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Abstract

The purpose of this chapter is to introduce the reader to the topic
of strategic behavior of customers in queues. We assume that cus-
tomers individually decide on issues such as whether or not to join
the queue, whether or not to renege from a queue after waiting for
a while, or whether or not to pay some fee in order to belong to a
higher priority class. For some examples, we define the appropriate
non-cooperative games and look for their Nash equilibria. We restrict
ourselves to M/M/1 queues with homogeneous customers (with re-
spect to their cost/reward parameters).

1 Introduction

Usually when one considers a queueing model, such as an M/M/1 queue,
both arrival and service rates are given. Sometimes an optimization question
regarding these parameters is also posed. For example, denote the arrival and
service rates by λ and µ, respectively. Suppose the service rate of µ comes
with a cost of c(µ) per unit of time whenever the server is available (and not
only while he/she is actually utilized) and it costs C per customer per unit
of time in the system. Assume λ to be fixed. Then, one looks for the value



of µ > λ which minimizes c(µ)+λC/(µ−λ), the total social cost per unit of
time. In this chapter we move one step further: It is the individual customers,
rather than a central planner, who decide on their actions. Moreover, they
do that by optimizing their selfish needs, while ignoring the effect of their
moves on others, known as externalities. For example, for a given µ, they may
decide whether or not to join the queue. It is only their aggregate behavior
which leads to the completion of the model via determining the value of λ.
Commencing with the seminal paper [23], this branch of research got much
attention in the literature. A state of the art summary (until 2003) on it is
given in [15]. Below we describe some of the main results and ideas in this
field while considering a few key examples. We limit ourselves to the M/M/1
model with homogeneous (with respect to their cost and rewards parameters)
customers. In fact, in this case strategic behavior is more subtle than in the
heterogeneous case.

Customers who consider joining a queue or who are already waiting, may
face various types of dilemmas: To join or not to join a queue, to pay or
not to pay a fee in order to belong to a high priority class, or whether or
not to renege after waiting for a while. We assume that they are selfish and
hence maximize their own utility, not minding the externalities that their
moves impose on others. While deliberating, they are aware of the fact that
other customers may face the same type of dilemma. An individual customer
wants to select his/her optimal action, but which action is best depends on
what others are doing. For example, if all do not join the queue, one better
join as this will come with no need to wait, while if they all do join, one
may face too much waiting and might do best by not joining. Such decision
making problems are best described as non-cooperative games. We do not
attempt to review thoroughly this model. The interested reader is referred
to any text in game theory, such as [9] or [22].

In non-cooperative games one’s utility for any given strategy, is a function
of the strategies selected by others. If one’s best strategy is not a function
of what others do, one’s strategy is called a dominant strategy. However,
in many cases such strategies do not exist and we look for a pure Nash
equilibrium strategy profile. By that we mean a set of strategies, one for
each individual, such that each one of them is the best for the corresponding
individual, given that all others follow their part in the profile. Yet, the
problem may persist: there may not be such a profile.1 Enlarging the strategy

1As we see below, there is another possible problem: Multiple pure equilibria profile
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space by allowing mixing (namely, players select a lottery or a probability
distribution over their set of pure strategies and assess their utility given
their and others’ behavior by the corresponding expected value, when all
lotteries are carried out independently), may guarantee the existence of a
Nash equilibrium. Of course, a pure equilibrium is a special case of a mixed
equilibrium.

In all models dealt with below, we assume a symmetric game. By that
we mean that all customers share the same set of strategies and the same
utility function. In particular, customers are homogeneous with respect to
their cost/reward parameters. Under a symmetric strategy profile all use
the same strategy. Next, for any given such strategy, all assume steady-
state conditions under this behavior and all assess their utilities accordingly.
Then, we look for a symmetric Nash equilibrium, namely an equilibrium
profile under which all use the same strategy. More formally, let S be the
common set of mixed strategies and let u(x, y) be one’s utility if one selects
strategy x ∈ S given that all others select strategy y ∈ S.2 Thus, xe is
defined as a symmetric Nash equilibrium if

xe ∈ arg max
y∈S

u(y, xe).

From now on when we refer to an equilibrium, we mean a symmetric Nash
equilibrium.

