn

(
¸

¹1

)n−iwi, 0 ≤ i ≤ n. (38)

In particular,

E(L∣Pℎ = n) =
wn

1− wn

. (39)

Proof.

E(L∣Pℎ = i) =

∑∞
j=1 j¼ij

¼i.

=
¼n0wi

∑∞
j=1 jw

j−1
n

¼i.

=
¼n0wi

¼i.(1− wn)2

Finally, substituting the expressions for ¼n0 and ¼i. as they appear in (35)
and in (1), respectively, concludes the proof. ∙
Remark 6. Since, given L ≥ 1, L and Pℎ are independent, the issue of what
is the behaviour of the function in i, E(L∣Pℎ = i), 0 ≤ i ≤ n, is somewhat
equivalent of dealing with the values P(L ≥ 1∣Pℎ = i). Indeed, it is possible
to see that

P(L ≥ 1∣Pℎ = i) = wi(
¸

¹1

)n−i = E(L∣Pℎ = i)(1− wn), 0 ≤ i ≤ n (40)

which coincides with (38) up to a multiplicative constant. Although we did
not prove it, it can be conjectured that (40) is monotone increasing with i.
In this case, when ¸/¹1 > 1, wi will also be monotone increasing with i. Our
numerical example in Section 5 exemplifies that. It is not clear what should
be the case when ¸/¹1 < 1.

4.3 Computing the vector w

We have already mentioned above that wn can be found by solving for the
root of an n + 2 degree polynomial. Denote this polynomial by Pn(⋅). We
next state a recursive relationship for Pi(⋅), 1 ≤ i ≤ n, leading to an O(n2)

algorithms for computing the coefficients defining Pi()̇, for all 1 ≤ i ≤ n.
In fact it is possible to by-pass the need to compute the polynomial itself:
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As we show below computing Pn(x) for a fixed value for x is an O(n) task
and it can be done without the need to compute first the coefficients of the
polynomial Pn(⋅). Hence, using a numerical procedure, such as bisection to
compute a root of a polynomial which is known to lie uniquely in a given
interval, comes with a complexity of O(n log ±−1), where ± is the tolerance
level.

Once wn is in hand the other entries of w can be computed, as we show
below in Theorem 5 with a total added complexity of O(n). This is of course
better than using (24) as is, namely inverting the matrix Q1+wn¹2I. We like
to note that the derivation in [2] is also based on w (up to a multiplicative
constant). They, however, do not give details on how to compute it (once
they stated that it is proportional to an eigenvector of the rate matrix).

For n ≥ 0 and a scalar x, recursively set Pi(x), i ≥ 0, in x via

Pi(x) = xPi−1(x)− ¸¹1Pi−2(x), i ≥ 2 (41)

initiating with P0(x) = 1 and P1(x) = x. Note that computing Pn(x) for any
given value for x is an O(n) task. Starting with [9], this type of recursion
commonly appears when dealing with transient behavior of Markov chains.

Theorem 4 Let c = wn¹2−¸−¹1−¹2. Then, c solves the following equation
in x:

x+ ¸+ ¹1 + ¹2

¹2

= −¸
(x+ ¹1)Pn−1(x)− ¸¹1Pn−2(x)

(x+ ¹1)Pn(x)− ¸¹1Pn−1(x)
. (42)

Also, let P−1(x) = 0. Then,

wi = −¸(−1)n+i¹n−i
1

(c+ ¹1)Pi−1(c)− ¸¹1Pi−2(c)

(c+ ¹1)Pn(c)− ¸¹1Pn−1(c)
, 1 ≤ i ≤ n. (43)

and

w0 = −¸(−1)n¹n
1

1

(c+ ¹1)Pn(c)− ¸¹1Pn−1(c)
. (44)

Finally, c is the unique solution to (42) such that additionally

−¸− ¹1 − ¹2 < c < −¸− ¹1 (45)

and the values for wi, 0 ≤ i ≤ n, as appear in (43) and (44), are positive.

The proof of this theorem is given in the Appendix. We like to point
out that for the model dealt with in [12], the matrix geometric technique
leads also to (different) polynomials which are also defined recursively. The
following Theorem summarizes the efficiency of our procedure.
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Theorem 5 The complexity for finding wn with a tolerance level of ±, is
O(n log ±−1). Once wn is in hand, computing w is with a complexity of O(n).

