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Mapping Qualitative Traits in Humans Using
Affected Sib Pairs

In humans we cannot create inbred lines, backcrosses, etc. Consequently, it
is more difficult to study directly the correlation of phenotypes and genetic
markers. We can proceed indirectly by noting that relatives frequently have
more similar phenotypes than non-relatives, presumably because they have
more similar genotypes. For studying human diseases, particularly convenient
units are affected sib pairs (ASP), which are the subject of this chapter. We
delay until Chap. 11 a discussion of the substantially more complex problem
of pedigrees involving variable numbers and relationships of affecteds.

Since humans are members of populations, not subject to breeding experi-
ments, we shall want to use some of the material on population genetics from
Chap. 3, notably that concerned with the ideas of random mating/Hardy-
Weinberg equilibrium and identity by descent (IBD).

If two relatives are affected with the same disease, which is caused to some
extent by the individual’s genotype and is relatively rare in the population,
it seems plausible to hypothesize that they have the disease because both
inherited one or more disease-predisposing alleles from a common ancestor.

Recall that two relatives are said to have inherited an allele identical by
descent (IBD) at a given locus, if they have inherited the same allele from
a common ancestor. At any genetic locus, two siblings inherit their paternal
allele IBD with probability 1/2 and independently inherit their maternal al-
lele IBD with probability 1/2. Thus they inherit 0, 1, or 2 alleles IBD with
probabilities 1/4, 1/2, 1/4, respectively; and on average they inherit one allele
IBD. (This argument presupposes that the parents are not inbred, so they do
not already contain alleles inherited IBD from a remote ancestor.) If we have
a sample of, say, n sib pairs, at a randomly selected genetic marker, there will
be about n alleles inherited IBD. If the sib pairs share a given phenotype,
e.g., the same disease, then we expect that at a marker tightly linked to a
gene or genes contributing to the phenotype there will be more than n alleles
IBD. In the following sections we develop a genetic model for a qualitative
trait and discuss genome scans to detect genes contributing to the trait. For



186 9 Mapping Qualitative Traits in Humans Using Affected Sib Pairs

simplicity we refer to the trait as a disease and individuals having the disease
as affected. Analysis of QTL in humans is discussed in Chap. 11.

We use a simple genetic model in order to describe a potential connection
between the disease status of the siblings and the distribution of the num-
ber of alleles shared IBD. This connection is then used in order to derive the
conditional distribution of the number of alleles shared IBD, given that both
siblings are affected. This leads in turn to a relation that connects the fre-
quency in the population of the susceptibility alleles and their contribution to
the risk of getting the disease to the distribution of the test statistics. These
issues are discussed in the following two sections.

The third section deals with the asymptotic distribution of the test statis-
tic, and the properties of the associated test, when large samples are used in
order to detect a risk factor that has a relatively small effect on the probability
of being affected.

The IBD status for a pair at a given locus is inferred from the genotypic
information at hand, which may include the genotypes of the siblings and
their parents or the genotypes of the siblings alone. In the preceding discussion
we make the assumption that the IBD status can be perfectly reconstructed
based on the genotypic information. In practice, this is seldom the case and
an estimate of the IBD number has to replace the unknown true value. In
the fourth section we will present statistical tools for the estimation of the
IBD state from the genotypic information and assess the effect of partial
information on the statistical properties of the scanning procedure.

9.1 Genetic Models

We assume initially a single susceptibility locus. The polymorphism at that
locus consists of two alleles – a susceptibility allele D, and wild-type allele
d. The genetic model provides the ingredients which are needed in order to
compute the conditional distribution of the IBD status, given the phenotypes
of the siblings. It consists of two components: a model connecting phenotypes
to genotypes at the susceptibility locus and a population genetic model, de-
scribing the population joint distribution of genotypes at the trait loci for the
parents of the siblings. Although we discuss in detail the case of a bi-allelic
disease locus, essentially all the results described are valid for loci having an
arbitrary number of alleles.

A Model for the Trait

Here we consider a single autosomal trait locus with allele D, associated with
the disease, and a wild-type allele d. In the model we allow for sporadic cases
and partial penetrance. Specifically, define the three penetrance probabilities:
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g0 = Pr(Affected | dd ) ,

g1 = Pr(Affected |Dd ) ,

g2 = Pr(Affected |DD) .

