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Abstract

This paper studies theoretically the aggregate distribution of
revealed preferences when heterogeneous individuals make the
trade offbetween being true to their real opinions and conforming
to a social norm. We show that in orthodox societies, individuals
will tend to either conform fully or ignore the social norm while
individuals in liberal societies will tend to compromise between
the two extremes. The model sheds light on phenomena such
as polarization, alienation and hypocrisy. We also show that
societies with orthodox individuals will be liberal on aggregate
unless the social norm is upheld by an authority. This suggests
that orthodoxy cannot be maintained under pluralism.

1 Introduction

The question addressed by this paper is very simple. Think of a society
where every individual has a private opinion with respect to some issue,
and those opinions are uniformly distributed. Suppose also that individ-
uals dislike lying about their opinions. Then, the revealed preferences,
i.e. what people declare openly, should be uniform as well. But now we
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introduce a pressure to conform to some “social norm”. How will that
change the distribution of revealed preferences?
We study this question analytically under a variety of societal traits.

Although the problem faced by one individual is quite simple, it turns
out that the outcomes at the aggregate level are quite diverse and largely
depend on the characteristics of society. To help fix ideas, we label an
orthodox society as one where the social pressure is concave, so that small
deviations from the norm are punished heavily but large deviations only
somewhat more. As an opposite label, liberal societies are those with
a convex pressure function, so that society is tolerant to deviations as
long as these are not too extreme. Similarly, at an individual level, we
label opinions as rigid if the displeasure from lying is concave and lax if
it is convex.
In the basic case, where individuals are punished for deviations from

one common social norm, we find that liberal societies will induce indi-
viduals to compromise between conforming and stating their true opin-
ions. Depending on how lax individuals’personal opinions are, as com-
pared to how liberal is society, the total outcome will either be bimodal
polarization or unimodal concentration.
Meanwhile, orthodox societies will exhibit no compromise. An in-

dividual will either completely conform or completely speak her mind.
This is due to the fact that when social pressure is concave, one essen-
tially needs to fully conform in order to alleviate the pressure. Although
all orthodox societies will display this lack of compromise, the further
traits of individuals will determine who conforms and who ignores the
norm. Depending on how rigid individuals’ personal opinions are, as
compared to how orthodox society is, we will either see “alienation”,
where extremists (those with opinions far from the norm) follow their
hearts, or “hypocrisy”, i.e. a case where the norm is maintained by those
opposing it the most.
An overarching analytical result that we find is that the relative cur-

vature of social pressure compared to inner preferences determines who
in society is most affected by social pressure. More precisely, if the rela-
tive concavity of social pressure (arising from deviations from the norm)
is higher than that of the cognitive dissonance (from deviating from one’s
bliss point), then individuals with inner preferences close to the social
norm will concede relatively more than those with inner preferences far
from it, and vice versa. The intuition for this is fairly simple —when
social pressure is relatively concave, it affects small deviations from the
norm relatively more, i.e. those with preferences close to the norm.
Another outcome that clearly separates orthodox and liberal soci-

eties is that if the norm represents the average declared opinion, then
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in liberal societies it will also represent the average true (hidden) opin-
ion in society1. In contrast, in orthodox societies, we may well obtain
a social norm centred on a point which is far from what people really
think. In a sense, this highlights the prospects for a democracy which is
representative of the true opinions in various societies.
In an extension of the basic model, we look at how individuals’pres-

sure on each other aggregates up to a pluralistic societal pressure, and
how this will affect the distribution of revealed preferences. A surprising
result is that societies where the sources of pressure are heterogenous,
but where each single pressure is concave, will, after the aggregation
of all single pressure functions, have a convex societal pressure. Our
interpretation of this is that a society with orthodox individuals with
heterogenous opinions will, on aggregate, be liberal. In order to main-
tain an orthodox society, there needs to be a central authority that
sanctions individuals, otherwise, the individual true opinions need to be
very homogenous. This also alludes to the (im-)possibility of keeping an
orthodox society once norms are shaped in a pluralistic way. We also
show that in these cases —of pluralistic societies but with orthodox and
rigid individuals —“hypocrisy”will arise, i.e. extremists will claim to be
more moderate than many moderates.
This subject can be relevant at a few different levels. First, non-

economic incentives are obviously an important part in decision making.
In that sense, this paper contributes to the large literature on social
norms by analyzing how the aggregate effects play out. This may have a
bearing on how effi cient and how broad we can expect different policy in-
struments to be —depending on whether they affect the deviations from
desired behavior in general, or different types of deviations differently.
Second, we provide an explanation for why we observe such a diver-
sity of distributions of behavior and opinions in reality —other than the
simplest explanation saying that whatever we observe is exactly the dis-
tribution of true inner preferences. Third, the paper indirectly highlights
a problem in survey data and how we should interpret the observed dis-
tributions. For example, Manski (1993) has pointed out the problem of
separating revealed and inner preferences empirically. We align with his
view by showing that one cannot simply deflate the effects of social pres-
sure across the board in some straightforward manner. Rather, social
pressure can have non-linear and —perhaps more gravely —also ordinal
effects on the revealed distribution. Finally, it clarifies that the com-
monly used assumption in many economic theories, of a linear-quadratic
combination of utilities, is far from innocuous.
In this paper, social norms may represent consensual political opin-

1This is true at least if the distribution of true opinions is uniform.
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ions, work ethics, or any other unwritten rules of conduct. This way so-
cial pressure does not only cover what is often referred to as cheap talk,
but also more action oriented conduct, such as buying ethically produced
goods, being unemployed, cheating on taxes, or choosing which type of
car to buy. One can also interpret the sanctioning system as being a ju-
dicial punishment and thus, the model may represent how law-obedience
is distributed in a society (particularly when there are several levels of
disobedience, e.g. in the case of breaking speed limits).
The literature on social norms is vast and has been applied to vari-

ous economic subjects such as choices of neighborhood (e.g. Schelling,
1971), herd behavior (e.g. Granowetter, 1978) and unemployment (e.g.
Lindbeck et al, 2003). The most common formal approach is to let the
stances of individuals be binary. This naturally limits any investigation
of distributions (e.g. Brock & Durlauf, 2001; Lopez-Pintado & Watts,
2006). An exception is Bernheim’s (1994) work on conformity. Just like
in the current paper, he does not only investigate a continuum of inner
blisspoints, but also a continuum of stances from which individuals may
choose. Perhaps the most important difference between our model and
that of Bernheim is that he assumes that people are judged by the type
they are conceived to really be, while we assume that people are judged
by their actions regardless of their true type. Plausibly, there is merit to
both approaches, and the distinction turns out to have a great impact on
the results. A further difference is that Bernheim assumes that both the
social pressure function and the inner preference function are concave.
As we will show, a number of other distributions arise if we only devi-
ate from concave cases, and the purpose of this paper is to present this
complete set of possible distributions and link them to societal traits.
To this end, we will be less general in the paper by choosing a specific
type of function —namely a power function —and let it take on both
concave and convex shapes. The benefit of this functional form is that
it is tractable and, more importantly, that it provides us with a set of
parameters and results to which we can give reasonable interpretations
in real world terms. Most results also hold with general functional forms.
The next section outlines the model with general function forms and

derives some general results. Section 3 presents and interprets the model
with power functions Then, the results of the model are presented in
sections 4-8) according to the different possible subcases. Note that we
assume that all individuals feel pressure from a common source (the so-
cial norm). However, since the resultant distributions are qualitatively
independent of the exact location of the social norm, we present the re-
sults in a way which is agnostic about how the social norm is formed2.

2You can think of an endogenous source for the norm, like the mean or the median
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To characterize the general equilibrium, the subsequent section 9 ana-
lyzes which locations of the social norm can be achieved in equilibrium
if the social norm is endogenously determined by the average stance in
society. Section 10 suggests some casual observations that the model
may explain. Next, in sections 11 and 12, we extend the model to a
case where societal pressure is formed by the aggregation of individuals’
pressure on each other and show how that affects stances in orthodox
societies. Finally, we devote part of the concluding section 13 to dis-
cussing how an empirical test of the model may be approached. To keep
the paper readable, the more elaborate analytical derivations and proofs
are covered in the appendix.

2 The model and general results

An individual is represented by a type t ∈ (tl, th). The inner (hidden)
preference of a type t is

D (t− s) , dD

d (|t− s|) > 0,

where s is the (openly declared) stance of an individual and thus a choice
variable. If a person minimizes D only, it is immediate that s (t) = t.
This way t represents the blisspoint of an individual in fulfilling her
inner preferences and D can be interpreted as the cognitive dissonance
or displeasure felt by taking a stance that is not in line with this bliss
point. We can, for example, think of t as the position on a political scale.
Now, assume that an individual that takes s as a stance feels a social

pressure P (s− s̄), where s̄ can be understood as a social norm3, with

dP

d (|s− s̄|) > 0.

The total disutility (or loss) of an individual is then the sum of the
cognitive dissonance and the social pressure.

L (t, s) = D (t, s) + P (s, s̄) (1)

So, on the one hand, the individual feels an increasing inner displeasure
(or cognitive dissonance) from taking a stance different than the bliss

of the distribution of stances in society or, alternatively, an exogenous source for the
norm, such as rules of conduct determined by a religious authority

3The qualitative results from the model are independent of the location of s̄. In
section 9, a general equilibrium s̄ is determined given that it is the average of all
stances. Since there may be many other ways of determining s̄, we prefer to remain
agnostic about its location and origin as far as we can in the paper.
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point. On the other hand, the more social pressure that is exerted the
further the stance is from the norm. Then, it is immediate that each
individual will take a stance somewhere in between (and including) its
inner blisspoint and the social norm. That is

∀t, s∗ (t) ∈
{

[s̄, t] , if s̄ ≤ t
[t, s̄] , if t > s̄

,

where s∗ (t) is the stance that minimizes the loss for type t. For the sake
of tractability, we will restrict the analysis to cases where s (t) ≤ t.4 The
analysis when s (t) > t is similar. The first-order condition

L′ = P ′ (s)−D′ (t− s) , (2)

is equal to zero in inner extreme points while the second-order condition,

L′′ = P ′′ (s) +D′′ (t− s) , (3)

is positive in minimum points. Denoting the optimal stance by s∗, we
then have the inner solutions

P ′ (s∗) = D′ (t− s∗) . (4)

We now turn to look at s∗(t), i.e. the function describing the inner
solution (if it exists) for every t. More specifically, we concentrate on
ranges of t for which the inner solution exists, and where s∗(t) is con-
tinuous and twice differentiable5. Then, by way of the implicit function
theorem, we can derive the following results.

ds∗

dt
=

D′′ (t− s∗)
P ′′ (s∗) +D′′ (t− s∗) (5)

d2s∗

dt2
=

[
D′′′ (t− s∗) (P ′′ (s∗))2 − P ′′′ (s∗) (D′′ (t− s∗))2]

(P ′′ (s∗) +D′′ (t− s∗))3 (6)

A further assumption that simplifies the exposition of the results is
that t ∼ U (tl, th). This has no bearing on the stances at an individual
level, i.e. s∗ (t), but will, of course, affect the aggregate distribution.
As we want to present various qualitatively different distributions that
emerge from the model, a uniform distribution of types implies that the
effects from our model are analyzed in isolation from the reasons of the
underlying distribution of hidden opinions.
To compare the extent of conformity to the norm and compromise

by different individuals in society, we will use three measures.
4A suffi cient requirement for the upcoming analysis to hold is that both P and D

are three times continuously differentiable.
5This implies that we only look at ranges either where the solution is unique or

where there are no discrete jumps between solutions.
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Definition 1 The conformity of t is |s∗ (t)− s̄|.