Let v(x) be the social aggregate utility when all use strategy x. Typically,
v(x) is defined as the sum (or integral) over the individual utilities. A social
optimizer looks for an x∗ such that

x∗ ∈ arg max
x∈S

v(x).

Usually, xe and x∗ do not coincide. A mechanism design question is how to
manipulate the system so as the resulting new xe in the manipulated system
coincides with the old x∗. This can sometimes be achieved by charging prices
on various behaviors. In other cases, more complicated schemes are called
for.

Our basic model is that of an M/M/1 queue, namely customers arrive
in accordance to a Poisson process with rate Λ and their service times are

may exist.
2By utility here and throughout the rest of the paper we refer to the expected utility

when the two lotteries are carried out independently.
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independent and exponentially distributed with mean µ−1. Unless stated
otherwise, service is granted on a first-come first-served (FCFS) basis. Cus-
tomers suffer a cost of C per unit of time in the system (inclusive of service)
and are rewarded by R due to service completion. In order to avoid trivi-
alities, assume that R > C/µ. Without loss of generality, assume that not
joining comes with zero utility.

We are not claiming to supply a comprehensive survey on the field of
customers’ behavior in queues. Rather, we would like to give the flavor of
the issues dealt with, while considering some of the most important queueing
decision models. Note that we restrict ourselves to the case where customers
are homogeneous with respect to their parameters C and R. Many models
where this assumption is removed are also surveyed in [15]. We point out
that as opposed to strict optimization problems, the homogeneous case is not
a special case of the non-homogeneous case. In fact, it is usually harder for
analysis as it calls for the use of mixed strategies under equilibrium, while
in the fully heterogeneous case (where no two customers share the same
parameter values such as R and/or C), the equilibrium is usually pure under
which all use a parameter dependent pure strategy.

2 To queue or not to queue

The most basic question customers ask is whether or not to join the queue.
We next deal with two different scenarios. In the first, customers do not
observe the queue while taking their decisions and once they join, they cannot
change their mind if upon arrival they observe a longer than expected queue.
In the second, when they observe the queue length upon their arrival and
based on this information they decide whether or not to join. In both cases
we also look at the socially optimal behavior and look for ways to regulate
the system by levying appropriate tolls so that the resulting equilibrium
behavior coincides with the socially optimal behavior. Finally, we discuss
the ‘avoid the crowd’ phenomenon. The results on the unobservable model
appear originally in [6] while those on the observable case are from [23]. More
comprehensive summaries appear, respectively, in Chapter 3 and Chapter 2
of [15].
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2.1 The unobservable case

2.1.1 Equilibrium behavior

If Λ < µ and all join, then everybody’s utility from joining is C/(µ−Λ)−R.
Thus, if this utility is positive, then joining is a dominant strategy. Indeed,
no matter which fraction p of customers join, resulting in a Poisson arrival
process with a rate of Λp and with a mean waiting time of 1/(µ− pΛ), one’s
best action is to join. This is not the case where Λ ≥ µ or where Λ < µ but
R < C/(µ − Λ). Here a dominant strategy does not exist: if all join, one
better not join, and if none of them join, one better join since, as assumed,
R > C/µ. The equilibrium strategy is to join with probability p for p obeying
R − C/(µ− pΛ) = 0. Indeed, under such a p, 0 < p < 1, if used by all, one
is indifferent between joining and not joining, and hence mixing between
joining and not joining with probabilities p and 1− p, respectively, is a best
response for an individual. Such a p is unique. Denoting it by pe, then

pe =
µ− C

R

Λ
.

Also note that when pe < 1 the utility of all customers, those who join and
those who do not, equals zero. No other symmetric equilibrium exists.

2.1.2 To avoid or to follow the crowd

Many decision problems stemming from queueing models possess exactly one
of the following two phenomena: One is when an individual should not fol-
low the crowd while in the other, one should. Specifically, suppose the set
of strategies can be presented by an interval, namely each strategy corre-
sponds to a number in this interval. This is certainly the case when only
two pure strategies are available and the probability with which one of the
option is selected, describes the mixed strategy completely. In particular,
the unit interval can be identified with the set of strategies. Let u(y, x) be
as defined in the introduction but now x and y are having a numerical value.
Define y∗(x) ∈ arg maxy u(y, x). In other words, y∗(x) is one’s best response
(ties are possible) when all use strategy x. We say that the phenomenon
of avoid (follow, respectively) the crowd prevails, when y∗(x) is monotone
non-increasing (non-decreasing, respectively). We use the acronym ATC and
FTC, respectively.

