
Chapter 4

Monte Carlo Markov Chains

4.1 Stationary distributions in Markov Chains

Markov chains corresponds to a general model of dependence in a sequence of random
elements X0, X1, . . . , Xn, The characteristic feature of the Markov model is the
sequential dependence of an element Xn on the previous observations X0, . . . , Xn−1

only through the immediate predecessor Xn−1. In other words, the conditional
density satisfies:

f(xn|x0, . . . , xn−1) = f(xn|xn−1) ,

for all n. Observe that joint densities can be represented in terms of conditional
densities:

f(x0, . . . , xn) = f(x0)
n∏

i=1

f(x0, . . . , xi)
f(x0, . . . , xi−1)

= f(x0)
n∏

i=1

f(xi|x0, . . . , xi−1) ,

which reduces in the Markov model to:

f(x0, . . . , xn) = f(x0)
n∏

i=1

f(xi|xi−1) .

Consequently, the joint distribution in the Markov setting is determined by the initial
distribution f(x0) of the first observation and by the transition kernels f(xn|xn−1),
n = 1, 2,

In principle, the function form of the transition kernels f(·|·) may depend on
n. In the case where the same kernel is used for all n we say that the Markov process
is homogeneous. Henceforth we will be considering only homogeneous Markov chains.

Of particular interest to us will be the marginal distributions of the elements
Xn for different n’s. Notice that the marginal distribution of the first element in
the sequence is f0(x) = P(X0 = x). In order to obtain the marginal density of the
second element notice that the joint density is given by

P(X1 = x,X0 = y) = f(x|y)f0(y) .

therefore, upon integration with respect to the values of X0 we get that

f1(x) = P(X1 = x) =
∫

f(x|y)f0(y)dy .

61

62 CHAPTER 4. MONTE CARLO MARKOV CHAINS

In general, we get the recursive formula:

P(Xn = x) = fn(x) =
∫

f(x|y)fn−1(y)dy . (4.1)

Consider (4.1) as a functional equation. Under appropriate regularity condi-
tions that will not be discussed here it can be shown that this equation has a unique
solution, which we denote by π(x). This solution is itself a density and it satisfies
the relation

π(x) =
∫

f(x|y)π(y)dy . (4.2)

Notice that this relation implies that if X0 has π as its initial distribution then all
subsequent elements of the sequence X1, X2, . . . share the same marginal density π.
In such a case we say that the Markov process is stationary.

Stationary Markov processes in the world of Markov chains are the equiva-
lent to identically distributed random variables (i.i.d.) in the world of independent
random variables. In particular, one may expect properties like the law of large
numbers to hold. Indeed, if X0, X1, . . . is a stationary Markov process then one can
show (under an appropriate collection of regularity conditions, that typically come
under the heading of ergodicity) that for any integrable function g:

lim
n→∞

1
n

n∑

i=1

g(Xi) =
∫

g(x)π(x)dx . (4.3)

Another important limit theorem unique to Markov processes is the con-
vergence of the marginal distributions to the stationary distribution. This theory
identifies the fact that an iterative application of (4.1) produces a sequence of densi-
ties that converges to the stationary density π, regardless of the initial distribution
f0 used. Hence, if a long enough sequence is produced from the Markov process
then the tail elements Xm, Xm+1, . . . of this sequence, when m is large, is essentially
stationary. Consequently, if this convergence property holds then relation (4.3) for-
mally holds even if the process was not initiated with the stationary distribution π,
but with some other distribution.

The bottom line for Markov processes that posses the regularity conditions
that assures convergence to the stationary distribution: An approximation to an
integral with respect to the stationary distribution π can be obtained by generating
the Markov sequence X1, X2, . . . , Xn and using the average

∑n
i=m g(Xi)/(n − m).

The generation of the Markov process can be initiated with any starting value x0.
After a “burn down” period of length m, observations are assumed to approximately
come from the stationary distribution in which (4.3) is applicable.