Proof. Finding wn, or equivalently c as defined in Theorem 4, can be done
with a one-dimensional search algorithm, such as bisection. Specifically, the
ergodic theorem guarantees that there exists a unique solution wn between
zero and one. This fact determines the original interval in which the search
initiates. Moreover, since computing Pn(x) for any given x comes with an
O(n) effort (see (41)), this is also the effort requires for each of the iterations
in the bisection procedure. How many such iterations are needed is now a
function of the tolerance level. In particular, for a final interval in which wn

lies in to be with a width of ±, log2 ±
−1 iterations are required. Once wn is

in hand, it is immediate from (43) that computing the entire vector w has a
complexity of O(n). ∙

The following two theorems give more explicit expressions for Pn(x) than
the one given in (41), one of which leads to an alternative procedure for
computing wn.

Theorem 6

Pn(x) =
⌊n/2⌋∑

i=0

xn−2ik
(n)
i (¸¹1)

i, n ≥ 0 (46)

with
k
(n)
0 = 1, n ≥ 0

k
(n)
1 = −(n− 1), n ≥ 2

k
(n)
i = k

(n−1)
i − k

(n−2)
i−1 , 2 ≤ i ≤ ⌊n/2⌋, n ≥ 4

k
(n)
i = 0, i > ⌊n/2⌋, n ≥ 0

(47)

In particular, computing all coefficients of the polynomial Pn(⋅) is an O(n2)
task.

Proof. Immediate from (41) and the use of induction. ∙

Theorem 7

Pn(x) = A1(x)»
n
1 (x) + A2(x)»

n
2 (x) , n ≥ 0 (48)

where

»1,2(x) =
x±√

x2 − 4¸¹1

2
(49)
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and

A1,2(x) =
1

2
(1± x√

x2 − 4¸¹1

). (50)

Proof. Clearly, A1(x)»
i
1(x) + A2(x)»

i
2(x), i ≥ 0, solves (41) for any A1(x)

and A2(x). The selection for A1(x) and A2(x) stated in (50) is the unique
choice obeying P0(x) = 1 and P1(x) = x as initial conditions. ∙

Theorem 7 leads to an alternative to (41) as a procedure for computing
Pn(x) for a given value for x . This is through the use of (48) which can be
done with a complexity of O(log n) once a square root operation is performed
(see (49)). The latter comes with a complexity level of O(log ±−1) when done
with a tolerance of ±. Thus, the use of (48) coupled with bisection in order to
compute wn, is with a complexity of O(log ±−1) plus the need for O(log ±−1)
times to compute square roots when needed. In summary, this approach
comes with a complexity of O(log n log2 ±−1).
Remark 7. An alternative derivation is given in [2]. 11 It is based on stating
an eigensystem of a matrix but without saying how this eigensystem can be
solved efficiently using special properties of the model under consideration.
Remark 8. From [13], we can learn that wn is the unique value for x obeying
det(Q0 + xQ1 + x2Q2) = 0 and ∣x∣ < 1. This can serve as an alternative
for (42) as a point of departure for computing wn.

5 A numerical example

Suppose ¸ = 1.2, ¹1 = 0.9 and ¹2 = 1. Then,

n wn = ¾n

0 0.7370
1 0.6611
2 0.6431
3 0.6383
4 0.6369
5 0.6365
6 0.6364
7 0.6364

11Their vector v̄∗ coincides, up to a multiplicative constant, with our w. Their, »∗ is in
fact our 1/wn and hence the multiplicative constant can be deduced.
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For the case where n = 3 we get that

i 0 1 2 3
wi 0.0913 0.1583 0.3111 0.6383

Also, for one who observes three customers at the first queue, the expected
number in the second queue equals 0.6394/(1−0.6394). Finally, the expected
number of customers at the second queue, given it is not empty equals 1/(1−
0.6396).
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Appendix

The computation of the vector w, based on (24), requires an inverse of the
matrix A0 = Q1 + wn¹2I.

12 To emphasize the structure of this matrix, let

12Assume for a while that wn is in your hands.
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c = −(¸+¹1+¹2)+¹2wn. The parameter c is a function of wn, but we omit
this reference for wn in order to simplify the notation. Then,

A0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c+ ¹1 ¸ 0 0 ⋅ ⋅ ⋅ 0
¹1 c ¸ 0 ⋅ ⋅ ⋅ 0
0 ¹1 c ¸ ⋅ ⋅ ⋅ 0
...