This measure is of how close to the norm is an individual’s stance.
We will say that t conforms more than t′ if |s∗ (t)− s̄| ≤ |s∗ (t′)− s̄|.

Definition 2 The absolute concession of t is |t− s∗ (t)|.

This second measure essentially catches how far from its true opinion
an individual’s stance is, i.e. how large a step towards the norm an
individual is taking. So, t is said to concede absolutely more than t′ if
|t− s∗ (t)| ≥ |t′ − s∗ (t′)|.

Definition 3 The relative concession of t is |t− s∗ (t)| / |t− s̄|.

This final measure is meant to portray how much an individual is
giving up on her beliefs compared to how much she could, maximally, if
she completely conformed to the norm.We say that t concedes relatively
more than t′ if |t− s∗ (t)| / |t− s̄| ≥ |t− s∗ (t′)| / |t′ − s̄|. Following these
definitions, a useful lemma applies for types above the social norm6.

Lemma 1 For t ≥ s̄ :

1. Conformity is locally weakly decreasing in t iff ds∗

dt
≥ 0.

2. Absolute concession is locally weakly increasing in t iff ds∗

dt
≤ 1.

3. In corner solutions, relative concession is locally constant. In inner
solutions, relative concession is locally weakly increasing in t iff
(s∗ − s̄)P ′′ (s∗ − s̄) ≥ (t− s∗)D′′ (t− s∗).

Proof. 1) and 2) trivially follow from definitions 1 and 2. 3) In cor-
ner solutions s (t) ∈ {s̄, t} which implies that, locally, relative concession
is either equal to 1 or 0. For inner solutions: By differentiating the ex-
pression for relative concession w.r.t. t, performing a few algebraic steps
making use of equations 4-6, it can be verified that the derivative is pro-
portional to (s∗−s̄)P ′′(s∗−s̄)−(t−s∗)D′′(t−s∗)

P ′′(s∗−s̄)+D′′(t−s∗) . In min points the denominator
is positive and the inequality then follows.

For the upcoming analysis, we also need an expression for the dis-
tribution of stances. In our case of a uniform distribution of types, the
partial probability density function, pPDF , of stances is as follows7.

PDF (s∗) =
1

th − tl
dt

ds∗
when

ds∗

dt
6= 0

PDF (s∗) =
t̃− tmin

th − tl
when

ds∗

dt
= 0 where ∀t ∈

[
tmin, t̃

]
, s∗ (t) = s∗

6Equivalent statements apply to types below the social norm.
7For derivations see the appendix section 14.1.
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The first expression characterizes the PDF for inner solutions while the
second expression characterizes the PDF for corner solutions8. In inner
solutions, the following results apply.

Lemma 2 In inner solutions, the pPDF is locally strictly increasing at
s∗ if d

2s∗

dt2
is negative, and strictly decreasing at s∗ if d

2s∗

dt2
is positive.

Proof. See the appendix.

Together with equation 6, the lemma expresses under what conditions
we should expect a larger mass of stated opinions as we move away from
the social norm.

3 The model with power functions

Nearly all upcoming results can be generalized using the previous lemmas
and equations. For tractability and to facilitate the interpretation, we
will now assume that cognitive dissonance and social pressure are power
functions.

D (t, s) = |t− s|α , α ≥ 0

P (s, s̄) =K |s− s̄|β , β ≥ 0.

These functions are symmetric around t = s and s = s̄, respectively. For
conservation of space, we will therefore mainly only present the problem
and solution for t ≥ s̄ where we get the following minimization problem.

min
s

{
(t− s)α +K (s− s̄)β

}
with a first-order condition

−α (t− s)α−1 + βK (s− s̄)β−1 = 0 (7)

and a second-order condition for an internal local minimum point.

(α− 1)α (t− s)α−2 + (β − 1) βK (s− s̄)β−2 > 0. (8)

At this point, it may be useful for the intuition to provide a loose
interpretation of the parameters. Obviously, all results go through also
without these interpretations. Most immediate is that K represents the

8Note that these expressions catch the "local" contribution to the PDF . E.g.
in cases where we have both inner and corner solutions, these may overlap and the
total PDF is characterized by a combination of an inner solution pPDF and a corner
solution pPDF . Also note the we have normalized the total mass of individuals in
society to 1. Thus, a large gap between th and tl represents a society which is spread
out in terms of true opinions.
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weight of social pressure relative to the cognitive dissonance. If P are
legal repercussions, thenK represents how harsh the punishment system
is in general. In comparison, β catches how different deviations from the
norm are sanctioned in relation to each other. When β ≤ 1, already
small deviations from the established norm or rule are fairly heavily
sanctioned but only a minor distinction is made between small and large
deviations. We believe that this kind of punctiliousness represents many
orthodox societies since they often emphasize being “true to the book”
but do not distinguish so much between large and small wrongdoings. As
an opposite label, liberal societies are not very meticulous about small
non-normative expressions as long as they are not too fundamental or
far from the consensus. Hence, it is represented by β ≥ 1. As for α,
it catches how particular individuals are about taking a stance which is
different from what they feel inside. α ≤ 1 represents the rigid approach
where, once you deviate even slightly from your bliss point, it makes
little marginal difference to deviate a great deal. α ≥ 1 represents a
more lax approach towards deviations from one’s bliss point —as long
as the deviation is not too large, it matters little. Naturally, the same
society may exhibit different β andK depending on the issue and likewise
α may vary between societies and topics but we will analyze them one
case at a time9. The relative size of α and β will turn out to be decisive in
forming the distribution of revealed preferences and will also determine
which individuals will concede the most.

4 A liberal society with lax personal opinions

We start by examining the case when α and β are greater than 1. From
the second-order condition (8), it is immediate that there is an internal
solution for every type t in this case. The properties of the resultant
distribution are summarized in the following proposition.

Proposition 1 If α ≥ 1 and β ≥ 1 then:

1. If α < β and s̄ /∈ {tl, th}, then |s∗ (t)− s̄| is increasing and con-
cave, the distribution is bimodal and the relative concession is in-
creasing with |t− s̄|.

2. If α > β and s̄ /∈ {tl, th}, then |s∗ (t)− s̄| is increasing and convex,
the distribution is unimodal and the relative concession is decreas-
ing with |t− s̄|.

9We also abstract from the possibility of varying the parameters at an individual
level.
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Figure 1: 1 < α < β with s̄ = .5, t ∼ U (0, 1). The left-hand schedule
depicts s∗ (t) (full line) and in comparison to the s = t (dashed line).
The right-hand schedule depicts the probability density function.

3. If α = β > 1, then |s∗ (t)− s̄| is increasing and linear, the distrib-
ution is uniform and the relative concession is constant.

4. Conformity is decreasing and the absolute concession is increasing
in |t− s̄|.

Proof. Since the functions are symmetric around s̄, we settle by pre-
senting the proof for the range of t ≥ s̄. That every t has a unique inner
solution can easily be verified using 7 and 8. The statements on the con-
vexity and concavity of s∗ (t) follow from applying the implicit function
theorem to 7. The statements regarding relative concession follow from
all types with an inner solution and by inserting the appropriate expres-
sions into part 3 of Lemma 1 and noticing that β > α implies a positive
sign and vice versa. By verifying that d2t

ds∗2 > 0 when β > α in equation
6 follows by Lemma 2 that the pPDF is increasing with the distance to
s̄. As s∗ (t) is monotonic, the pPDF represents total PDF . From the
symmetry of the functions around s̄, it then follows that iff s̄ ∈]tl, th[ the
distribution is bimodal when β > α. For unimodality when α > β and
for uniformity when α = β, a similar proof applies. The convexity of P
and D implies that with ∀t ≥ s̄, we have 0 ≤ ds∗

dt
= D′′(t−s∗)

P ′′(s∗)+D′′(t−s∗) ≤ 1.
Hence, by parts 1 and 2 of Lemma 1, it follows that conformity is de-
creasing and absolute concession is increasing ∀t ≥ s̄.

The results are visualized in figures 1 and 2 where the left-hand sched-
ule represents the resulting function s∗ (t) and the right-hand schedule
represents the resultant distribution (the probability density function)
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Figure 2: 1 < β < α with s̄ = .5, t ∼ U (0, 1). The left-hand schedule
depicts s∗ (t) (full line) and in comparison to the s = t (dashed line).
The right-hand schedule depicts the probability density function.

given a uniform distribution of bliss points. The intuition is as follows.
When β > 1 only extremists (t far from s̄) feel any substantial pressure
to comply with the norm. Then, as is the case here, when a > 1, an
individual’s inner preferences are also open for deviations from the bliss
point, as long as the deviation is not too large. The important question
is then which of the cognitive dissonance or the social pressure that is
more open to large deviations, i.e. which of α and β that is the largest.
When β > α (the first result in the proposition), only extreme types

will feel enough social pressure to actually take a large step from their
blisspoint. Meanwhile moderates (t close to s̄) will hardly be inclined
to move from their blisspoint. There will then be a concentration of
extreme types at a certain distance on each side of the norm. As α falls,
the population becomes more polarized with a higher concentration at
the peaks and less individuals taking intermediate stances (the “smile”
in figure 1 becomes deeper).10

To get the intuition for the second part of the proposition (α > β),
it may be easiest to imagine a very large α. Then, an individual does
hardly feel any dissonance from deviating a little from t. A moderate
person may then just as well choose a stance very close to s̄ in order
to minimize the social pressure. An extreme type, however, will not be
willing to move equally close to s̄ since the inner discomfort will then be
very large. Thus, in this scenario, moderates tend to concede relatively
more to the norm.
10If s̄ is biased towards one of the extremes, the peak on that side will be lower,

but the distribution will be symmetrical in a neighborhood around s̄.
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The last part of the proposition essentially expresses that the two
previous scenarios converge as the difference between β and α falls, im-
plying that we get a uniform distribution of stances.