The generation of the Markov sequence is carried out with the aid of the kernel
f(x|y). Starting from the initial value x0, one generates X1 from the distribution
f(·|x0). Given the value of X1, one generates X2 from the distribution f(·|X1), and
so on.

4.2 MCMC algorithms

Markov Chain Monte Carlo (MCMC) exploits the properties of Markov chains that
were discussed in the previous section in order to conduct simulations aimed at the

4.2. MCMC ALGORITHMS 63

approximation of integrals of a given distribution. Unlike regular simulations, in
which independent samples are generated from the target distribution, in MCMC a
Markov process is produced. The target distribution is the stationary distribution of
the generated process. Hence, approximation (4.3) in exactly the same way means
are used in ordinary simulations.

As an illustration, assume that we are interested in the approximation of the
probability of an event A:

P(A) =
∫

A
f(x)dx =

∫
IA(x)f(x)dx .

Standard simulations will approximate this probability by the generation of inde-
pendent observations X1, X2, . . . , Xn, such that Xi ∼ f(x) and the computation of
empirical frequency

∑n
i=1 IA(Xi)/n of the event Xi ∈ A as an approximation of the

given probability. The MCMC approach, on the other hand, will generate a Markov
sequence with f as a stationary distribution and approximate the probability using∑n

i=m IA(Xi)/(n−m).
MCMC algorithms are designed in order to generate a Markov process with

the target distribution as the stationary distribution. Many algorithms exist, each
geared towards solving the given problem at different scenarios and contexts. The
basic principle in all algorithms is the same: the construction of a transition kernel
(or matrix in the case where the number of states is finite) in which (4.2) holds
with π being the distribution we are trying to simulate from. This kernel is required
to possess further ergodicity conditions that will ensure that the given solution is
the only solution and that the marginal distributions converge to that solution so
that (4.3) holds. After the initiation of the Markov process at some starting point,
the kernel is applied in order to simulate sequentially a realization of the Markov
chain. An approximation of the expectation of any function with respect to the
target distribution can be obtained by the application of the function to the elements
of the generated sequence and taking the average. Usually, only the tail elements of
the sequence are used for the approximation since they are more likely to represent
the target limit distribution.

Here we will consider an example that involves the application of a spe-
cific such algorithm: the Gibbs algorithm. The Gibbs algorithm is designed for the
approximation of integrals of marginals of multi-dimensional distributions. The al-
gorithm is useful when generation of samples from the conditional distribution of
each component, given the other components, is relatively simple but an attempt to
produce the marginal distribution directly is complicated, possibly due to the high
dimensionality of the joint distribution. In the application that we will consider the
distribution will be of high dimension. However, in order to explain the concept, let
us consider a two-dimensional case.

Let f(x, y) be some joint density and consider the marginal density f1(x) =∫
f(x, y)dx. We are interested in the simulation of samples. In order to do that

we seek an algorithm that will produce a Markov sequence x0, x1, x2, . . . with f1

as its stationary distribution. Starting with some x0 we will produce x1 in two
steps: first we will generate y1 from the conditional distribution y1 ∼ f(y|x = x0)
of the second margin, given the first one. After doing so we will use the conditional
distribution of the first component, given the second one in order to generate an
x value: x1 ∼ f(x|y = y1). Thus, we have produced the second element in the

64 CHAPTER 4. MONTE CARLO MARKOV CHAINS

sequence that has x0 as its first element. The third element x2 is produced in the
same way, with x1 taking the role of x0. Hence, one first produces y2 from the
conditional distribution, given x1 and then x2 from the conditional distribution,
given y2. All in all, 2n simulations from conditional distributions are used in order
to produce a sequence of length n + 1 (including x0) of x elements.

Clearly the sequence that is produced is Markovian. The distribution of xn

depends only on the value of yn, which depends in turn only on the value of xn−1.
Consequently, the xn element depend on the previous x elements only through the
value of xn−1.