In order to emphasize certain similarities with the models used for experimen-
tal genetics, it is often convenient to re-write the penetrances in the form

g1 = g0 + α + δ; g2 = g0 + 2α .

We assume that α > 0 to be consistent with g2 > g0. With this notation y,
which refers here to the probability that an individual is affected as a function
of genotype, has the form of equation (2.2) with e = 0. Now xM (resp. xF)
equals the number of D alleles, 0 or 1, inherited from the mother (resp. father).
Note, however, that while in Chap. 2 y is an observed quantitative phenotype
that is allowed to take on any value, here the phenotype is 0 (no disease) or 1
(disease), while y is the unobserved (conditional on the genotype) probability
that the phenotype is 1. Hence y itself must be between 0 and 1.

The additive model, which we emphasize in what follows, relates the three
penetrance parameters to each other by requiring that g1 = (g0 + g2)/2, or
equivalently that δ = 0. Thus, one needs to specify only g0 and α. Moreover,
as we shall see later, the quantity of interest will depend only on the ratio
R2 = g2/g0 = 1 + 2α/g0 – the relative risk of a risk-allele homozygote with
respect to a wild-type homozygote. One can envision other special cases of
this model, even in the simple case of a single trait locus. Important examples
are the recessive model which assumes g0 = g1 < g2, equivalently δ = −α or
the dominant model, which assumes g0 < g1 = g2, or δ = α. The statistic
we consider below, which counts the total number of alleles shared IBD, is
most appropriate for the additive model and to a good approximation for a
dominant model as well.

We complete the description of the relation between the genotypes and
the probability that the siblings are affected by adding the assumption that
within a pedigree, the phenotypes of relatives are conditionally independent
given their genotypes. As a result, we find that

Pr(Both affected |G1, G2) = Pr(Affected |G1)× Pr(Affected |G2) = y1y2 ,
(9.1)

where G1 and G2 are the genotypes of the first and the second sibling re-
spectively. An important consequence of this assumption is the exclusion of
environmental effects on susceptibility to the disease. (See Prob. 9.5 for pos-
sible generalizations.)

A Population Genetic Model

The second component in the genetic model is a population genetic model that
describes the frequencies of the pedigree founders’ genotypes. For the case of
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a sib-pair, there are two founders – the mother and the father, whom we
assume mate at random in an infinitely large population and are themselves
the product of random matings. Hence their genotypes are in Hardy-Weinberg
equilibrium, i.e., the two alleles at a given locus are randomly sampled from
the population pool. If the population frequency of the allele D is denoted
by p (and the frequency of the allele d is 1 − p), then the probability of
the genotype DD is p2. Likewise, the probability of the genotype dd is (1 −
p)2, and the probability of the genotype Dd is 2 p(1 − p). Random mating
also implies independence between the parents’ genotypes. For example, the
probability that both parents’ genotypes are DD is p4. In a similar fashion, one
can compute the probability of all other combinations of parents’ genotypes
as a function of a single parameter p, the frequency of the allele D in the
genetic pool. It also follows that each child individually has a genotype that
satisfies Hardy-Weinberg frequencies. However, the genotypes of two children
are dependent.

From (2.2), we obtain (2.3), which for convenience we repeat here (with
e = 0):

y = m + {α + (1− 2p)δ}[(xM − p) + (xF − p)]− {2δ}[(xM − p)(xF − p)] .

Combining this expression with the assumption of Hardy-Weinberg equilib-
rium, we also obtain the variance decomposition (2.5):

σ2
y = σ2

A + σ2
D ,

where σ2
A = 2p(1− p)[α + (1− 2p)δ]2 and σ2

D = 4p2(1− p)2δ2. For a dominant
trait (δ = α) σ2

A = 8p(1 − p)3α2, while for a recessive trait (δ = −α) σ2
A =

8p3(1 − p)α2. In the usual case that p is substantially less than 1/2, the
additive variance is much larger than the dominance variance for a dominant
trait, smaller for a recessive trait. The simplest case is an additive trait, for
which δ = 0, hence σ2

D = 0.
By taking expectations in (9.1) and using the representation of yi given

above to obtain an expression for the product y1y2, we can calculate the
probability Pr(A) that two sibs are both affected:

Pr(A) = E(y1y2) = m2 + cov(y1, y1) = m2 + σ2
A/2 + σ2

D/4 . (9.2)

To see how (9.2) is derived, let xMi (xFi) denote the number of D alleles
inherited by the ith sib from their mother (father). First recall that E[(xMi −
p)2] = p(1−p). Now consider the product (xM1−p)(xM2−p). If xM1 and xM2 are
IBD, then the product equals (xM1− p)2, so in this case the expected product
is just p(1 − p), as before. If xM1 and xM2 are not IBD, then by the Hardy-
Weinberg assumption, they are independent and the expected product is the
product of the expectations, which equals 0. Since xM1 and xM2 are IBD with
probability 1/2, we find that E(xM1−p)(xM2−p) = p(1−p)/2+0/2 = p(1−p)/2.
Similarly E[(xM1 − p)(xM2 − p)(xF1 − p)(xF2 − p)] = [p(1− p)]2/4, since alleles
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inherited from the father and from the mother are independent. Also, terms
like E[(xM1 − p)(xM2 − p)(xF1 − p)] = 0, since one factor is independent of the
other two. Collecting together the various products gives (9.2).

9.2 IBD Probabilities at the Candidate Trait Locus

Given a a pair of affected sibs, let JM, resp. JF, be 1 or 0 according as the
alleles at the trait locus from the mother, resp. from the father, are inherited
IBD or not. Let J = JM +JF denote the total number of alleles inherited IBD
at a trait locus. Note that JM and JF are independent random variables taking
values 0 and 1 with probability 1/2 each. The argument given above can be
expressed conditionally, as E[(xM1−p)(xM2−p)|JM] = p(1−p)JM. Other terms
can be evaluated similarly, leading to E(y1y2|JM, JF) = m2+Jσ2

A/2+JMJFσ2
D,

which in turn implies

E(y1y2|J) = m2 + Jσ2
A/2 + I{J=2}σ2

D , (9.3)

where I{J=2} is the indicator of the event that the IBD count is two. Let
Q2 = Pr(A) = E(y1y2) be the probability given in (9.2) that both sibs are
affected. Then by Bayes’ formula:

Pr(J = j|A) = Pr(J = j)
Pr(A|J = j)

Pr(A)
= Pr(J = j)

E(y1y2|J = j)
E(y1y2)

,

Substituting (9.2) and (9.3), we find after some algebraic simplification that
πj = Pr(J = j|A) is given by

π0 = [1− (α̌− δ̌/2)/Q2]/4 ,

π1 = [1− δ̌/2Q2]/2 , (9.4)
π2 = [1 + (α̌ + δ̌/2)/Q2]/4 ,

where α̌ = (σ2
A + σ2

D)/2 and δ̌ = σ2
D/2. We have used the notation α̌, δ̌

because these quantities play roles in human genetics, here and in Chap. 11,
similar to α, δ in the analysis of an intercross (cf. (9.6)). Note, however,
that 0 ≤ δ̌ ≤ α̌, although there is no similar restriction on α and δ. In the
special case of an additive model, σ2

D = 0, the equations simplify accordingly.
While the terms in (9.4) are very simple, tedious calculation is required to
evaluate them in terms of the allele frequency p and penetrances. Special cases
are explored in the problems at the end of the chapter. A case of particular
interest is the additive case, where g1 = g0 + α, g2 = g0 + 2α, so σ2

D = 0.
Let R2 = g2/g0 = 1 + 2α/g0 denote the ratio of the penetrance of a DD-
homozygote to that of a dd-homozygote. By solving for α = g0(R2− 1)/2, we
find that m = g0 + 2pα = g0[1 + p(R2 − 1)] and σ2

A = g2
0p(1− p)(R2 − 1)2/2.