...
. . . . . . . . .

...
0 ⋅ ⋅ ⋅ 0 ¹1 c ¸
0 ⋅ ⋅ ⋅ 0 0 ¹1 c

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

By Cramer’s rule,

w = −¸

Ã
cof0n(A

0)

∣A0∣ , ⋅ ⋅ ⋅ , cofnn(A
0)

∣A0∣

)

Let the matrix A be as A0 but with its north-west entry being equal to c
instead of c + ¹1. Recalling our definition for Pi(x) (see (41)) it is possible
to conclude that Pn+1(c) is the determinant of A and that (c + ¹1)Pn(c) −
¸¹1Pn−1(c) is the determinant of A0.

We start with proving (43) for the case where i = n as this brings us to
the all important geometric multiplier wn. Thus, we look next at cofnn(A

0).
By its definition its value equals the determinant A0 with its last row and last
column being deleted. This sub-matrix has the same structure as A0 but with
a dimension lower by one. Hence, its determinant equals (c + ¹1)Pn−1(c) −
¸¹1Pn−2(c). Finally,

wn = −¸
(c+ ¹1)Pn−1(c)− ¸¹1Pn−2(c)

(c+ ¹1)Pn(c)− ¸¹1Pn−1(c)
(51)

which agrees with (43) for the case where i = n. Moreover, replacing wn in
the left handside with (c+ ¸+ ¹1 + ¹2)/¹2 leads to the fact that c is indeed
a solution to the equation stated in (42), denoted there by c.

Next we switch to w0. It is easy to see that cof0n(A
0) = ¹n

1 since deleting
the first row and the last column from A0 leads to an upper triangular matrix
of dimension n all its diagonal entries equal to ¹1. Finally, for wi, 1 ≤ i ≤
n − 1. Deleting the i-th row of A0 and its last column yields the following
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matrix

Cin =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c+ ¹1 ¸ 0 0 ⋅ ⋅ ⋅ 0
¹1 c ¸ 0 ⋅ ⋅ ⋅ 0

. . . . . . . . . ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0
0 ⋅ ⋅ ⋅ ¹1 c ¸ 0 0 ⋅ ⋅ ⋅ 0
0 ⋅ ⋅ ⋅ 0 0 ¹1 c ¸ ⋅ ⋅ ⋅ 0

0 ⋅ ⋅ ⋅ . . . . . . . . . . . . . . . 0
0 ⋅ ⋅ ⋅ 0 0 0 0 ¹1 c ¸
0 ⋅ ⋅ ⋅ 0 0 0 0 0 ¹1 c
0 ⋅ ⋅ ⋅ 0 0 0 0 0 0 ¹1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

13 It is possible to see that for some two square matrices X ∈ Ri×i and
Y ∈ R(n−i)×(n−i), and some matrix Z ∈ Ri×(n−i),

Cin =

Ã
X Z
0 Y

)

Thus, the determinant of Cin equals det (X) det (Y ). But X possesses the
same structure as A0 but with a dimension of i instead of n. Hence, det(X) =
(c+¹1)Pi−1(c)−¸¹1Pi−2(c). As for Y , again it is an upper triangular matrix
and hence det (Y ) = ¹n−i

1 . Thus, cofin(A
0) = (−1)n+i¹n−i

1 ((c+ ¹1)Pi−1(c)−
¸¹1Pi−2(c)), as promised. ∙

So far our analysis was based on the fact that c is a solution for (42).
It is clear that (42) might have more than one solution so the next issue
is what among its solutions we are after. The ergodic theorem says that
any distribution which solves the balance equations is the limit probabilities
and hence it is unique. Moreover, all its entries are strictly positive. Thus,
there must be at most (and hence exactly) one c obeying (45) leading to
0 < wn < 1 and such that the corresponding values for wi, 0 ≤ i ≤ n − 1,
given in (43) and (44) are positive.

13Or

Cin(kj) =

⎧
⎨
⎩

c+ ¹1, k = j = 0
c, k = j, 0 < k < i or j = k + 1, i ≤ k < n

¹1, k = j, i ≤ k ≤ n or j = k − 1, 0 < k < i
¸, j = k + 1, 0 < k < i
0, otℎerwise
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