The kernel of this Markov process is given in the form of a conditional of an
element in the sequence, say x1, given the value of its predecessor, say x0. Notice,
that the joint density of x1 and y1, conditional on the value of x0 is given by f(x1|y =
y1)f(y1|x = x0). Consequently, the conditional density of x1 given x0, i.e. the kernel
of the Markov sequence, is obtained by integration over the values of y1:

k(x1|x0) =
∫

f(x1|y = y1)f(y1|x = x0)dy1

Let us show that relation (4.2) holds for this kernel and for π = f1. Indeed, since

f(x1|y = y1) =
f(x1, y1)∫
f(x, y1)dx

, f(y1|x = x0) =
f(x0, y1)
f1(x0)

,

we get that

k(x1|x0)f1(x0) =
∫

f(x1, y1)f(x0, y1)∫
f(x, y1)dx

dy1

and when we integrate with respect to x0 we obtain, upon changing the order of
integration, that:

∫
k(x1|x0)f1(x0)dx0 =

∫∫
f(x1, y1)f(x0, y1)∫

f(x, y1)dx
dy1dx0

=
∫

f(x1, y1)
∫

f(x0, y1)dx0∫
f(x, y1)dx

dy1

=
∫

f(x1, y1)dy1 = f1(x1) ,

establishing the claim that f1 is the stationary distribution for the given kernel.
The construction of the Gibbs sampler can be generalized in several ways.

First, it may be noted that the two components x and y can themselves be vectors.
In which case sampling is carried out with respect to the conditional distribution
of the vector y, given the entire vector x, and vice versa. Secondly, it follows from
symmetry that the sequence y1, y2, . . . is a Markov process and has as its stationary
distribution the marginal distribution of y. Thirdly, if the joint distribution has k
components and one knows how to simulate a value from the conditional distribution
of one component, given all the other, then one can generate in parallel k Markov
processes by changing the value of each of the components, one at a time, and
completing a Markov iteration after k steps. The resulting Markov processes has as
their stationary distribution the marginal densities of the different components.

In the next section we demonstrate the application of the Gibbs sampler for
the investigation of a specific genetic problem.

4.3. IDENTIFYING POPULATION OF ORIGIN 65

4.3 Identifying population of origin

Consider the following cluster analysis problem: A population is composed of K
genetically distinct sub-populations. We are given a sample of N unlabeled individ-
uals from that population. The task is to cluster these individuals into K clusters,
which are genetically homogeneous within each cluster and genetically heteroge-
neous between clusters, based on the genotypic measurements taken over L loci.
The approach we present here is due to Pritchard, Stephens, and Donnelly (Genet-
ics 155:945-959, June 2000) and is based on Bayesian considerations. Their basic
proposal is to place a prior distribution on the population origin of each individual
and to compute the posterior distribution, given the genotype. Clustering can then
be carried out based on these posterior probabilities, assigning each subject to the
sub-population with highest posterior probability. The Gibbs sampler is applied in
order to compute these posterior probabilities.

Let us consider the components of the problem. The observations are the
genotypes. With each individual and each locus an unordered pair (X1, X2) of
observed alleles is given. In favor of the convenience of the presentation we will
act in the sequel as if the pair is ordered and separate the component X1 from X2.
However, all functions that we will be using will be invariant with respect to the
permutation of the two elements. Hence, in actuality, the outcome will be a function
of the unordered pairs. The two R object X1 and X2 will be N × L matrices, with
rows representing the individuals and columns representing the loci. The entries
to the matrices will be zeros or ones, representing the absence or presence of the
designated allele in each locus.

The second component is a vector Z of length N representing the sub-population
origin of each subject. The entries to this vector are the numbers 1, . . . , K. The
entry for each subject is a-priory unknown and will be treated as a random quantity
with the uniform distribution over the the K possible values. Our goal is to sample
from the posterior distribution of these entries, given the observed genotypes, in
order to compute the posterior probability for each subject.