5



The situation we face in the ‘to queue or not to queue’ decision problem
is that of ‘avoid the crowd’. Specifically, suppose all join with probability p.
Then u(q, p) is one’s utility when one joins with probability q. Note that

u(q, p) =

{
q

(
R− C

µ−pΛ

)
pΛ < µ

−∞ pΛ ≥ µ

It is easy to see that q∗(p) = 0 when p > pe and q∗(p) = 1 when p < pe.
3

When p = pe < 1, all strategies are best responses against pe. As it turns out,
symmetric equilibria are the points where the best response function q∗(p)
intersects the line q = p. By definition, in the ATC case, the best response
function is not increasing. The function q = p is of course increasing with
p. Hence, the two continuous functions, q∗(p) and p, intersect at exactly one
point. In other words, a unique symmetric equilibrium exists in the ATC
case. See Figure 1 below. Things are more involved in the FTC cases as we
exemplify later.

1

1

Best response

pe

p

45o

Figure 1: Avoid The Crowd

2.1.3 Socially optimal behavior

In case of a joining probability of p and assuming that pΛ < µ, the social
gain per unit of time equals

pΛ(R− C

µ− pΛ
). (1)

3In the case where p = 1 is dominant, pe = 1.
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Thus, a social optimizer looks for the value of p, 0 ≤ p ≤ 1, which maxi-
mizes (1). Denote this value by ps. It is easy to see that

ps =





1 Λ < µ−
√

Cµ
R

µ−
√

Cµ
R

Λ
otherwise

In the case where ps = 1, the social gain is as stated in (1) with p = 1. When
ps < 1, it equals

(
√

Rµ−
√

C)2. (2)

It is also possible to see that unless ps = 1, ps < pe. In other words,
left for themselves customers tend to join with a rate which is higher than is
socially desired. This is the case since joining customers ignore the negative
externalities, in terms of added waiting time to future arrivals, that those of
them who join inflict on each other.

In the case where ps < pe, by artificially reducing R or increasing C,
one can make the new pe and the old ps coincide. It is a simple exercise

to see that the amount to reduce R with is
√

CR/µ, while the amount to

increase C with is
√

RCµ−C. The former is achieved by imposing an entry

fee of
√

CR/µ while the latter is achieved by charging customers an extra√
RCµ − C per unit of time in the system, making customers suffer in fact

a cost of
√

RCµ (instead of C) per unit of waiting time. The collected
fees under both charging schemes go to the society’s coffer. In both cases
individual customers end up with zero utility. Under this optimal entry toll,
the social planner collects (

√
Rµ − √C)2 per unit of time. In other words,

all consumer surplus as appears in (2), is transferred completely from the
individual customers to the social purse. Such complete transfer of consumer
surplus can be achieved when individuals are not more informed than the
central planner is.

2.2 The observable case

The model dealt with here is as in the previous subsection but with one
key distinction: customers observe the queue length upon their arrival and
decide accordingly whether or not to join. Thus, a pure strategy in this case
means a recipe which for any possible queue length prescribes joining or not
joining. Assuming that nobody leaves the system after joining it in the first
place, and recalling that the service distribution is memoryless, a sensible
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symmetric strategy will be of the threshold type. By that we mean that
there exists some integer value n ≥ 1, such that all join if and only if the
queue length they observe upon arrival is less than n.4 As a consequence
of the FCCS discipline in this observable model, individual’s utility is not a
function of unknown actions taken (or to be taken) by others, a dominant
strategy exists.

2.2.1 Equilibrium and socially optimal behavior

First, the threshold equilibrium behavior is trivial: Join if and only if the
number in the system is smaller than ne where5

ne =
⌊
Rµ

C

⌋
. (3)

In fact, this strategy is dominant. As opposed to the unobservable case (when
Λ is large enough), those who join end up with a positive utility. Second,
finding the socially optimal threshold ns is more cumbersome but this was
done in paper [23].6 In particular, ns is the unique integer value of n ≥ 1

obeying g(n − 1) ≤ Rµ
C
≤ g(n) where g(n) = n(1−ρ)−ρ(1−ρn)

(1−ρ)2
. It was shown

in [23] that ns ≤ ne with equality if and only if ne = 1. By definition, under
social optimization the consumer surplus is on average larger than it is under
the equilibrium behavior.