5 An orthodox society with rigid personal opinions

When β ≤ 1, society is intolerant to small deviations from the consensus
but does not distinguish to any large extent between moderate and large
deviations. Likewise, when α ≤ 1, people are already sensitive to small
deviations from their inner blisspoint but additional distance does not
add much to their inner discomfort.
It is now immediate from the second-order condition (8) that any

inner solution is a maximum implying that optimality will be found at
either of the corners (at s∗ (t) = t or s∗ (t) = s̄). This is also intu-
itive since by taking a stance in between t and s̄, one both feels great
dissonance and is heavily pressured when the functions are concave.

Proposition 2 If β ≤ 1 and α ≤ 1.

1. If β < α then iff |t− s̄| ≥ K
1

α−β , s∗ (t) = t, and iff |t− s̄| < K
1

α−β ,
s∗ (t) = s̄. The distribution is unimodal and discontinuous with a
peak at s̄ (made of moderate types) and uniform tails at the extreme
ends of the range (made of extreme types). Relative concession and
conformity are weakly decreasing in |t− s̄|. Absolute concession
increases in |t− s̄| for |t− s̄| < K

1
α−β , then sharply decreases to

zero (i.e. |t− s∗ (t)| = 0) at |t− s̄| = K
1

α−β , and remains at a zero
level for |t− s̄| > K

1
α−β .

2. If α < β then iff |t− s̄| ≤ K
1

α−β , s∗ (t) = t, and iff |t− s̄| > K
1

α−β ,
s∗ (t) = s̄. The distribution of stances is continuous and unimodal
with a peak at s̄ (made of extreme types) and uniform tails (made
of moderate types). Relative and absolute concession are weakly
increasing in |t− s̄|. Conformity decreases in |t− s̄| for |t− s̄| <
K

1
α−β , then sharply increases to full conformity at |t− s̄| = K

1
α−β ,

and remains at full conformity for |t− s̄| > K
1

α−β .

3. If α = β then s∗ (t) = t∀t iff 1 > K. Else (if 1 < K) s∗ (t) = s̄∀t.
The distribution is then uniform or concentrated at s̄, respectively.
Relative concession is constant, absolute concession is either con-
stant (if 1 > K) or increasing (if 1 < K) in |t− s̄| and conformity
is either constant (if 1 < K) or decreasing (if 1 > K) in |t− s̄| .

Proof. We prove part 1. The second-order condition (equation 8) is
positive when α, β < 1, which implies that any inner extreme point is a
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Figure 3: β < α ≤ 1 with s̄ = .5, t ∼ U (0, 1). The left-hand schedule
depicts s∗ (t) (full line) and in comparison, the s = t (dashed line). The
right-hand schedule depicts the probability distribution function.

maximum. The corner solutions are then either L (s = s̄) = |t− s̄|α or
L (s = t) = K |t− s̄|β. L (s = s̄) < L (s = t) iff |t− s̄| < K

1
α−β which

implies that t close to s̄ chooses s∗ (t) = s̄ while those far from s̄ choose
s∗ (t) = t. The distribution then follows from this. In the segment of
types choosing s∗ (t) = s̄, the relative concession is equal to 1 while in
the segment of types choosing s∗ (t) = t, the relative concession is 0.
From this, it follows that the relative concession is weakly decreasing
with distance to s̄. Similarly, conformity is decreasing with distance to
s̄. Finally, for t near s̄, absolute concession is equal to |t− s̄| which is
increasing in t while for t far from s̄, absolute concession is zero which
is constant. For parts 2 and 3, similar proofs apply.

In part 1 of the above proposition, society is more orthodox than
personal opinions are rigid. Individuals with opinions close enough to
the social norm (t ∈

[
s̄−K

1
α−β , s̄+K

1
α−β

]
) will choose to fully comply

while individuals with opinions far enough from the norm will simply
cope with the full social pressure and choose the inner bliss point as their
stance. The intuition is that these “extreme”people are not willing to
take a stance that is close enough to the norm to alleviate the pressure.
Then, since deviating even a little from their inner bliss point is very
painful, they might as well take a stance that is in line with what they
really feel inside. Altogether, this creates alienation in society where one
either conforms fully with the norm or follows one’s heart. If a person
feels that it is not possible to fulfill the norm, there is no point in trying
to be a little bit accepted since this will hardly make a difference anyway.
This way a society that is not tolerant to small deviations from the norm
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Figure 4: α < β ≤ 1 with s̄ = .5, t ∼ U (0, 1). The left-hand schedule
depicts s∗ (t) (full line) and in comparison the s = t (dashed line). The
right-hand schedule depicts the probability distribution function.

will tend not to succeed in moderating extreme people’s stances.
We will now continue with the mirror image of the previous case

— a social pressure which is less orthodox than personal opinions are
rigid (part 2 of proposition 2). The observable outcome of this case is
a distribution that looks close to a standard bell-shape. But there is an
important twist. The concentration of stances at s̄ consists of individuals
with extreme inner blisspoints. The extreme types’declarations are more
moderate than those of the moderates. This makes for a conformity
which is increasing with the type’s distance to the norm —an outcome
that we will label “hypocrisy”. The intuition is that moderates are now
unwilling to conform since this would inflict too great displeasure when
the dissonance is relatively more concave. For extremists, however, not
conforming will imply too great social pressure since P (t, s̄) is increasing
relative to D (t, s̄) with the distance to the norm (|t− s̄|).
The last part of proposition 2 expresses that as the dissonance and

the social pressure become equally concave, the whole population either
conforms completely or not at all.

6 An orthodox society with lax personal opinions

When β ≤ 1 (small deviations from the norm matter more on the mar-
gin than large deviations) and α > 1 (only large deviations from the
blisspoint create dissonance), we get a mix of corner and inner solutions
in line with the following proposition.

Proposition 3 If β ≤ 1 < α:

1. ∃t̂ > s̄ such that s∗(t) = s̄ for every t ∈ [s̄, t̂[ and such that s∗ (t) ∈
]s̄, t[ for every t ≥ t̂. This image is mirrored at s̄.
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2. s∗ (t) is constant in the range
[
s̄, t̂
]
and increasing in the range[

t̂, th
]
.

3. For a broad enough range of types, the distribution is discontinu-
ously trimodal with a peak at s̄ and a detached section on each side
which rises towards the end of the range. For a suffi ciently narrow
range of types, the distribution is degenerate at s̄.

4. Conformity and relative concession are weakly decreasing in |t− s̄|.
Absolute concession is increasing in |t− s̄| for t such that |t− s̄| <∣∣t̂− s̄∣∣, then sharply decreases when |t− s̄| = ∣∣t̂− s̄∣∣, and gradually
keeps decreasing as |t− s̄| grows further.

Proof. See the appendix.

A visualization of the proposition can be seen in figure 5. The distri-
bution has a peak at s̄ and, for a suffi ciently broad range of types and a
suffi ciently centered s̄, tails with peaks which are increasing towards the
edges11. What is shown by the proposition is that a group of individuals
who are extreme enough will all choose an inner solution and that more
extreme individuals conform relatively and absolutely less. Meanwhile,
moderates will completely conform with the norm. This will create a
concentration of individuals at the norm and two tails where the con-
centration of individuals is increasing towards the extreme ends.
The intuition is that since the social pressure is concave, small de-

viations from the norm draw relatively heavy pressure. Combining this
with convex inner preferences —small deviations from the blisspoint are
painless —implies that moderates will completely conform to the social
norm. In comparison, extremists would feel great dissonance if they
were to move close enough to the norm to have an effect on the pres-
sure. However, since the dissonance is convex, the extremists do not
mind making small concessions. Hence, they choose an inner solution in
the range where it makes little difference what one chooses both from
an inner preference and a social pressure point of view. As can be seen,
this closely resembles the case where society is orthodox and opinions
are rigid. Also here are extremists alienated from society but instead of
completely “ignoring”the norm, they comply slightly. This is similar to
the result in Bernheim’s (1994) paper. What is interesting is that while
Bernheim gets this distribution when both pressure and dissonance are
convex functions (according to our way of defining them), we get it when

11Alternatively, this statement is also true for a suffi ciently smallK. I.e. we can get
qualitatively similar societies by either adding heterogeneity (broadening the range
of types) or by decreasing the weight of punishment (decreasing K).
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Figure 5: β < 1 ≤ α with s̄ = .5, t ∼ U (0, 1). The left-hand schedule
depicts s∗ (t) (full line) and, in comparison, the s = t (dashed line). The
right-hand schedule depicts the probability distribution function. Note
that the y-axis is truncated from above for visual purposes.

dissonance is convex but pressure is concave. This way, whether pres-
sure is applied to actions (our model) or beliefs about types (Bernheim’s
model) makes an important difference.
It is generally hard to find a closed form solution for the cutoff be-

tween conformity and inner solutions. Likewise it is diffi cult to show that
it exists in a specific range. However, the inner solution is increasing rel-
ative to the corner solution as t is distanced from the norm. Hence, for
a broad enough range of bliss points, we know that the inner solution
is preferred for extreme individuals. In contrast, and perhaps trivially,
the cutoff is increasing in K in such a way that if the social pressure has
enough weight, there can arise a case of everyone choosing the norm.

7 A liberal society with rigid personal opinions

When β > 1 and α ≤ 1, we once more get a combination of corner and
inner solutions, but largely as a mirror image of the previous case.

Proposition 4 If α < 1 ≤ β then:

1. ∃t̂ > s̄ such that s∗(t) = t for every s̄ ≤ t < t̂ and such that
s∗ (t) ∈]s̄, t[ for every t ≥ t̂. This image is mirrored at s̄.

2. s∗ (t) is increasing in the range
[
s̄, t̂
]
and decreasing in the range]

t̂, th
]
.

3. For a broad enough range of types, the distribution is continuous
and bimodal with a uniform section around s̄ (consisting of mod-
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Figure 6: α < 1 ≤ β with s̄ = .5, t ∼ U (0, 1). The left-hand schedule
depicts s∗ (t) (full line) and, in comparison, the s = t (dashed line). The
right-hand schedule depicts the probability distribution function.

erate types) overlapping a peak on each side of s̄ (consisting of
extreme types) peaking towards s̄. For a suffi ciently narrow range
of types, the distribution is uniform.

4. Absolute and relative concession are increasing in |t− s̄|. Confor-
mity is decreasing in |t− s̄| for t with |t− s̄| <

∣∣t̂− s̄∣∣, then sharply
increases when |t− s̄| =

∣∣t̂− s̄∣∣, and gradually keeps increasing as
|t− s̄| grows further.