Thus σ2
A/2Q2 and hence the IBD probabilities in (9.4) depend only on p and

R2
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The case R2 = 1, which is equivalent under the additive model to the
case g0 = g1 = g2, corresponds to no relation between the disease and the
investigated gene. Indeed, when R2 = 1, σ2

A = σ2
D = 0, so (9.4) gives the null

distribution of the IBD status: π0 = π2 = 1/4, π1 = 1/2. This distribution is
the B(2, 1/2) distribution. The expected number of alleles IBD in this case is 1.
However, when R2 > 1, the relation between the probabilities is π0 < π2. Also,
since π1 = 1/2, π2 = 1/2− π0. The expected number of alleles IBD becomes
1/2 + 2π2 = 1 + (π2 − π0) > 1. Thus the equations (9.4) give quantitative
meaning to the intuitive idea expressed in the introduction to this chapter
that two siblings affected with the same disease are likely to have inherited
the same disease predisposing allele from a parent.

The function “DistIBD” computes the IBD probabilities as a function of
the allele frequency p and the penetrance probabilities g0, g1 , and g2:

> DistIBD <- function(p,g0,g1,g2)
+ {
+ alpha <- (g2-g0)/2
+ delta <- g1 - g0 - alpha
+ m <- g0 + 2*p*alpha + 2*p*(1-p)*delta
+ a <- alpha + (1-2*p)*delta
+ d <- delta
+ sig.A <- 2*p*(1-p)*a^2
+ sig.D <- 4*p^2*(1-p)^2*d^2
+ Q <- m^2 + sig.A/2 + sig.D/4
+ pi.0 <- (1- (sig.A + sig.D/2)/(2*Q))/4
+ pi.1 <- (1-sig.D/(4*Q))/2
+ pi.2 <- (1 + (sig.A + 3*sig.D/2)/(2*Q))/4
+ return(data.frame(pi.0=pi.0,pi.1=pi.1,pi.2=pi.2))
+ }

Let us explore the effect of the parameters on the distribution of IBD for
g0 = 0.05 and p = 0.1, for an additive model with different values of α:

> alpha <- seq(0,0.4,by=0.1)
> IBD.prob <- DistIBD(0.1,0.05,0.05+alpha,0.05+2*alpha)
> IBD.e <- IBD.prob$pi.1+2*IBD.prob$pi.2
> IBD.sd <- sqrt(IBD.prob$pi.1+4*IBD.prob$pi.2 - IBD.e^2)
> round(cbind(alpha,IBD.prob,IBD.e,IBD.sd),3)
alpha pi.0 pi.1 pi.2 IBD.e IBD.sd

1 0.0 0.250 0.5 0.250 1.000 0.707
2 0.1 0.211 0.5 0.289 1.078 0.703
3 0.2 0.173 0.5 0.327 1.154 0.690
4 0.3 0.150 0.5 0.350 1.200 0.678
5 0.4 0.135 0.5 0.365 1.230 0.669

Of no surprise is the fact that the expectation increases with α. Note that the
standard deviation remains more or less constant.



9.3 A Test for Linkage at a Single Marker Based on a Normal Approximation 191

A more systematic exploration will also consider the effect of the allele
frequency, which we vary from 0.1 to 0.5:

> alpha <- seq(0,0.4,by=0.02)
> g0 <- 0.05
> R2 <- 1+2*alpha/g0
> p <- seq(0.1,0.5,by=0.1)
> rep.a <- rep(alpha,length(p))
> rep.p <- rep(p,rep(length(alpha),length(p)))
> IBD.prob <- DistIBD(rep.p,g0,g0+rep.a,g0+2*rep.a)
> IBD.e <- IBD.prob$pi.1+2*IBD.prob$pi.2
> ncp <- (IBD.e-1)^2/0.5
> plot(range(R2),range(ncp),type="n",xlab="R2",ylab="ncp/n")
> for(i in 1:length(p)) lines(R2,ncp[rep.p==p[i]],lty=i)
> legend(1,max(ncp),legend=paste("p = ",p),lty=1:length(p))

The increase of the squared standardized difference of the expectation of IBD
as a function of the parameter of genetic relative risk R2 and for various
values of allele frequency p is presented in Fig. 9.1. As we will see below, this
parameter is the square of the noncentrality parameter of the test statistic
and is the basis for the evaluation of the statistical power when scanning
for disease predisposing genes. Roughly speaking, rarer disease susceptibility
alleles with larger genetic relative risk are easier to detect.