As in the unobservable case, individual and social behavior will be aligned
by imposing an entry fee or by charging a fee per unit time in the system so
that the new ne coincides with the original ns. From (3) we learn that any
entry fee T obeying

ns =

⌊
(R + T )µ

C

⌋

is suitable for this purpose. In other words,

Cns

µ
−R ≤ T <

C(ns + 1)

µ
−R.

Under any socially optimal entry fee some of the consumer surplus stays in
the hands of the individuals. This is the case since those who join, even after

4Yet, things might be a bit more involved. See [14] for a formal treatment for this issue.
5In the case where Rµ/C is an integer, both ne and ne− 1m as as any mixing between

them, define an equilibrium profile.
6See [15], pp.27-29, for an alternative proof.
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paying the entry fee, end up with a positive utility: The shorter the queue
they join, the larger is their surplus. This is the case since customers can
adjust their behavior to the actual queue length, while the central planner
is limited to a single, one for all price. Put differently, customers are more
informed than the social planner is. On the other hand, if a queue-length
dependent entry fee is imposed, then all of the consumer surplus can be
transferred to the common coffer. Indeed, charging (a bit less than) pn for
one who joins the system when n customers are present, with

pn =

{
R− C(n+1)

µ
0 ≤ n ≤ ns − 1

∞ otherwise

makes customers behave socially optimal while leaving no surplus in their
hands. For more on this pricing see [4].

Another interesting way to elicit the socially optimal behavior was sug-
gested in [10]. Instead of a FCFS policy, a joining customer is placed at
any position but the last one. A possible name for this queueing regime is
not-FCFS. This allows preempting the one who is in service. In fact, in case
where only one customer is in the system, preempting him/her is the only
option. Now all join but they have the option to renege (i.e., to abandon) as
they observe how many are in front of them. An equilibrium strategy is to
renege from the rear of the queue as soon as the total number in the system
reaches ns +1. This leaves the number in the system as it is socially optimal.
The reason for this alignment between individual and social behaviors is the
fact that the one in the rear of the queue (the one who in fact needs to take
decisions) inflicts no externalities on the others under the not-FCFS service
policy. Hence, his/her interests and those of the society coincide.

2.3 The case of processor sharing or random queues

In the case where service is granted so as the next to commence or to conclude
service is decided randomly among all those in line was dealt with in [2] and
in [3]. Specifically, a random queue is one where the FCFS discipline is
replaced by letting the next to commence service being decided randomly
among all those present in line at the epoch of service completion. The
processor scheme scheme is such that the service splits in capacity evenly
among all those who are present at the system. Yet, in the case of exponential
service times, this is equivalent to performing service but deciding to whom
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it is granted at random among all those present only in its completion. It is
clear that one should better not stay in line if it is too long. In [3] it is assumed
that the one to renege is the last to arrive (who in fact balks upon arrival).
Thus, the question here is in fact to queue or not to queue. As expected,
an equilibrium policy prescribes joining if and only if the queue length is
smaller than some threshold. Yet, since waiting times are also functions of
later to arrive customers, true interaction between customers’ policies exists
here. Specifically, an ATC prevails here and the unique equilibrium policy
can be pure or mixed. In the latter case, mixing is among two consecutive
threshold queue lengths.

In [2] it is assumed that as soon as one arrives, he/she is considered as
all others. Thus, in case that one needs to leave, all those in line should be
treated as equals. It is shown there that in this model no equilibrium exists.
Yet, an ε-equilibrium for any ε > 0 exists.7 Under this profile, all stay as long
as the total number in queue is smaller than some threshold, renege with some
rate when at the threshold (meaning reneging after exponentially distributed
time if no change in the number is queue took place in the meanwhile), and
when the threshold is crossed, to renege at a very high rate (equivalently, in
the limit, to performing a lottery which decides who among those in queue
should leave immediately). This is a two parameter policy (threshold queue-
length and reneging rate). In [2] it is shown how to find it.