The last component is the K × L matrix of the designated alleles sub-
populations frequencies. The rows correspond correspond to sub-populations and
the columns to loci. The entries are numbers between zero and one. These parame-
ters are also unknown and taken to be random. Their a-priory distribution is beta.
The Gibbs algorithm corresponds may be used to produce sample from their poste-
rior distribution, given the genotype. Our main concern, however, will not be the
distribution of P but, rather, the distribution of Z. Nonetheless, sampling P values
will be part of the algorithm.

The Gibbs MCMC sampling will be initiated by setting starting values for the
components of the vector Z. New values of the vector will be generated in two steps
that for together a single iteration of the Gibbs sampler. In the first step the matrix
P is generated from its conditional distribution, given the current sub-population
identifier of each subject and given the genotypes. In the second step new identifiers
will be generated from the conditional distribution of Z, given the values of P from
the first step and given the genotypes. These two steps will be reiterated, each time
with the updated values of identifiers Z in order to produce a Markovian sequence
of vectors of identifiers with marginal distribution that converges to the posterior
distribution.

66 CHAPTER 4. MONTE CARLO MARKOV CHAINS

Let us build the R code and explain the details of the steps at the same time
with the aid of a small numerical example. Let us consider an artificial example
that involves 10 subjects, 5 loci and 2 sub-populations:

> N <- 10 # sample size
> L <- 5 # number of loci
> K <- 2 # number of populations

We generate the genotypes of the subjects by simulating allele frequencies and sub-
population identifiers and, based on these numbers, simulate the genotypes for each
locus and each subject:

> P.true <- matrix(rbeta(K*L,2,2),ncol=L,nrow=K)
> Z.true <- sample(1:K,N,rep=TRUE)
> X1 <- matrix(rbinom(N*L,1,P.true[Z.true,]),nrow=N,ncol=L)
> X2 <- matrix(rbinom(N*L,1,P.true[Z.true,]),nrow=N,ncol=L)

Let us examine the results. The actual allele probabilities that were used for the
two sub-populations and the actual identifiers are:

> P.true
[,1] [,2] [,3] [,4] [,5]

[1,] 0.09332287 0.3782789 0.3382755 0.4889488 0.3234987
[2,] 0.20860665 0.7138192 0.2734588 0.1592900 0.6474052
> Z.true
[1] 1 1 2 2 1 1 1 2 2 2

The resulted in the genotypes:

> X1
[,1] [,2] [,3] [,4] [,5]

[1,] 0 0 1 0 0
[2,] 0 1 1 1 0
[3,] 0 1 0 0 0
[4,] 0 0 0 0 1
[5,] 0 0 0 0 0
[6,] 0 0 0 0 1
[7,] 0 0 0 1 1
[8,] 1 1 0 1 1
[9,] 0 1 0 0 0
[10,] 0 1 1 0 1
> X2

[,1] [,2] [,3] [,4] [,5]
[1,] 0 0 0 0 0
[2,] 0 1 0 1 0
[3,] 1 1 0 0 0
[4,] 1 1 0 0 0
[5,] 0 0 1 0 1
[6,] 0 0 1 1 0
[7,] 0 0 1 1 0
[8,] 0 1 0 0 1

4.3. IDENTIFYING POPULATION OF ORIGIN 67

[9,] 0 0 0 0 1
[10,] 0 1 0 0 1

These genotypes are the information the statistician gets to observe in order to
conduct the cluster analysis.