Proof. See the appendix.

Since social pressure is convex, it hardly affects moderates who can
now freely choose their inner blisspoint. Extremists, on the other hand,
will feel too much pressure by not conforming and since personal opinions
are rigid, once they deviate from their blisspoint, they might as well
conform a great deal.
As illustrated in figure 6 (left-hand schedule), the proposition implies

that the extremists are more conform than some moderates and that,
within the group of those conforming, the more extreme individuals are
the most conformed. Thus, as in the case of α < β ≤ 1, we get hypocrisy.
But now we get it at two levels —both between extremists and moderates
and within the group of extremists. All in all, this will create a bimodal
distribution (figure 6, right-hand schedule) where extremists form the
peaks and there is a uniform distribution of moderates around the peaks.
As α increases towards 1, these peaks will move outwards and as α passes
1, the hypocrisy ceases to exist and we are left with the same bimodally
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distributed liberal/lax society. Likewise, as we decrease β towards 1,
the peaks move inwards and as it passes 1 the peaks are centered at s̄
and we are left with a unimodal orthodox/rigid society where extremists
conform completely. In that way, this case bridges the gap between the
societies of α < β < 1 and 1 < α < β.

8 Relative concession

Having gone through all possible cases, we are now ready to state a
general result that spans through all parameter combinations.

Corollary 5 Iff β < α, then the relative concession is decreasing in
|t− s̄|.
Proof. Follows from propositions 1-4.

What this proposition establishes is that when the social pressure is
more concave (or less convex) than the cognitive dissonance, it mainly
affects moderates12. This is intuitive since, roughly speaking, when the
pressure is relatively concave, then small deviations from the norm mat-
ter more than large deviations. Likewise, if the social pressure is rela-
tively more convex, it mainly induces the extremists to conform since
it makes a significant difference what one does when being far from the
norm. This way, the relative curvature of the social pressure can be said
to determine who is affected by it and how the resultant distributions
are formed.

9 Endogenizing the social norm

Up until now, nothing has been said about how s̄ is determined. The
previous analysis can therefore be viewed as a partial equilibrium. In
order to establish which social norms are feasible, we will assume that
this is determined by the average stance in society. Naturally, there may
be other forces shaping the equilibrium position of a social norm, but
the average stance seems like a reasonable first case to investigate.

s̄ =
1

th − tl

th∫
tl

s∗ (τ) dτ

First, we can note that since the distribution of bliss points is uniform,
the distribution of stances (S) is symmetric around s̄. Thus, for a certain

12Note that this is the only result that does not generalize easily. With general
functional forms, the condition γP (x) ≡ xP ′′(x)

P ′(x) < γD (x) ≡ xD′′(x)
D′(x) is what makes a

decreasing relative concession. γ (x) is a measure of relative convexity (cf. Brander
& Spencer, 1984) similar to the Arrow-Pratt measure of relative risk aversion.
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social norm to constitute an equilibrium, S has to be symmetric around
s̄ over the whole range of types. For distributions of stances where some
types have inner solutions, this cannot occur unless s̄ = th+tl

2
, i.e. the

average stance is also the average bliss point. For distributions consisting
of corner solutions, there may be multiple equilibria. This is expressed
in the following proposition which describes all possible equilibria in the
different cases.

Proposition 6 If s̄ is the average stance in society:

1. If β > 1 then s̄ = th+tl
2
is a unique feasible equilibrium.

2. If β < α ≤ 1 then s̄ is a feasible equilibrium iff s̄ ∈
{
th+tl

2

}
∪[

th −K
1

α−β , tl +K
1

α−β

]
.

3. If β ≤ 1 < α then s̄ ∈ [tl, th] is a feasible equilibrium iff it fulfills
(t− s̄)α ≤ |t− s∗ (t)|α +K |s∗ (t)− s̄|β ∀t ∈ [tl, th], where s∗ (t) is
given by |t− s∗ (t)|α−1 (|s∗ (t)− s̄|)1−β = Kβ/α.

4. If α < β ≤ 1 then s̄ is a feasible equilibrium iff s̄ ∈
{
th+tl

2

}
∪[

tl +K
1

α−β , th −K
1

α−β

]
are feasible equilibria.

5. If β = α ≤ 1 and K > 1 then s̄ is a feasible equilibrium iff s̄ ∈
[tl, th]. If K ≤ 1 then s̄ = th+tl

2
is the unique feasible equilibrium.

Proof. See the appendix.

Following the proposition, the only feasible equilibrium in a liberal
society is where the social norm is equal to the average bliss point. This
is due to the fact that in liberal societies, there is always a portion
of individuals (sometimes all) who choose a compromise stance13. If
the social norm is positioned somewhere else than in the middle, these
compromising stances become more influential (a larger total weight)
and thus, such a social norm is unsustainable.
In orthodox societies, however, there is a range of equilibria s̄. What

parts 2 and 3 of the proposition essentially express is that in an orthodox
society with relatively more concave social pressure, the social normmust
be positioned such that it makes all individuals totally conform as types
far from the norm will otherwise be alienated. This is simplified if the
weight on social pressure is large. As the weight of pressure falls, this
leaves a more narrow range of feasible equilibria and, eventually, the only

13In a liberal society with rigid opinions, this reasoning also applies to the moder-
ates who do not concede at all.
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remaining equilibrium is when the social norm is equal to the average
blisspoint. This implies that in very orthodox societies, the only way of
upholding a skewed social norm is by either having severe social pressure
or by having individuals with a tight range of bliss points.
The fourth part of the proposition states that in an orthodox society

with relatively rigid inner preferences, the social norm has to be posi-
tioned such that it covers all moderate types that choose their own inner
bliss point as a stance. Such a society, albeit being orthodox, only has
to allow the freedom of expression of those close to the norm, since the
inner preferences are very rigid. The extreme types do not play any role
here since they choose to totally conform, thus giving up their effect in
determining the norm.
A pattern emerges from the above proposition showing that liberal

societies are bound to eventually have norms representing the average
inner opinions in society —this is the only equilibrium. Only orthodox
societies can sustain social norms which are not representative of the
true opinions of the people. In that way, orthodox societies are history
dependent since the initial set of common rules will also determine the
long-run equilibrium outcome. This may also explain why orthodox so-
cieties (but less often liberal ones) have rules which are not, even on
average, in people’s interest . Furthermore, it rationalizes why orthodox
societies with extremist rules more often resort to harsh punishments
than liberal societies —only in the former is it possible to sustain skewed
norms with the help of pressure. Therefore, we should observe a corre-
lation between orthodox societies and harsh punishments.

10 Some casual observations

This section will present some examples that we believe the basic model
does well in explaining. They are of an informal nature in the sense that
we do not attempt to prove causality or that no other mechanisms can
explain the observed distributions.
Figure 7 presents how people in Brazil and Sweden, respectively, re-

spond to a question of government versus individual responsibility. The
Brazilian distribution looks bimodal with one large group believing that
individuals are completely responsible for themselves while another large
group believes that the government is responsible for providing for the
citizens. In comparison, the Swedish distribution is bell-shaped with
the mass centered in between the two extreme stances. How can we
explain this difference? Both these societies must be considered liberal
in the sense that there is freedom of expression (within boundaries),
i.e. β > 1. On the other hand, they differ substantially in economic
inequality where Brazil ranks as one of the most economically unequal
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Figure 7: Distribution of respondents’answers to whether people them-
selves (1) or the government (10) should take more responsibility to
ensure that everyone is provided for. Source: World Value Survey third
wave.

countries while Sweden ranks as one of the most economically equal
countries. The very poor people in Brazil may, as a matter of principle,
feel very uncomfortable in stating that they are themselves responsible
for their own situation. Likewise, the rich people may be uncomfortable
in stating that they have a shared responsibility (by way of the gov-
ernment) for the poor people which may also imply that they are not
themselves to praise for their material wealth. Hence, it is conceivable
that α in Brazil is low or at least lower than β. In Sweden, on the other
hand, since the stakes of being at the economic top or bottom are not as
high, both the relatively rich and the relatively poor may well feel that
it is fine to state that there is both an individual and a governmental re-
sponsibility, as long as they do not have to reverse their opinions. Hence,
it is conceivable that α in Sweden is high and possibly higher than β. If
this is indeed the case, the model predicts that we should see a bimodal
distribution in Brazil and a unimodal distribution in Sweden (see section
4). If the difference between Sweden and Brazil is in the weight of social
pressure, i.e. K instead of α, then we should not observe any qualitative
difference in the shape of the distribution14.
An example of an orthodox society is Afghanistan under the Taliban

rule. Any deviation, large or small, from the right path was punished
severely implying that β was very small and K was large. Consequently,
as predicted by the theory, very few deviated from the norm established

14These results remain also when looking at related questions from the World Value
Survey or when looking at these answers for example for Mexico and India —other
countries that rank high in terms of economic inequality. However, this story has not
dealt with potential reversed causality.
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by the Taliban. In comparison, the ultra-orthodox Jewish society is also
intolerant to deviations from the behavior it deems to be right, implying
that β is small there. However, its punishments are not as harsh as those
in the Taliban society. According to theory, this should lead people with
personal opinions close to the established norm to completely conform,
while those with personal views far from the orthodox norm will be
alienated and essentially ignore the social pressure exerted.
The nature of hypocrisy and reversed stances as described in propo-

sitions 2 and 4 implies that it is hard to single out such cases in practice.
However, an example may be when non-whites are part of, and some-
times even take on the leadership in, gangs of Nazis and white racists.
The explanation for this may be that a non-white person growing up
in a neighborhood where there is a group of skinheads will be harassed,
implying that K is large. Since skin color or religion cannot easily be
changed, even a small conformity towards the racist group will create
a significant cognitive dissonance and hence, α must be very small and
likely smaller than β. In this situation, a black person may actually
choose to join the group, since staying close to one’s inner blisspoint
implies too harsh a punishment and once the non-white person has de-
nounced his skin color, he might as well minimize the punishment totally.
A documented such example is the convicted Swedish police-killer Jackie
Arklöv15, a dark skinned foreign adoptee by Swedish parents, who joined
a group of Nazi felons. He was arguably the most violent person within
that group. Even though such examples at an individual level only give
limited information on the complete distribution and many other circum-
stances play a role in shaping such an individual, the theory presented
here may shed some light on one mechanism influencing people far from
the social norm. Moreover, in the example given here, the question re-
mains why the Nazi gang would accept that a black person joins their
group.