3 To upgrade or not to upgrade

We go on dealing with the previous model but with two key changes. First,
customers have the option of belonging to a premium class. Those who
belong to this class have preemptive priority over the others, called regular
customers. Among customers belonging to the same class, FCFS is assumed.
Yet, belonging to the premium class comes with a cost of θ. No payment
is required for those elected to be regular customers. Second, customers do
not have the option of not joining. Thus, from the decision problem point
of view of paying or not for priority, the value of service is irrelevant. For
stability we need to assume that Λ < µ. To keep our notation standard with
the literature, we replace here Λ with λ.

7An ε-equilibrium is a strategy profile such that if followed by all, one who deviates
from it can gain at most ε.
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The trade off is between paying for priority and having to wait longer in
case of not paying. As all other customers face the same decision problem
and as one’s waiting time in both classes is a function of the decisions taken
by others, the decision model is that of a non-cooperative game. In the next
subsection we deal with the unobservable version of the model. Here the
strategy space is simple: how to mix between paying and not paying for
priority. In the subsequent subsection we deal with the observable version.
There, a pure strategy is more involved as for any number of customers from
the two groups one may face upon arrival, one needs to decide if to purchase
priority or not.8 In the final subsection of this section we deal again with the
unobservable case but now customers can pay as much as they wish while
the more one pays, the higher is one’s priority level.

3.1 The unobservable case

The following appears in [15]. Assume the symmetric mixed strategy of pur-
chasing priority with probability p is used by all. Then, by standard results
from priority queues, the mean time in the system of premium customers
is 1/(µ − λp) and that of regular customers is µ/[(µ − λ)(µ − λp)]. Hence,
in this case the added value (which can be negative) from belonging to the
premium class in comparison with belonging to the regular class is

f(p) ≡ ρC

µ(1− ρ)(1− λp)
− θ.

It is easy to see that f(p) is monotone increasing with p. In other words,
the more customers purchase priority, the more priority is valuable to an
individual. This is an example of the ‘follow the crowd’ (FTC) phenomenon.9

The next question is what are the equilibrium values for p. There are
three mutually exclusive and exhaustive possibilities:

1. Case:1 f(0) ≥ 0. Since f(p) is monotone increasing, one better pur-
chase priority no matter how many others do so. In other words, pur-

8True, the number of premium customers present in line is irrelevant.
9As oppose to ‘to queue or not to queue’ problem where it is was a-priori clear that the

ATC phenomenon prevails, the situation here is more subtle. Indeed, the more purchase
priority, the less is the number of regular customers to be overtaken by a premium customer
(hinting towards ATC). Yet, the more purchase priority, the more one needs priority for
oneself in order not to be overtaken by later to arrive premium customers (hinting towards
FTC). The latter effect seems to ‘win’ among these two antagonistic forces.

11



chasing priority is a dominant strategy. In particular, pe = 1. See the
left graph in Figure 2 for the best response function.

2. Case 2: f(1) ≤ 0. Due to a similar argument to the one stated
in the previous item, not purchasing priority is a dominant strategy.
In particular, pe = 0. See the middle graph in Figure 2 for the best
response function.

3. Case 3: f(0) < 0 < f(1). The first thing to observe is that the two
pure strategies define equilibria. Indeed, when all or none purchase
priority, it is optimal for an individual to follow suit. But there is a
third equilibrium. Let pe be the unique value such that f(pe) = 0.
Of course, such a value exists under the assumption of this case. If
all use this strategy, one is indifferent between purchasing priority and
not, and hence purchasing priority with probability pe is one’s best
response. No other equilibrium exists.10 The best response function
is depicted in the right graph of Figure 2. Specifically, when p < pe

the unique best response is 0. It is 1 when p > pe, and any mixing is
a best response against all using pe. Thus, the best response function
is non-decreasing. It can hence intersect the 45 degree line more than
once. Indeed, this occurs three times: at 0, pe and 1. In other words,
there are three equilibria as stated in the third item above. Indeed,
multiple equilibria are the rule in FTC situations.

1 1

1 1

1

ppp
45o

pe

1

0 > f(1) f(0) < 0 < f(1)0 < f(0)

Figure 2: Follow The Crowd

10The interested reader is referred to [15], p.84, where it is shown that the equilibrium
under pe suffers from lack of stability (defined there) while the two pure equilibria are
stable.