9.3 A Test for Linkage at a Single Marker Based on a
Normal Approximation

In the previous section we considered the distribution of a single quantity
– the IBD status of a given pedigree – both under the null assumption
H0 : π2 = 1/4, π1 = 1/2, π0 = 1/4 and under the additive alternative
H1 : π2 − π0 > 0. In this section we investigate the properties of a test statis-
tic calculated from a sample of such observations. These properties form the
basis for the justification of the use of the total number of alleles shared IBD
as an appropriate test statistic under the additive model. We begin with the
test for linkage of a single marker and move from there to consideration of
tests using a genome scan.

Remark 9.1. It is not immediately clear that one can actually determine the
number of alleles shared IBD. In fact, if one parent is homozygous at a marker,
the sibs must inherit the same allele, and one cannot say with certainty
whether it is inherited IBD. This problem makes for another level of diffi-
culty in human genetics, compared to experimental genetics. For the moment
we assume that this problem does not exist and return to it in Sect. 9.6.

In the case of siblings, the number of alleles IBD at a given marker locus
can be 0, 1, or 2. Let N0, N1, and N2 be the total number of pedigrees
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Fig. 9.1. The squared noncentrality parameter (per unit sample size) of the IBD
statistic.

that share 0, 1, or 2 alleles IBD. The joint distribution of these counts is
Multinomial(n, π), with π = (π0, π1, π2). Under the null distribution π =
(1/4, 1/2, 1/4). For an additive model (i.e., σ2

D = 0) the alternative distribution
at the trait locus takes the form π = (1/4−σ2

A/(8Q), 1/2, 1/4+σ2
A/(8Q)). The

total IBD, standardized to have mean 0 and variance 1 under the hypothesis
of no linkage, is a reasonable statistic for testing H0 : σ2

A = 0 versus the
alternative H1 : σ2

A > 0.
The total number of alleles shared IBD is N1 + 2N2. Since the expected

number of alleles shared IBD is n and the variance is n/2 (both computed
under the null distribution), and since n = N0 + N1 + N2, the standardized
statistic is

Z =
2N2 + N1 − n

(n/2)1/2
=

N2 −N0

(n/2)1/2
. (9.5)

Observe that the hypothesis tested is one sided, hence the null is rejected
for large positive values of the test statistic. The threshold for significance is
determined by the null distribution of the test statistic. As the sample size
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increases (n → ∞) the distribution of this test statistic resembles more and
more that of the standard normal distribution.

The mean of the test statistic under the alternative hypothesis for a marker
perfectly linked to the trait locus τ is given by

ξ = E(Zτ ) = (2n)1/2(π2 − π0) = (n/2)1/2α̌/Q2 . (9.6)

The variance of Z is 1 − (α̌/Q2)2/2 ≈ 1, for local alternatives. The noncen-
trality parameter at a linked marker is calculated below.

9.4 Genome Scans

For a genome scan, we use maxt Zt, where we now introduce the subscript t to
denote marker location. The significance level and power can be found exactly
as in Chaps. 4 and 6, provided we use an approximation suitable for a one-
sided test and the appropriate value of β. It turns out that β is 0.04, exactly
twice what it was for a backcross. The reason is that along each chromosome
(one maternally inherited and the other paternally inherited), the two siblings
involve two meiotic events. In contrast a backcross involved only one. A more
detailed mathematical analysis follows.

To study the properties of Zt and hence to approximate the significance
level and power of a genome scan using the results of Chaps. 4 and 6, it is help-
ful to use the representation of the numerator 2N2t+N1t−n =

∑n
i=1[Ji(t)−1].

This representation shows that the correlation function and mean value of the
standardized statistic Zt can be obtained directly from the correlation func-
tion and mean value of each term in the numerator, namely J(t), the number
of alleles shared IBD by a sib pair at the marker t.