11 Aggregating individual pressure

This section and the next consider an extension of the basic model.
Instead of assuming one social norm, we will now look at a situation
where each individual puts pressure on each other individual. We call
this pluralistic social pressure. In this section, we start by analyzing the
specific issue of how pressure stemming from individuals is aggregated
into a social pressure function. The next section then analyzes the actual
stances individuals will take and the resultant distribution of stances in
a specific case. Namely, when pressure comes from the individual’s type,

15For a biography, see Sandelin (2010).
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each individual pressure is orthodox and dissonance is rigid.
Consider an individual with a revealed stance s who meets people

randomly. Each person x that the individual meets will punish her
based on the distance from s to x. We will refer to x as the individual
source of pressure.

p (s, x) = p (|s− x|)
p (·)′> 0

We can think of x as being either the other individual’s type (i.e. her
inner bliss point) or her stance (i.e. her revealed stance). For the sake
of generality, in analyzing aggregate pressure in this section, we do not
explicitly need to determine the source of pressure x.

11.1 Pluralistic and uniform pressure sources
Now, if x is uniformly distributed from xl to xh, then an individual with
stance s will expect to perceive the following pressure.

Pall (s)≡E [p (|s− x|)] =
1

xh − xl

xh∫
xl

p (|s− x|) dx

=
1

xh − xl
[P (xh − s) + P (s− xl)− 2P (0)] , s ∈ [xl, xh]

where, by convention, P ′ ≡ p.16 This is the pressure that the individual
with stance s can expect to feel when meeting people randomly (which,
of course, is equivalent to the normalized aggregate pressure perceived
when meeting all other individuals simultaneously). What are the prop-
erties of this aggregated pressure function? By differentiating Pall, we
get

P ′all (s) = p (s− xl)− p (xh − s)
P ′′all (s) = p′ (s− xl) + p′ (xh − s) .

Now, define s̄ ≡ xl+xh
2
. The following proposition then follows.

Lemma 3 If x is uniformly distributed, then the aggregated pressure
function Pall (s):

1. Is strictly increasing if s > s̄ and strictly decreasing if s < s̄.

2. Is strictly convex if s 6= s̄ and s ∈]xl, xh[.

16We assume that p is integrable.
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3. Has a zero derivative at s̄.

4. Is symmetric around s̄.

Proof. 1), 2) and 3) follow trivially from the first and second deriva-
tives of Pall, from p (·)′ > 0 and from inserting s̄ into the first deriv-
ative. 4) To see the symmetry, let s̃ be the mirror image of s, i.e.
(s+ s̃) /2 = s̄, hence s̃ = 2s̄ − s = xh + xl − s. Then we get Pall(s̃) =
P (s̃− xl) + P (xh − s̃) = P (xh + xl − s− xl) + P (xh − (xh + xl − s))
= P (xh − s) + P (s− xl) = Pall (s).

That social pressure is increasing with the distance to the average x
is perhaps not very surprising —the more extreme is one’s stance, the
more pressure will one feel. But that the aggregated pressure function
is convex may be less obvious, given that we have not even specified
whether the pressure stemming from each person is convex or concave.
This means that under a uniform distribution of sources of pressure,
social pressure will be convex even if the one-on-one pressure is concave.
So a society, made up of “orthodox” individuals with uniform tastes,
will, in fact, be “liberal”on the aggregate.
Moreover, Pall (s) has a unique minimum point at s̄ ≡ xl+xh

2
around

which it is symmetric. This suggests that qualitatively, the aggregation
of punishment from a uniform distribution of sources of pressure is sim-
ilar to having a “virtual” social norm at xl+xh

2
, where the pressure is

increasing with the absolute size of the deviation from this norm.

11.2 Combining pluralism with an authority
From the analysis of the basic model, we know that the previous result
does not extend to the case where there is one source of pressure, i.e.
an authority. The question is then under what distribution of sources of
pressure it does extend. It turns out that this issue is hard to analyze
in a general way. So, we will instead analyze a few specific cases.
Given the discrepancy between a uniform distribution of pressure

sources and a single source, we will now look at a combination of the
two. This would represent a society with two sources of pressure. First,
an institutionalized norm which is the average of all opinions and, sec-
ond, the aggregate pressure of individuals who pressure each other. We
will look at the case where both individual and institutional pressures
have the same functional form, p, which is concave. The total pressure
function is then a weighted average of the two.

Pcombi = P (xh − s) + P (s− xl)− 2P (0) + Ap

(∣∣∣∣s− xh + xl
2

∣∣∣∣)
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where A is the relative weight of the institutional pressure. We here only
analyze the case of s ≥ xh−xl

2
. By symmetry, the other case has the same

properties. Differentiating, we get

P ′combi = p (s− xl)− p (xh − s) + Ap′
(
s− xh + xl

2

)
(9)

P ′′combi = p′ (s− xl) + p′ (xh − s) + Ap′′
(
s− xh + xl

2

)
. (10)

The first two elements in each expression represent the individual pres-
sure, while the third entity represents the authoritarian pressure. From
equation (9), it is clear that at the point s = xh+xl

2
, P ′combi = Ap′

(
s− xh+xl

2

)
.

The marginal pressure is completely determined by the authority at this
point. But whether Pcombi is concave depends on the sign of equation
(10). Assuming that limy→0 p

′ (y) = ∞ and limy→0 p
′′ (y) = −∞, and

letting s approach xh+xl
2
, it is clear that P ′′combi is negative and thus con-

cave around the virtual norm. In a similar fashion, it can be shown that
as s approaches either of the extreme stances, xh or xl, P ′′combi is positive
and thus convex.
This means that P ′′combi should change signs an uneven number of

times in the interval s ∈
[
xh+xl

2
, xh
]
. Now, with the assumption that

limy→0 p
′′ (y) = −∞, it is necessary that limy→0 p

′′′ (y) > 0. For sim-
plicity, we will then assume that p′′′ (y) > 0 for all y.17 This implies
that P ′′combi (s) is monotonically increasing in the interval s ∈

[
xh+xl

2
, xh
]

and therefore that P ′′combi changes signs exactly once in the interval
s ∈

[
xh+xl

2
, xh
]
.18

The interpretation of these results is that a society with mixed au-
thoritarian and individual pressure — both being orthodox — will, on
aggregate, tend to be orthodox towards stances around the norm, but
liberal towards stances far from it.

11.3 Exponential and Gaussian distribution of pres-
sure sources

Now, an interesting complement to this analysis is looking at other dis-
tributions of pressure sources but continuing with individual pressure
being concave. It turns out that it is hard to say anything in general
about this, so we will analyze two specific types of distributions, the
Exponential and the Gaussian, with individual pressure being a power

17One set of functions that have all these assumed properties are power functions
with an exponent less than 1.
18To see this, note that P ′′′combi = p′′ (s− xl)− p′′ (xh − s) +Ap′′′

(
s− xh+xl

2

)
. The

last part is positive by p′′′ > 0. This also implies that p′′ (s− xl) > p′′ (xh − s) since
s− xl > xh − s when s ≥ xh+xl

2 . So the total expression is positive.
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function. These two distributions both have a clear peak and sharply
declining tails. We are interested in seeing whether they can produce
orthodox aggregate pressure. The derivations of the upcoming results
can be found in the appendix in section 14.4.
Posit a distribution of pressure sources f (x) which symmetrically

has an exponential shape peaking towards some point from each side.
Assume further that this point is at s = 0, i.e. E (x) = 0, and that the
minimum and maximum pressure source in society are at ±∞.

Pexp (s) =

th∫
tl

p (|x− s|) f (x) dx

=
λ

2

∞∫
−∞

|x− s|α e−λ|x|dx =
λ

2

∞∫
−∞

|x|α e−λ|x+s|dx

where 0 < α < 1. It can be shown that P ′′exp (0) > 0 and that lims→∞ P
′′
exp ≈

1
2
α (α− 1) sα−2 which converges to 0 from below. This means that total
pressure is convex near the norm and concave for extreme stances (at
least when the extreme stances are suffi ciently extreme for the limit case
to be relevant). Unfortunately, it is hard to say anything about when
and how many times it switches from convex to concave.
Let us now in a similar fashion analyze the case where the pressure

sources follow a Gaussian distribution, so that f (x) =
√

λ
π
e−λx

2
, tl =

−∞, th =∞. As before, we continue with a concave power function for
the pressure.

Pgauss (s) =

th∫
tl

p (|x− s|) f (x) dx

=

√
λ

π

∞∫
−∞

|x− s|α e−λx2dx =

√
λ

π

∞∫
−∞

|x|α e−λ(x+s)2dx

It can be shown that P ′′exp (0) > 0 and that lims→∞ P
′′
exp ≈ 1

2
α (α− 1) sα−2

which converges to 0 from below. So the total pressure is convex around
the norm and concave towards the extremes. In this case, it is once
more hard to say anything about where and how many times the shift
between convex and concave forms takes place.
Under Gaussian and Exponential distributions, it seems that the

switch of pressure from liberal to orthodox towards the extremes is de-
pendent on the pressure sources virtually vanishing. Then, from the
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point of view of someone taking an extreme stance, the perception is
that there is just a mass of punishing individuals located at the norm.
What truly is a distribution of pressure sources then looks like one au-
thority for someone standing suffi ciently far away.

11.4 Interpretation
The two previous examples illustrate societies whose sources of pressure
are concentrated around the social norm, but with a slowly vanishing tail
of extreme sources of pressure. An example of this could be a situation
where the pressure sources represent the true opinions of people and
these opinions are very but not completely concentrated. Here, although
there is a clear peak around the norm and each individual is orthodox,
stances close to the norm will be pressured in a liberal manner, while
stances far from the norm will be pressured in an orthodox way. This is in
contrast to the case with a combination of authoritarian and uniformly
distributed individual pressure, where slight deviations from the norm
are punished in an orthodox way, while extreme stances will feel a liberal
pressure.
Although it is hard to make any general statements about this, it

seems that we need a single authority for the pressure close to the norm
to be orthodox. Otherwise, the accumulation of individual pressure gives
a liberal aggregate. This suggests that upholding an orthodox society
is not possible in a pluralistic society where heterogenous individuals
pressure each other. Moreover, it predicts that orthodox societies will
be authoritarian.

12 True opinions as a source of pressure in ortho-
dox societies

In this section, we assume that the entire pressure comes from individ-
uals in society (i.e. no authority), and that the sources of pressure are
the individuals’ types, i.e. x = t. We already analyzed the shape of
aggregate social pressure in section 11, but now we further analyze what
stances people will actually take given this social pressure. We will con-
centrate on a society with rigid and orthodox individuals as these results
are the most interesting. Nested in this is the specific case where indi-
viduals punish each other in the same way that they punish the self for
not telling the truth, i.e. p = D.
If types are uniformly distributed from tl to th, then an individual
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with stance s will expect to perceive the following pressure,

Pall (s)≡E [p (|s− t|)] =
K

th − tl

th∫
tl

p (|s− t|) dt

=
K

th − tl
[P (th − s) + P (s− tl)− 2P (0)] , s ∈ [tl, th] ,

where P ′ ≡ p and K is the weight of punishment from one individual.
The optimization problem of the single individual of type t is then

min
s
L = Pall (s) +D (t− s) .