12



3.2 The observable case

The following model was originated in [1] where the analysis below appears
in [13]. Suppose an arrival to the system observes state (i, j), namely i ≥
0 regular customers and j ≥ 0 premium customers are present. He/she
considers whether or not to purchase priority. The value of j does not effect
his/her decision: They inflict on him/her a mean queueing time of j/µ,
regardless if he/she purchases priority or not. Thus, without loss of generality
assume that j = 0 and remove further reference to that value. It is clear that
the larger i is, the larger is the value of priority. But priority is valuable
not only in order to overtake regular customers, but also in order not to
be overtaken by future to arrive customers who elected to purchase priority.
Thus, one minds here also the purchasing strategies used by others, making
this decision model a non-cooperative game.

Suppose all use the pure threshold strategy of n, namely they purchase
priority if and only if they see n or more regular customers upon arrival.
Clearly, when all behave like that, n is the largest possible length of the
regular queue. Let W (n) be the mean queueing time (exclusive of service)
ahead of a customer who is currently in position n in the regular customer
queue where the premium queue is empty. Note that W (n) + 1/µ is his/her
mean total time in the queue. Let B be the mean length of a busy period in
an M/M/1 queue. Of course, B = 1/(µ− λ).

Theorem 1 The pure threshold strategy n, n ≥ 1, is an equilibrium if and
only if

θ − CB ≤ CW (n) ≤ θ. (4)

Proof. Two conditions need to be met in order for n to prescribe an equi-
librium. First, if an arrival faces n − 1 regular customers, not purchasing
priority, and hence having to be in the system for time whose mean equals
W (n) + 1/µ is better than purchasing priority and being there for a time
whose mean is 1/µ. For that it is required that CW (n) ≤ θ. Second, if an
arrival faces n regular customers, purchasing priority and hence having to be
in the system for time whose mean is 1/µ is better than not and then having
to be for time whose mean is B + W (n) + 1/µ. Note that the term B here
is due to the fact that when all adopt the threshold strategy n, it requires a
busy period to move from position n + 1 to position n in the regular queue.
For this to be an optimal move, it is required that θ ≤ C(B + W (n)). •
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In [13] is it shown that there exists at least one value for n which meets
inequality (4). As importantly, it is possible that there are a few consecutive
values for such n, leading to multiple equilibria. As said, this is typical for
FTC situations as exemplified already in the unobservable version of this
problem. Indeed, the larger is the threshold used by others (namely, the
less aggressive they are in terms of purchasing priority), the larger (i.e., less
aggressive) should be the optimal threshold used by an individual since the
risk of being overtaken is now smaller. This intuitive argument is proved
in [11] to be correct. It is also shown there that if both n and n+1 prescribe an
equilibrium, then there exists another equilibrium, one which mixes between
these two thresholds. Under such mixing the mean queueing time of the one
in the worst possible position in the regular queue (under this policy) equals
θ/C. 11 Finally, in [11] an efficient algorithm for computing the required
mean queueing times in developed.

3.3 How much to pay for an upgrade

We now look at a different scenario as suggested in [8]. We assume an
unobservable M/M/1 queue where Customers are allowed to pay any amount
they wish. The more they pay, the higher is their priority level, regardless
on how much more they have paid or when they actually have arrived. We
assume no preemption and hence the next to commence service among those
in line is the one who paid the most. As in the previous subsection, the
option of not joining does not exist.12 Ties in payments are broken on a
FCFS basis. Looking for a Nash equilibrium, it is clear that no pure one
exists. Indeed, if all pay the same amount, we end up with a FCFS system.
Yet, given this behavior, an individual better pay a bit more and overtake all
others. By the same token, the mixed equilibrium should be without atoms.
Again, had an atom existed, say at x, one who pays a little bit more than x,
would overtake the quantum who pays x. Finally, the support of the values
paid is a continuous interval. This is the case since had their been a gap, say
in [a, b] with values no one selects, it would have been better paying a than
a bit more than b since it comes with a clear saving without actually losing
any priority value. This contradicts the fact that all pure strategies in the

11Yet, as opposed to the pure equilibria, the mixed ones are not stable.
12For the case where this option exists and all customers share the same value for service

R, see [21].
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support come with the same gain. In fact, the support should be [0, u] for
some value for u.