Let us carry out one iteration of the Gibbs sampler. First we need some
auxiliary objects and the initial value of Z

> log.lik <- matrix(nrow=N,ncol=K)
> I <- diag(K)
> Z0 <- sample(1:K,N,rep=TRUE) # initiating the sampler
> Z0
[1] 1 2 1 2 1 1 1 1 1 1

The first step involves the simulation of the matrix P of allele frequencies
in each locus and each population, given the observed genotypes and given the
population identifiers of each individual. The prior distribution assumes that all
entries are independent of each other and the marginal distribution is beta(1,1) (i.e.,
uniform). This assumption may be appropriate if all loci are in linkage disequilibrium
and the sub-populations are genetically unrelated. In order to obtain the posterior
distribution it is further assumed the subjects are independent and that all loci are
in Hardy-Weinberg equilibrium. As a result the total count of the designated allele
at each locus and for each sub-population has a binomial distribution. Therefore,
the posterior distribution of the entries is also beta with the α parameter modified
to one plus the total count of the designated allele and the β parameter is modified
to one plus the total count of the other allele. The resulting matrix P corresponds
to the simulation of independent entries from these modified beta distributions. Let
us implement this in R:

> A.count <- I[,Z0]%*%(X1+X2)
> a.count <- I[,Z0]%*%(2-X1-X2)
> P <- matrix(rbeta(K*L,1+A.count,1+a.count),ncol=L,nrow=K)

Observe that the first line produces a matrix of dimension K × L with the total
counts of the designated allele and the second line produces a similar matrix for the
other allele. In the last line K ·L independent beta random variables are generated,
each with its own α and β values. The simulated values are then place in a matrix
of the appropriate dimension.

The second step corresponds to the simulation of population identifiers, given
the allele frequencies and given the observed genotypes. Notice that the a-priory dis-
tribution of the identifiers assumes independence between subjects and the uniform
distribution over the K sub-population. The posterior distribution corresponds also
to independent sampling from discrete distributions on the numbers 1, . . . , K, but
each individual may have its unique distribution, depending on his/her observed
genotypes across all loci.

Fix attention to a single individual. Assuming the Hardy-Weinberg equi-
librium and linkage disequilibrium, the joint probability of the observed genotypes
and belonging to a specific sub-population is a product of the probabilities of the
observed alleles across loci, where the probabilities in the product are the proba-
bilities associated with the given sub-population. The resulting vector of length K

68 CHAPTER 4. MONTE CARLO MARKOV CHAINS

is proportional to the posterior distribution of the population identifiers, given the
genotypes, for the that subject. Let us implement this step in R:

> for(k in 1:K)
+ {
+ P1 <- sweep(X1,2,P[k,],"*")+sweep(1-X1,2,1-P[k,],"*")
+ P2 <- sweep(X2,2,P[k,],"*")+sweep(1-X2,2,1-P[k,],"*")
+ log.lik[,k] <- rowSums(log(P1*P2))
+ }
> s <- rowMeans(log.lik)
> log.lik <- sweep(log.lik,1,s)
> Z1 <- apply(exp(log.lik),1,function(x) sample(1:K,1,rep=TRUE,prob=x))
> Z1
[1] 1 2 2 2 1 1 2 1 1 2

Notice that the entries of the matrices P1 and P2 contain only one of the two prob-
abilities that are in the sum, depending on whether the designated allele is present
or not. The entries of the N ×K matrix log.lik correspond to the logarithm of
the product of probabilities across all loci. After the formation of the log.lik ma-
trix and before exponentiating it we center its values in order to enhance numerical
stability. Notice that the resulting exponentiated rows of the matrix do not sum
to one. However, they are proportional to the required probability vectors. This is
just as good, since the function sample, which is applied in order to generate for
each row a sub-population identifier, can be applied with the argument prob set to
a non-negative vector that is proportional to the target sampling distribution.

The function gibbs.sample wraps the line codes into a single function that
carries out an iteration of the Gibbs sampler. The input is the current value of the
vectors of identifiers Z, the number of sub-populations and the observed genotypes
and the output is that updated vector of identifiers:

> gibbs.sample <- function(Z,K,X1,X2)
+ {
+ N <- nrow(X1)
+ L <- ncol(X1)
+ log.lik <- matrix(nrow=N,ncol=K)
+ I <- diag(K)
+ A.count <- I[,Z]%*%(X1+X2)
+ a.count <- I[,Z]%*%(2-X1-X2)
+ P <- matrix(rbeta(K*L,1+A.count,1+a.count),ncol=L,nrow=K)
+ for(k in 1:K)
+ {
+ P1 <- sweep(X1,2,P[k,],"*")+sweep(1-X1,2,1-P[k,],"*")
+ P2 <- sweep(X2,2,P[k,],"*")+sweep(1-X2,2,1-P[k,],"*")
+ log.lik[,k] <- rowSums(log(P1*P2))
+ }
+ s <- rowMeans(log.lik)
+ log.lik <- sweep(log.lik,1,s)
+ Z <- apply(exp(log.lik),1,function(x) sample(1:K,1,rep=TRUE,prob=x))
+ return(Z)
+ }

4.3. IDENTIFYING POPULATION OF ORIGIN 69

Let us turn back to the clustering problem. Recall that we get as input the
genotypes of N subjects over L loci and goal is to cluster these subjects into K
clusters. The clustering algorithm applies Bayesian formulation in order to compute
subject-specific prior distributions over the K clusters. The individual is assigned to
the cluster with highest posterior probability. The Gibbs sampler is used in order to
simulate from the posterior distribution. These simulated values, in turn, produce
an approximation of the posterior probabilities.

The function gibbs.cluster may be applied in order to implement the clus-
tering algorithm. It takes as input a an initial assignment of the subjects to clusters,
the number of clusters and the observed genotypes and produces as output an N×K
matrix of the estimated subject specific posterior distribution of cluster identifiers.
One may control the number of iterations of the Gibbs sampler and the number of
initial iterations that will be ignored in the approximation of the distributions. The
defaults for these numbers are set to 100 and 10, respectively.

> gibbs.cluster <- function(Z,K,X1,X2,n.iter=100,burn.down=10)
+ {
+ Z.dist <- matrix(0,nrow=N,ncol=K)
+ for(i in 1:burn.down) Z <- gibbs.sample(Z,K,X1,X2)
+ for(i in (burn.down+1):n.iter)
+ {
+ Z <- gibbs.sample(Z,K,X1,X2)
+ for(k in 1:K) Z.dist[,k] <- Z.dist[,k] + (Z==k)
+ }
+ return(Z.dist/(n.iter-burn.down))
+ }

Let us demonstrate the application of the function in a simulated example.
Assume that a sample of size of 100 is taken from a population that is composed of
5 genetically unrelated sub-populations. These samples are genotyped over 500 loci:

> N <- 100 # sample size
> L <- 500 # number of loci
> K <- 5 # number of populations
> P.true <- matrix(rbeta(K*L,1,1),ncol=L,nrow=K)
> Z.true <- sample(1:K,N,rep=TRUE)
> X1 <- matrix(rbinom(N*L,1,P.true[Z.true,]),nrow=N,ncol=L)
> X2 <- matrix(rbinom(N*L,1,P.true[Z.true,]),nrow=N,ncol=L)

The applied statistician gets as input the genotypes and applies the clustering
algorithm in order to assign each subject into a cluster. The result of the analysis
are stores in the vector Z.est:

> Z0 <- sample(1:K,N,rep=TRUE)
> Z.dist <- gibbs.cluster(Z0,K,X1,X2)
> Z.est <- apply(Z.dist,1,which.max)

In order to assess the successfulness of the applied statistician we may compare its
assignment to the actual (unobserved) assignment:

70 CHAPTER 4. MONTE CARLO MARKOV CHAINS

> table(Z.true,Z.est)
Z.est

Z.true 1 2 3 4 5
1 0 33 0 0 0
2 18 0 0 0 0
3 0 0 0 0 17
4 0 0 0 16 0
5 0 0 16 0 0

Notice that in this example the assignment was carried out with no errors. All
subjects that belong to the same cluster where assigned by the applied statistician
to the same cluster. Indeed, labeling of the clusters, as far as the algorithm goes, is
completely random, hence it is not surprising that the original labels and assigned
labels do not match.