The results of combining a concave p and D are summarized in the
following proposition where s̄ ≡ th+tl

2
.19

Proposition 7 In a pluralistic society, if true opinions are uniformly
distributed and are the source of pressure and both p and D are concave
then:

1. The aggregate pressure, Pall (s), has a unique minimum point, a
"virtual" norm, at s = s̄.

2. Pall (s) is convex with the distance to the virtual norm so that so-
ciety is liberal.

3. ∃t̂ > s̄ such that s∗(t) = t for every s̄ ≤ t < t̂ and such that
s∗ (t) ∈]s̄, t[ for every t > t̂. This image is mirrored at s̄.

4. s∗ (t) is increasing in the range
[
s̄, t̂
]
and is decreasing in the range]

t̂, th
]
. The image is mirrored at s̄.

5. The distribution of stances is continuous and bimodal with a uni-
form section around s̄ (made of moderate types) overlapping a peak
on each side of s̄ (made of extreme types).

6. Conformity is non-monotonic —it is increasing for moderates and
decreasing for extremists.

19Suffi cient assumptions for the upcoming proposition is that limx→0D
′ (x) =∞.

This is fulfilled by power functions. We will also assume here that the functions are
such that if an inner local minimum point exists for a type then it is unique. A
suffi cient condition for this is that L′′′ (s, t) < 0. This holds for e.g. p and D being
power functions. If the inner min points are not unique, we may get several peaks
on each side of s̄ in the distribution of stances.
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7. The absolute concession is weakly increasing in the distance from
s̄.

Proof. See the appendix section 14.2.2.

The proposition expresses that in pluralistic and orthodox societies,
a single "virtual" norm will be established and although each individual
pressure is orthodox, society as a whole will be liberal. Furthermore,
moderate individuals will tend to speak their mind truthfully while
hypocrisy will arise among those who are extreme enough. This way,
the virtual norm becomes like an unspoken consensus in society. If you
are close enough to the consensus, you do what you want but if you are
far from the consensus you make concessions to seem to be a moderate.
The more extreme you are the more you will concede.
The connection found here between hypocrisy and orthodox societies

does not arise by chance. If we interpret rigidness as orthodoxy at an
individual level then already by equation 5 we will see that when there
is compromise, orthodox individuals will behave in a hypocritical way.
This seems to be true also for corner solutions as suggested by the case
where personal opinions are more rigid than society is orthodox (see
Proposition 2 part 2). Anecdotal support is not lacking here. There
are plenty of stories where politicians from conservative parties turn out
to be homosexual after having made a career of strongly opposing it.
Likewise, there have been sex scandals among priests and revelations of
doping among athletes who have earlier denounced it vehemently. These
loose observations do, of course, have a rather complex background so it
is hard to tell the direction of causality. But the model and the results
shown here may provide one explanation for why such cases are observed.

13 Concluding remarks

This paper has presented a simple theory on how social pressure affects
the distribution of stated opinions and visible actions in a society or a
group. The core message is that even if the individual faces a fairly
trivial problem, the results at an aggregate level are non-trivial, diverse
and to an extent even surprising. For example, the paper shows that
a liberal society will display compromise and either a unimodal or a
bimodal distribution depending on how lax the personal opinions are
relative to social pressure. In comparison, in orthodox societies, people
will tend to either completely conform to the social norm or totally ignore
it. If personal opinions are rigid relative to social pressure, people with
inner opinions far from the norm will choose to comply, while those with
inner opinions close to the norm will declare their inner opinions openly.
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If personal opinions are lax relative to social pressure in an orthodox
society, those close to the norm will conform completely while those far
from it will essentially ignore social pressure.
Admittedly, we have only provided anecdotal evidence for the validity

of the model. Like any other theory, it needs to go through the scrutiny
of empirical testing. Since it distinguishes between hidden and revealed
preferences and since most issues where one would expect social pressure
to be at force are very complex, we believe that possibly the best way of
testing the model is by experiments. The natural starting point would
perhaps be to take the curvature of personal opinions as an unknown
and exogenous parameter and vary the curvature and weight of social
pressure through the experiment. Alternatively, by taking an issue where
one is certain of the curvature of inner preferences, one can test the model
predictions by varying the weight and curvature of punishment.
Since the true distribution of opinions is probably hard to observe in

reality, our clearest empirical prediction relates to how stances change
as a function of true opinions. An experimental approach could then
be to first solicit the true opinions (types) of individuals in a setting
without social pressure, for example where individuals do not observe
each other. The second step would then be to redo the experiment with
social pressure, for example by individuals observing each other, and see
how the stances change for each type. The final step would be to fit
a function to the mapping from type to stance. Using our theoretical
predictions about how stances change as a function of type, one could
then possibly back out the curvature of the individual dissonance in
relation to the curvature of the social pressure function.
Another model prediction is that only orthodox societies can sus-

tain a skewed social norm over time, whereas the social norm in liberal
societies is bound to better represent the true distribution of inner pref-
erences. This may also be connected to the loose observation that a
liberal atmosphere is often connected with democracy, while orthodox
societies are more often authoritarian in order to uphold a skewed so-
cial norm. We saw that this discrepancy also translates into pluralistic
societies, where it will be hard to maintain orthodox pressure unless an
authority is part of sanctioning wrongful behavior.
Extensions and applications to the model can be made along several

dimensions. What comes first to our mind is to extend the pluralistic
pressure model into a case where the sources of pressure are the indi-
vidual stances. At the face of it, this makes for a significantly more
complicated model since the pressure function changes as a function of
itself.
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14 Appendix - Proofs and derivations

14.1 Transformation from function to density
We now analyze the PDF of chosen stances in society. We restrict
ourselves to cases where the optimal stance of each type is uniquely
determined, i.e. whenever t has multiple solutions he chooses a single
one of them20. We divide the range of types into n+ 1 subranges

T0 = [tlow, t1] , T1 = [t1, t2] , ...Tn = [tn, thigh]

such that:

1. In each subrange, the function s∗ (t) only consists of corner solu-
tions or only inner solutions.

2. In case of inner solutions, s∗ (t) is continuous and strictly monotonic
in a subrange21.

20Otherwise we have no way of determining the chosen stance of some types.
21This means that D′ cannot contain non-monotonic parts within the subrange.
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We now investigate separately the contribution of each such subrange
to the resultant PDF . The contribution of each such part is called a
partial PDF , to be denoted pPDFTi, which fulfills

PDF =
∑
i

pPDFTi .

14.1.1 Inner solutions

Now we investigate the properties of the pPDFTi (shortly pPDF ) in
subranges with inner solutions. Denote by s∗min the lowest stance taken
by a type in the subrange (strict monotonicity ensures that this type is
unique). LetMi(s̃

∗) be the mass of types in Ti with stances in the range
(s∗min, s̃

∗] for some s̃∗.

Mi(s̃
∗)≡

s̃∗∫
s∗min

pPDF |sds =



t(s̃∗)∫
ti

f (τ) dτ if s∗(t) is rising in the subrange Ti

ti+1∫
t(s̃∗)

f (τ) dτ if s∗(t) is falling in the subrange Ti

where t (s̃∗) ≡{t s.t. s∗ (t) = s̃∗} .

Remembering that the distribution of types is uniform we get:

Mi(s̃
∗) =

{ t(s̃)−t(s∗(ti))
th−tl if s∗(t) is rising in the subrange Ti

t(s∗(ti+1))−t(s̃∗)
th−tl if s∗(t) is falling in the subrange Ti

(11)

pPDF |s̃∗ =
dMi(s̃

∗)

ds̃∗
=

1

th − tl

∣∣∣∣ dtds∗ |s̃∗
∣∣∣∣ (12)

Note that the last derivation is valid only if ds
∗

dt
|s̃∗ 6= 0 as otherwise dt

ds∗

is not defined. This is ensured under the strict monotonicity of s∗ (t).
We then have:

d (pPDF (s̃∗))

ds∗
=

{ 1
th−tl

d2t
ds∗2 |s̃∗ if

dt
ds∗ |s̃∗ > 0

− 1
th−tl

d2t
ds∗2 |s̃∗if

dt
ds∗ |s̃∗ < 0

. (13)

Proof of lemma 2
From equation 13, it follows that the pPDF is increasing if dt

ds∗ and
d2t
ds∗2 have the same sign and decreasing if

dt
ds∗ and

d2t
ds∗2 have opposite signs.

We then use the fact that d2s∗

dt2
< 0 if dt

ds∗ and
d2t
ds∗2 have the same sign,

and d2s∗

dt2
> 0 if dt

ds∗ and
d2t
ds∗2 have opposite signs.�
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14.1.2 Corner solutions.

There are two candidate corner solutions. The first is s (t) = t, i.e. when
type t chooses t as a stance, and then arg minL (s) = arg minD (t− s).
In a subrange of these corner solutions, the pPDF is simply a uniform
distribution with the trivial properties

pPDF |s̃∗ =
1

th − tl
dt

ds∗
|s̃∗ =

{ 1
th−tl if s̃

∗ (t) = t

0 otherwise
d (pPDF )

ds
= 0.

The other candidate corner solution corresponds to the solution of arg minL (s) =
arg minP (s). The solution of this equation is independent of t, so in
a subrange of these corner solutions, the pPDF is a degenerate single
peak with a mass equalling the mass of types within that subrange.

pPDF |s∗ =

{ ti+1−ti
th−tl if s

∗ = arg minP (s)

0 otherwise

Finally, in a subrange of mixed corner solutions, the pPDF is con-
structed of both types of corner solutions.

14.2 General functions
The purpose of this section is to lay the ground for the upcoming proofs
where one of P and D is concave and the other is convex. We will
analyze the case where P has exactly one min point s̄ ≡ arg mins P (s).
This naturally covers the case with an exogenous social norm but also
the case where there is one endogenous "virtual" norm, like in the case
of P arising from the aggregation of individuals pressuring each other.
Suffi cient conditions for the upcoming results to hold are:

1. The signs of both P ′′ andD′′ are constant, i.e. each of the functions
P and D is either linear or strictly convex or strictly concave at
the whole range.

2. Furthermore, to avoid dealing with the special behavior of types
near s̄, we restrict our attention to functions P such that P ′(s̄) = 0
if P (·) is convex and lim

x→+s̄
P ′ (x) =∞ if P (·) is concave. Equivalent

requirements apply to D.