A customer who uniquely gets top priority queues up for time whose mean
equals ρ/µ. On the other hand, the corresponding value for a customer who
is uniquely most inferior equals ρ/[µ(1− ρ)2].13 Hence,

u′ ≡ ρC

µ(1− ρ)2
− ρC

µ

is an upper bound on the value of priority. Thus, u ≤ u′. In fact, we next
argue that u = u′: The one who pays zero (and is uniquely inferior to all)
and the one who pays u (and is uniquely prior to all) share the same utility.
Had u < u′, it would have been better for the former to pay a bit more than
u rather than pay zero. Hence, u = u′.

The question left now is what is the distribution over payments on [0, u]
defining the equilibrium strategy. Its cumulative distribution function was
derived in [8]. Specifically, let F (x) be the probability of paying up to x.
Then, for any x ∈ [0, u],

F (x) =
1

ρ




(
1

(1− ρ)2
− xµ

Cρ

)− 1
2

− (1− ρ)


 .

In the above model it is assumed that if one pays more than another,
regardless by how much more, one has priority over the other. An alternative
model, with a relative priority flavor, is suggested in [19]. Specifically, if
upon service completion there are n customers in queue and customer i paid
xi ≥ 0 towards priority, then customer i is the next to commence service with
probability xi/Σ

n
j=1xj, 1 ≤ i ≤ n. It is shown there that a unique equilibrium

exists. Moreover, it is pure and all pay

ρ2C

µ(1− ρ)(2− ρ)
.

4 To renege or not to renege

The phenomenon of customers who renege (abandon) the queue some time
after joining, is common. The terminology of reneging hints to the possibility

13Proof: A busy period comes with a mean value of 1/[µ(1 − ρ)]. Upon arrival, the
expected number of customers in the system is ρ/(1−ρ). The product of these two values
is the mean time of what this inferior customer has to spend in the system.

15



that customers ‘walked away from a commitment’ or that they ‘change their
mind’. Standard modeling does not allow for this possibility. Instead, we
assume that customers join the queue while planning to leave it (abandon)
later in case that something occurs or some relevant information is revealed
to them.

Before giving further details on the model we pose, we make the following
observation. In an unobservable M/M/1 FCFS queue, reneging is not due to
learning while waiting that the queue length is in fact longer than anticipated.
It was shown in [11], that no matter what is the reneging policy employed
by the others, for an individual the longer is his/her past waiting time, the
shorter is his/her expected time ahead. Thus, if one did not renege until
now, it will be inconsistent from one’s side to do it now (or later). Thus,
reneging needs to be attributed to increasing waiting costs per unit of time
(which can be interpreted as loss of patience) or due to a deterioration in the
value of service. In fact, these two factors are two sides of the same coin: The
cost/reward ratio should go up while waiting in order to observe reneging.

We next describe two such situations in the unobservable M/M/1 FCFS
queue. In the first, when the cost/reward is constant for some time and
then it jumps abruptly so as to enforce immediate reneging. Interestingly,
no reneging takes place ahead of this time. Yet, one may elect not to join at
all. In the second, we let the cost/reward ratio go up smoothly, leading to
a mixed equilibrium strategy regarding when to abandon the queue. Thus,
reneging can take place at some continuous interval of time after waiting.

4.1 The bang bang case

The model we deal with here is as our standard unobservable M/M/1 FCFS
model with one key distinction: For anyone who stayed already T units
of time in the system without completing service (regardless if by then it
was commenced or not), the value of service drops to zero. Assuming that
customers recall the length of their past queueing time (i.e., each one of them
holds a watch), a pure strategy here tells whether or not to join, and in the
latter case, if and when to renege. As always, mixing is possible. In [11] it
is shown that under any behavior of the others, if a best response prescribes
joining (not necessarily uniquely), then reneging after waiting for less than
T units of time, is never part of the best response. This is due to the fact
that the probability of completing service in the next instant of time, goes
up with the length of the past waiting time. Thus, in our quest for an
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equilibrium strategy we need to look for an equilibrium joining probability,
while it is clear that one who joins reneges after T units of time if service is
not completed by then. In summary, the problem we face here is of finding
the equilibrium joining probability.