3. lim
x→∞

P ′ (x) =∞ if P (·) is convex. Likewise for D.

We will perform the analysis for t ≥ s̄ (the analysis for t < s̄ is
equivalent).
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14.2.1 Concave P (s), Convex D(t− s)
When P is concave andD is convex we have that in the corners L′ (s(t) = s̄) =
P ′ (0)−D′ (t− s̄)→∞ and L′ (s(t) = t) = P ′ (t− s̄)−D′ (0) = P ′ (t− s̄) >
0. This implies that potential corner solutions must be at s = s̄. It also
implies that we have either zero or an even number of inner extreme
points.
We will now show that inner extreme points exist for a suffi ciently

broad range of types. For the following, s̄ is assumed to be weakly pos-
itive. For suffi ciently negative s̄, some parameters need to be redefined
but the result will hold nevertheless. In inner extreme points, the FOC
needs to be zero. Since L′ (s = t) = P ′ (t− s̄) > 0, it is then suffi cient
to show that L′ < 0 for some t and s ∈ [s̄, t].
Define ṫ implicitly by D′(ṫ− s̄) = P ′(ṫ− s̄). I.e. ṫ is the type whose

minimal marginal pressure (when choosing s = ṫ) is exactly equal to
the maximal marginal dissonance (when choosing s = s̄). We know
by the previous results that ṫ > s̄. We also know that this type ex-
ists in a broad enough but finite range since limt→∞ P

′ (t− s̄) = 0 and
limt→∞D

′ (t− s̄) = ∞. However, ṫ will not have an inner extremum
since P ′|s=ṫ = D′|s=s̄ is the only way to equal D′ and P ′ and since ṫ 6= s̄.
Let us now look at the type ẗ = s̄ + 2

(
ṫ− s̄

)
+ ε where ε ≥ 0. This

is the type which is just beyond twice as far from the norm as ṫ. If ẗ
chooses s = ṫ, we have

L′
(
s̄+ 2

(
ṫ− s̄

)
+ ε, ṫ

)
=P ′(ṫ− s̄)−D′(s̄+ 2

(
ṫ− s̄

)
+ ε− ṫ) =

P ′(ṫ− s̄)−D′(ṫ− s̄+ ε) =D′(ṫ− s̄)−D′(ṫ− s̄+ ε).

Since D is convex ε > 0 gives a strictly negative L′ which proves the
existence of inner extreme points for broad enough but finite ranges.
We will now show that for a broad enough range of types, some will

have an inner global min point. Suppose that an inner local min point
exists. Let us now compare the losses of the inner and the corner min
points. In the corner s = s̄ and the inner min point we denote by ŝ.

Diff ≡L (s (t) = s̄)− L (s (t) = ŝ)

=D (t− s̄)− [P (ŝ− s̄) +D (t− ŝ)]

Thus, for t = s̄ the corner solution is preferred since then Diff < 0.

dDiff

dt
=D′ (t− s̄)− P ′ (ŝ− s̄) dŝ

dt
−D′ (t− ŝ)

(
1− dŝ

dt

)
= {use D′ = P ′} = D′ (t− s̄)−D′ (t− ŝ) > 0 with convex D.
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This implies that there is one cutoffat most where s∗ changes from being
a corner to an inner solution. So, for t suffi ciently close to s̄, s∗ (t) = s̄.
To see whether the cutoffbetween corner and inner solutions exists, note
that

d2Diff

dt2
= D′′ (t− s̄)−D′′ (t− ŝ)

(
1− dŝ

dt

)
> 0.

We know that the last parenthesis is negative by inserting a concave P
and a convex D in equation 5, implying that dŝ/dt > 1. Thus, as Diff
is increasing and convex, we know that types suffi ciently far from s̄ have
an inner solution. Let t̂ be the cutoff type. Showing that this t̂ exists
in a certain range is hard. For a suffi ciently narrow range of types, the
result is a distribution of stances that is Dirac Delta at s̄. However, if
there is a suffi ciently broad range of types on each side of s̄, then the
resultant distribution contains a peak at s̄, with tails at each side of it
(and a gap between each tail and the peak at s̄).
Using ds∗/dt > 1 in Lemma 1, we get that conformity and ab-

solute concession are decreasing with t in inner solutions. In corner
solutions, conformity is constant while absolute concession is increasing
since ds∗/dt = 0.

14.2.2 Convex P (s), Concave D(|t− s|)
Proof of proposition 7
1) and 2) follow directly from Lemma 3. Since 2) implies that

Pall (s− s̄) is convex, we will analyze the general case of a convex P and a
concaveD. Note also that lims→s̄ P

′
all (s− s̄) = 0 and that limth→∞,s→th P

′
all (s− s̄) =

∞.
3): When D is concave and P is convex, we have that in the corners

L′ (s = t) = P ′ (t− s̄)− limx→0D
′ (x) = −∞ while L′ (s = s̄) = P ′ (0)−

D′ (t− s̄) = −D′ (t− s̄) < 0. This implies that potential corner solutions
must be at s = t. It also implies that we either have zero or an even
number of inner extreme points, e.g. if there are two extreme points,
one is a min and the other is a max.
We will now show that inner extreme points exist for a suffi ciently

broad range of types. In the following, s̄ is assumed to be weakly positive.
For suffi ciently negative s̄, some parameters need to be redefined but the
result will hold nevertheless. In inner extreme points, the FOC needs to
be zero. Since L′ (s = s̄) = −D′ (t− s̄) < 0, it is then suffi cient to show
that L′ > 0 for some t and s ∈ [s̄, t].
Define implicitly ṫ by D′(ṫ− s̄) = P ′(ṫ− s̄). I.e. ṫ is the type whose

maximal marginal pressure (when choosing s = ṫ) is exactly equal to the
minimal marginal dissonance (when choosing s = s̄). We know by the
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previous results that ṫ > s̄. We also know this type exists in a broad
enough but finite range since limt→∞D

′ (t− s̄) <∞ when D is concave
and limt→∞ P

′ (t− s̄) =∞. However, ṫ will not have an inner extremum
since P ′|s=ṫ = D′|s=s̄ is the only way to equal D′ and P ′ and since ṫ 6= s̄.
Let us now look at the type ẗ = s̄ + 2

(
ṫ− s̄

)
+ ε where ε ≥ 0. This

is the type which is just beyond twice as far from the norm as ṫ. If ẗ
chooses s = ṫ, we have

L′
(
s̄+ 2

(
ṫ− s̄

)
+ ε, ṫ

)
=P ′(ṫ− s̄)−D′(s̄+ 2

(
ṫ− s̄

)
+ ε− ṫ) =

P ′(ṫ− s̄)−D′(ṫ− s̄+ ε) =D′(ṫ− s̄)−D′(ṫ− s̄+ ε).

Since D is concave ε > 0 gives a strictly positive L′ which proves the
existence of inner extreme points for a broad enough but finite range.
We will now show that for a broad enough range, the local min will

be the global min. Suppose now that an inner local min point exists.
Let us now compare the losses of the inner and the corner solutions. In
the corner s = t and the inner extreme point, we denote by ŝ.

Diff ≡L (s (t) = t)− L (s (t) = ŝ)

=P (t− s̄)− [P (ŝ− s̄) +D (t− ŝ)]

Thus, for t = s̄ the corner solution is preferred since then Diff < 0.

dDiff

dt
=P ′ (t− s̄)− P ′ (ŝ− s̄) dŝ

dt
−D′ (t− ŝ)

(
1− dŝ

dt

)
= {using D′ = P ′} = P ′ (t− s̄)− P ′ (ŝ− s̄) > 0 with a convex P

This implies that there is at most one cutoffwhere s∗ changes from being
a corner to an inner solution. So, for t suffi ciently close to s̄, s∗ (t) = t.
To see whether the cutoff between the corner and inner solutions exists,
note that

d2Diff

dt2
= P ′′ (t− s̄)− P ′′ (ŝ− s̄) dŝ

dt
> 0.

We know that dŝ/dt is negative in inner solutions by inserting a convex
P and a concave D in equation 5 (this proves 4). Thus, as Diff is
increasing and convex we know that types suffi ciently far from s̄ have
an inner solution which concludes 3).
5): Let t̂ be the cutoff type. Showing that the inner min points are

unique is hard. Assuming this to be the case, if there is a suffi ciently
broad range of types on both sides of s̄, the resultant distribution con-
tains a uniform part at the range surrounding s̄ and, on top of this, two
formations, one on each side of s̄ (these “formations”must be on top

36



of the uniform part because the cutoff type t̂ chooses an inner solution
s∗(t̂) < t̂, and every t > t̂ chooses s̄ < s∗(t) < s∗(t̂) because ds∗/dt < 0).
6) and 7): Using ds∗/dt < 0 in Lemma 1, we get that both conformity

and absolute concession are increasing with t in inner solutions. In corner
solutions, conformity is decreasing while absolute concession is constant
since ds∗/dt = 1.�

14.3 Power functions and punishment from one norm
14.3.1 Case: β < 1 < α

Proof of proposition 3
In this case, we have a concave P (s) with a unique min point s̄, and

a convex D(t− s). We also have P ′ (s̄)→∞. As we saw in the general
analysis (section 14.2.1), types near s̄ choose s = s̄. We can also check
and see that ∀t > s̄ there is at most one candidate inner solution (i.e.
one local minimum). The FOC gives

α (t− s)α−1 = βK (s− s)β−1 ⇒ βK/α = (t− s)α−1 (s− s)1−β ≡ f (s) .