Let f(p) be the expected utility of one who joins and plans to leave after
T units of time if one’s service does not end by then, given that all others do
the same with probability p (and do not join at all with probability 1 − p).
In [11] it is shown that

f(p) =
R(µ− µe−(µ−λp)T ) + λpCT (µ−λp)e−(µ−λp)T−Cµ(1−e−(µ−λp)T )

µ−λp

µ− λpe−(µ−λp)T
.

Since f(p) is monotone decreasing with p, if f(1) ≥ 0, then joining (and
then reneging at T ) is a dominant strategy. Otherwise, there exists a unique
value for p, 0 < p < 1, with f(p) = 0. Denote this value by pe. Then joining
with probability pe (and in case of joining, reneging after T units of time) is
the unique equilibrium strategy.

4.2 Smooth deterioration in waiting conditions

We now relax the assumption that the cost of waiting per unit of time is
constant. So assume that c(t) is the cost of waiting per unit of time for
one who waits already t units of time. In other words, one who has already
waited for t units of time suffered so far a loss of

∫ t
τ=0 c(τ) dτ . The situation

here is of course more complicated then the one described in the previous
subsection. We describe one possibility as reported in [18].

Theorem 2 Assume the following:

1. c(0) = 0 and c(t) is monotone increasing and concave. Also, limt→∞ c(t) >
Rµ. Let T2 be with c(T2) = µR.14

2. β(t) ≡ c(t)/R− c′(t)/c(t) is monotone increasing.

3. Let T1 be with β(T1) = µ− λ and assume that T1 < T2.

14It is clear that all renege not latter than T2 units of time after joining.
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Define the cumulative distribution function G(t) by15

G(t) =





0 0 ≤ t ≤ T1

1− µ−β(t)
λ

T1 ≤ t < T2

1 t ≥ T2

Then, the unique equilibrium strategy is to join and then to renege after time
which follows the distribution defined by the function G(t).

In [18] it is also shown that if a pure equilibrium reneging strategy exists
(of course, under different assumptions then those postulated Theorem 2), it
prescribes reneging at time T2. Sufficient conditions for this to be the case
are stated there.

5 Concluding remarks

A number of decision problems faced by customers in a memoryless single
server queue were surveyed here as non-cooperative games. This survey is
by no means exhaustive. Other problems were dealt with in the literature.
For example, in an M/M/1 when customers never learn the queue situation,
they can try again and again, hoping to find the server available. These
retrials comes with a cost. The question is then when to retry. The case
where customers do not recall their past experience and do not even possess
a watch, leading to identically, exponentially and independently distributed
intervals between consecutive retrials, was solved in [12]. The cases of full
or partial information regarding their own whereabouts (such as when they
have retried last) are still open. Another question is when to arrive (given a
finite period and a distribution on the number of arrivals during that period).
See [7] for further details.

The assumption of stationarity, or steady-state conditions assumed through-
out this survey, is removed in [16]. Here customers know their time of arrival
and need to decide if to try to get service or to leave for good upon arrival to
an M/M/N/N queue (when trials are costly and hence finding all servers busy
after trying ends up with a loss). Assuming an empty queue at time t = 0,
equilibrium strategy prescribes trying if the time of arrival is smaller than
some threshold value te. Afterwards, one tries with some time-dependent

15Note that since c(T2) = µR, there is an atom of size c′(T2)/(Rλµ) at T2.
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probability pe(t). Interestingly, pe(te+) < 1. Treating similar models, for
example the simplest M/M/1 to queue or not to queue model dealt with
throughout this survey, is still open. Clearly it is a technically challenging
problem.

For more problems dealing also with general service distributions, het-
erogeneous customers and with multi-server queues see [15]. In particular,
see [17] and [20] for the observable version of the ‘to queue or not to queue’
problem in the M/G/1 case.16

Finally, many models where informational externalities are involved can
be designed. One example is dealt with in [24]. There, a customer who
joins one out of two queues sends, just by his/her own action, a message to
future arrivals that this is the better queue to join according to his/her belief.
Hence, it sometimes makes sense to join the longer queue. Another example
appears in [5]. Here there is only one server whose utility is not known.
Customers get private signals and after inspecting the queue length, decide
if they prefer joining over balking. Here too anyone who joins may affect the
posterior regarding the value of service for future to arrive customers. Again,
longer queues can sometimes be more appealing than short one.
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