Note that f(s) is strictly positive in ]s̄, t[, and that f(s) = 0 at both
edges of the range (i.e. at s = s̄ and at s = t). This means that f(s)
has at least one local maximum in ]s̄, t[. We need this maximum to be
larger than βK/α for the FOC to hold at some point.
We now proceed to check whether this local maximum of f (s) is

unique:

f ′ (s) = (t− s)α−2 (s− s̄)−β [(1− β) (t− s)− (α− 1) (s− s̄)]

Since (t− s)α−2 (s− s̄)−β is strictly positive in ]s̄, t[, and [(1− β) (t− s)−
(α− 1) (s− s̄)] is linear in s, positive at s = s̄ and negative at s = t,
f ′(s) = 0 at exactly one point at this range (i.e. a unique local maximum
of f(s) in ]s̄, t[). From the continuity of f(s), we get that if the value of
f(s) at this local maximum is greater than βK/α, then L(t, s) has ex-
actly two extrema in the range ]s̄, t[. From the positive values of L′(t, s)
at the edges of this range, we finally conclude that the first extremum
(where f(s) is rising) is a maximum point of L(t, s), and the second ex-
tremum (where f(s) is falling) is a minimum point of L(t, s), i.e. L(t, s)
has a unique local minimum. Conversely, if the value of f(s) at its local
maximum point is smaller than βK/α, there is no local extremum to
L(t, s) in the range ]s̄, t[ and therefore s (t) = s̄.
Once we know that there is one candidate inner solution at most,

we know from the general analysis (section 14.2.1) that there exists a
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t̂ such that every type with s̄ ≤ t < t̂ chooses s̄ and every type with
t > t̂ chooses his (unique) inner solution. If t̂ > th, this results in a
distribution of stances that is Dirac Delta at s̄. However if t̂ < th, then
due to symmetry, the resultant distribution contains a peak at s̄, with
identical tails at each side of it (and a gap between each tail and the
peak at s̄).
We can further analyze the shape of the tails. Applying the functional

form into Lemma 2, we get that the right-hand tail of the distribution
has an increasing pPDF . In addition, since s∗ (t) is continuous and
strictly monotonic (ds

∗

dt
= D′′(t−s∗)

P ′′(s∗−s̄)+D′′(t−s∗) > 1), the pPDF gives us the
PDF of the whole right-hand tail of the distribution of stance (the PDF
of the left tail is strictly decreasing because it is the mirror image of the
right tail). So the whole distribution of stances is (for t̃ < th) a trimodal
distribution with tails rising toward the edges of the distribution (with
a gap between the peak and the tails on each side).
To conclude the proof, we notice that applying this specific power

function case to part 3 of Lemma 1 implies that relative concession is
decreasing at the range

[
t̂, th

]
. Since types with s̄ ≤ t < t̃ choose s̄, i.e.

fully conform, we get that relative concession is decreasing for every t
s.t. s̄ ≤ t, and therefore that relative concession is decreasing in |t− s̄|
∀t (since s̄ is a reflection point). As shown in section 14.2.1, conformity
and absolute concession are decreasing in inner solutions while in corner
solutions, conformity is constant while absolute concession is increasing.
Thus, conformity is weakly decreasing and absolute concession is non-
monotonic.�
14.3.2 Case: α < 1 < β

Proof of proposition 4
In this case we have a convex P (s) with a unique min point s̄, and

a convex D(t − s). We also have limx→0+ D′ (x) = ∞. So as we saw
in the general analysis (section 14.2.2), types near s̄ choose s = t. We
can also check and see that ∀t > s̄ there is at most one candidate inner
solution (i.e. one local minimum), by following the same stages as in the
proof of proposition 3 (while noticing that this time [(1− β) (t− s) −
(α− 1) (s− s̄)] is negative at s = s̄ and positive at s = t), we once more
get that L(t, s) has at most one local minimum (this time, it will be the
first of the two extremum points).
Once we know that there is one candidate inner solution at most,

we know from the general analysis (section 14.2.2) that there exists a t̂
such that every type with s̄ ≤ t < t̂ chooses t and every type with t > t̂
chooses his (unique) inner solution. If t̂ > th, this results in a uniform
distribution of stances. However, if t̂ < th, then due to symmetry (and

38



since s∗(t) is continuous), the resultant distribution is continuous and
bimodal with a uniform section around s̄ and one peak on each side of
s̄ (on top of the uniform section).
We can further analyze the shape of the tails. Applying the functional

form into Lemma 2, we get that the right-hand tail of the distribution
has a decreasing pPDF . This means that the peak on the right-hand
side of s̄ has a falling slope to its right-hand side and, by symmetry, the
peak on the left-hand side of s̄ has a falling slope to its left-hand side
(see figure 6).
To conclude the proof, we notice that applying this specific power

function case to part 3 of Lemma 1 implies that relative concession is
increasing at the range

[
t̂, th

]
. Since types with s̄ ≤ t < t̂ choose t,

i.e. do not conform at all, we get that the relative concession is increas-
ing for every t s.t. s̄ ≤ t, and therefore that the relative concession
is increasing in |t− s̄| ∀t (because s̄ is a reflection point). As shown
in section 14.2.2, conformity and absolute concession are increasing in
inner solutions while in corner solutions, conformity is decreasing while
absolute concession is constant. Putting the inner and the corner solu-
tions together, conformity is non-monotonic while absolute concession is
increasing.�
14.3.3 Equilibrium s̄

Proof of proposition 6
We know that the distribution is symmetric in a neighborhood of s̄.

For s̄ to be the average of all stances, the distribution of stances must
be symmetric in the whole range. By symmetry of P around s̄, it then
follows that s̄ = th+tl

2
is a feasible equilibrium in all cases.

1.) Assume that s̄ 6= th+tl
2
. For β > α ≥ 1, all types have unique

inner solutions which implies
∫ s̄
tl

(s̄− s (τ)) dτ 6=
∫ th
s̄

(s (τ)− s̄) dτ which
clearly violates symmetry. By the same reasoning, it must hold also for
α < 1 when some types have inner solutions. When α < 1 and all types
have corner solutions then s∗ (t) = t ∀t which is symmetric iff s̄ = th+tl

2
.

2.) Assume that s̄ > tl + K
1

α−β . Proposition 2 then implies that∫ s̄
tl
s (τ) dτ =

∫ s̄
tl
dt =

(
s̄−K

1
α−β

)
− tl and

∫ th
s̄
s (τ) dτ =

∫ th
s̄
tdt =

tl −
(
s̄+K

1
α−β

)
which are then not equal which violates symmetry.

This proves necessity. For suffi ciency, note that all s̄ in the range imply
that s∗ (t) = s̄∀t which is clearly symmetric.
3.) Assume that the condition is not fulfilled for some s̄ > th+tl

2
, then

there is a strictly larger mass of inner solutions in the range [tl, s̄] than
in the range [s̄, th], which violates symmetry. A corresponding argument
applies to s̄ < th+tl

2
. This concludes necessity. For suffi ciency, when the
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requirement is fulfilled then s∗ (t) = s̄∀t which is clearly symmetric.
4) Proposition 2 implies that an s̄ outside of the range has uniform

tails around s̄ which are not symmetric. Since types such that |t− s̄| >
K

1
α−β , s∗ (t) = s̄ this also implies suffi ciency.
5.) K > 1 implies that s∗ (t) = s̄∀t which is symmetric while K ≤ 1

implies that s∗ (t) = t∀t which is not symmetric.�

14.4 Aggregating individual pressure
14.4.1 Exponential distribution of pressure sources

Posit a distribution of pressure sources f (x) which symmetrically has
an exponential shape peaking towards the social norm from each side.
W.l.o.g. let the social norm be at s = 0, i.e. E (x) = 0. The minimum
and maximum pressure source in society are at ±∞.

Pexp (s) =

th∫
tl

p (|x− s|) f (x) dx

=
λ

2

∞∫
−∞

|x− s|α e−λ|x|dx =
λ

2

∞∫
−∞

|x|α e−λ|x+s|dx

where 0 < α < 1. Differentiating we get

P ′exp (s) =−λ
2

2

∞∫
−∞

|x|α e−λ|x+s|sgn (x+ s) dx

P ′′exp (s) =
λ3

2

∞∫
−∞

|x|α e−λ|x+s|dx.

To see the behavior of this function around the social norm, we now
look at

P ′′exp (0) =
λ3

2

∞∫
−∞

|x|α e−λ|x|dx = λ3

∞∫
0

xαe−λxdx

=λ2−αΓ (α + 1) > 0

where Γ (α + 1) is an incomplete Gamma function. This implies that
total pressure is convex near the norm. Let us now investigate the
asymptotic behavior of Pexp (s) for s → ∞. To this end, let us use
the “dimensionless” integration variable z = x/s, so that Pexp (s) =
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λ
2
sα+1

∞∫
−∞

|z − 1|α e−K|t|dt, where K = λs. The integral can be written as

Pexp (s) =
λ

2
sα+1

 0∫
−∞

(1− z)α eKtdt+

1∫
0

(1− z)α e−Ktdt+

1∫
0

(z − 1)α e−Ktdt


=
λ

2
sα+1

[
K−α−1eKΓ (α + 1, K) +K−α−1e−Kγ (α + 1,−K) +K−α−1e−KΓ (α + 1)

]
where Γ (a, b) are incomplete Gamma functions. For large K, Γ (α + 1, K) ≈
Kαe−K , so the second and third terms of the sum, which contain the
rapidly decreasing exponent e−K , can be neglected and we finally obtain
for s→∞:

P (s) ≈ λ

2
sα+1K−1 =

sα

2
,

whence P ′′ ≈ 1
2
α (α− 1) sα−2 → −0.

14.4.2 Gaussian distribution of pressure sources

We now analyze the case where the pressure sources follow a Gaussian

distribution so that f (x) =
√

λ
π
e−λx

2
, tl = −∞, tl = −∞. The pressure

is a concave power function

Pgauss (s) =

th∫
tl

p (|x− s|) f (x) dx

=

√
λ

π

∞∫
−∞

|x− s|α e−λx2dx =

√
λ

π

∞∫
−∞

|x|α e−λ(x+s)2dx

P ′gauss (s) =−2λ

√
λ

π

∞∫
−∞

|x|α (x+ s) e−λ(x+s)2dx

P ′′gauss (s) =−2λ

√
λ

π

∞∫
−∞

|x|α
[
1− 2λ (x+ s)2] e−λ(x+s)2dx

P ′′gauss (0) =−4λ

√
λ

π

∞∫
0

xα
[
1− 2λx2

]
e−λx

2

dx
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Substituting the integration variable with u = x2, we have

P ′′gauss (0) =−2λ

√
λ

π

∞∫
0

u(α−1)/2 [1− 2λu] e−λudu

=− 2√
π
λ3/2λ−(α+1)/2

[
Γ

(
α + 1

2

)
− 2Γ

(
α + 3

2

)]
=− 2√

π
λ(2−α)/2Γ

(
α + 1

2

)[
1− 2

α + 1

2

]
=

2α√
π
λ(2−α)/2Γ

(
α + 1

2

)
> 0.

Here, we have used the property of the Gamma function, Γ (z + 1) =
zΓ (z). Let us now investigate the asymptotic behavior of P (s) for
s→∞. To this end, let us use the “dimensionless”integration variable

z = x/s, so that P (s) =
√

λ
π
sα+1

∞∫
−∞

|z − 1|α e−λz2dz, where K = λs2.

The integral above has a saddle point at t = 0, so for K →∞, P (s) ≈√
λ
π
sα+1

∞∫
−∞

[1− αz +O (z2)] e−Kz
2
dz =

√
λ
π
sα+1

√
π
K

[
1 +O

(
1
K

)]
≈ sα.

From here, P ′′ ≈ α (α− 1) sα−2 → −0.
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