We first consider the case of markers that are unlinked to the trait locus.
Under local alternatives, the same results for the covariance function hold
at linked markers. Let J(t) be written as JM(t) + JF(t) where JM(t) is the
number of alleles, 0 or 1, inherited by the siblings IBD from their mother at
locus t and JF(t) is the number inherited from their father. Let s be a locus
at recombination distance θ from t. If JM(s) = 1, then JM(t) = 1 if and only if
both sibs have recombinations between t and s on their maternally inherited
chromosome or neither sib does. The probability of no recombinations in the
two maternal meioses is (1− θ)2, while the probability of two recombinations
is θ2. Thus Pr(JM(t) = 1|JM(s) = 1) = θ2 + (1 − θ)2. For future notational
convenience, let ϕ be defined by 1−ϕ = θ2+(1−θ)2. Similar reasoning applies
to JF, so Pr(J(t) = 2|J(s) = 2) = (1−ϕ)2. By similar arguments one sees that
Pr(J(t) = 1|J(s) = 2) = 2ϕ(1 − ϕ), Pr(J(t) = 1|J(s) = 1) = ϕ2 + (1 − ϕ)2,
Pr(J(t) = 2|J(s) = 1) = ϕ(1 − ϕ), etc., so we obtain a 3 × 3 matrix of
transition probabilities from state J(s) = i to state J(t) = j, for i, j = 0, 1, 2.
Some calculation with these probabilities leads to

E[J(t)− 1|J(s)] = (1− 2ϕ)[J(s)− 1] . (9.7)
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Multiplying by J(s) − 1 and taking expectations, we obtain the important
relation

cov[J(t), J(s)] = (1− 2 ϕ)/2 = 2 θ(1− θ) = exp(−0.04 |s− t|)/2 ,

where the third equality in the preceding expression follows from the equation
θ = [1 − exp(−0.02 |t − s|)]/2, for the recombination fraction θ in terms of
genetic distance |t − s| in cM. We conclude by observing that the preceding
conditional probabilities and the resulting covariance are exactly the same as
for x(t), the number of A alleles in an intercross design, except that θ has
been replaced by ϕ, which has the effect of turning the parameter 0.02 into
0.04 in the exponent of the correlation coefficient.

As an illustration, let us determine the thresholds for a genome scan with
various inter-marker spacings. Note that the genetic length of the human
genome is very roughly about twice that of a mouse, or about 3,200 cM.
Moreover, the genetic material in humans is distributed among 23 pairs of
chromosomes (22 pairs of autosomes and a pair of sex chromosomes). We use
these values in the approximation (??), but we divide the expression in the
exponent by 2, since we are now interested in a one-sided test, and we set
β = 0.04, to obtain:

> Delta <- c(35,20,10,5,1)
> z <- vector(length=length(Delta))
> names(z) <- paste("Delta=",Delta,sep="")
> for (i in 1:length(Delta)) z[i] <-
+ uniroot(OU.approx,c(3,4),beta=0.04,Delta=Delta[i],
+ length=3200,chr=23,center=0.05,test="one-sided")$root
> round(z,3)
Delta=35 Delta=20 Delta=10 Delta=5 Delta=1

3.337 3.459 3.601 3.721 3.906

The noncentrality parameter for a marker at no recombination distance
from the trait locus itself was given in the preceding section. To evaluate
power in a genomic scan, we must also know the effect of recombination on
the noncentrality parameter. Observe that the reasoning behind (9.7), which
depends only on the recombination fraction between the loci s and t continues
to apply if we set s = τ , the trait locus. By taking expectations, we conclude
that at a marker t linked to the trait locus τ ,

E(Zt) = E(Zτ )(1− 2ϕ) = ξ exp(−0.04|t− τ |) .

The rate of decay of the noncentrality parameter is twice what it was for a
backcross or an intercross. This means that as one increases the inter-marker
distance, there is a greater loss of power for detecting a trait locus midway
between markers in sib pairs than in a backcross or an intercross.

We now explore numerically the power to detect a trait locus in a genome
scan as a function of the noncentrality parameter at the trait locus. We con-
sider separately the case where the trait is perfectly linked to a marker and
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the case where the trait locus is midway between two markers. The functions
“power.marker” and “power.midway”, which were developed in Chap. 6, are
used in order to obtain analytic approximations:

> xi <- seq(3,6,by=0.1)
> power.mark <- matrix(nrow=length(xi),ncol=length(Delta))
> colnames(power.mark) <- names(z)
> power.between <- power.mark
> for (j in 1:length(Delta))
+ {
+ power.mark [,j] <- power.marker(z[j],0.04,Delta[j],xi)
+ for (i in 1:length(xi)) power.between[i,j] <-
+ power.midway(z[j],0.04,Delta[j],xi[i])
+ }

Let us plot the power functions for the two cases:

> old.par = par(mfrow=c(1,2))
> plot(range(xi),c(0,1),type="n",xlab="xi",ylab="power",
+ main="Trait locus on a marker")
> for(j in 1:length(Delta)) lines(xi,power.mark[,j],lty=j)
> legend(3.5,0.3,bty="n",legend=names(z),lty=1:length(z))
> plot(range(xi),c(0,1),type="n",xlab="xi",ylab="power",
+ main="Trait locus between markers")
> for(j in 1:length(Delta)) lines(xi,power.between[,j],lty=j)
> par(old.par)

The output is given in Fig. 9.2. Observe the relatively small decrease in power
as the markers density increases in the case that the trait locus is perfectly
linked to a marker compared to a more substantial increase in the power when
the locus is between markers. The difference is more pronounced than for a
backcross or intercross. The reason is the greater recombination parameter
(β = 0.04 instead of 0.02) in sib pairs, because two parental meioses are
involved. The result is a more rapid decay of the linkage signal as one moves
away from a marker, so that markers in sib pairs about 10 cM apart lead to
about the same loss of power to detect a gene at the midpoint as markers
about 20 cM apart in a backcross. This difference is even larger when we
consider in the following section markers that are only partly informative. As
a result, for a genome scan based on affected sib-pairs, it appears advisable to
use a substantially denser collection of markers than we found necessary for a
backcross or intercross in experimental genetics. The results of the following
section will reinforce this conclusion.

An interesting example is provided by John et al. [43], who reanalyzed
with SNPs an earlier study of rheumatoid arthritis that had been conducted
with microsatellite markers at an approximately 10 cM inter-marker spacing.
The earlier analysis gave the value maxt Zt = 4.22 on chromosome 6 (in the
Human Leucocyte Antigen, or HLA, region, which harbors a large number of
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Fig. 9.2. The power for detecting a trait locus in a genome scan

genes associated with the function and diseases of the immune system). The
p-value based on the approximation in Chap. 4 would be 0.004.

SNPs at an inter-marker distance of about 0.3 cM led to maxt Zt = 3.97
(at very close to the same genomic location), with a p-value of just slightly
more than 0.05. Since markers placed this close together might fail to satisfy
the important assumption of linkage equilibrium, the authors selected one
(particularly informative) marker per cM. This reduced the value of maxt Zt

to 3.54, which has a p-value of 0.18.
Although these results suggest that the SNPs overall were not quite as

efficient as SSRs, the authors indicated an overall preference for SNPs. A
statistical reason for this preference is that the profile of the process Zt seemed
to give a more precise picture of the location of the gene with the more closely
spaced markers. A scientific reason is that the slight discrepancy between the
locations of the peaks for the 10 cM and the 0.3 cM scans seemed to suggest
that the latter provided a better estimate of the location of the appropriate
gene, which could be regarded as known from earlier studies.
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9.5 Parametric Methods

The approach described above is frequently called nonparametric to distin-
guish it from the parametric approach pioneered by Morton [56] and system-
atically described by Ott [57]. While parameters appear in both approaches,
in the parametric approach the latent genetic parameters – penetrances and
allele frequencies – play an explicit role in statistics to detect linkage, whereas
in the nonparametric approach one concentrates on statistical parameters,
which can in principle be estimated directly from experimental data without
a specific genetic model. Examples are the frequency of a trait, or the prob-
ability that a particular relative of an affected is also affected, which can be
estimated from population samples of phenotypes, or noncentrality parame-
ters of statistics to detect linkage, which can be estimated from a combination
of phenotypic and genotypic data. The parametric approach was developed
at a time when the diseases under consideration involved a single gene, often
showed a clear mode of inheritance, dominant or recessive, and had essen-
tially complete penetrance, so it might be reasonable to assume g0 ≈ 0, with
g1 = g2 ≈ 1 for a dominant trait or g1 ≈ 0, g2 ≈ 1 for a recessive trait. More-
over, the number of markers available was extremely small, so the limiting
factor in one’s ability to map a disease gene was not the genetic effect on
the trait, which was quite pronounced, but the recombination distance of the
nearest marker to the gene.

For example, suppose we see the disease occurring in successive generations
of pedigrees with approximately 50% of the offspring of affected individuals
also having the disease. This suggests that the trait is dominant and fully
penetrate without sporadic cases (g0 = 0), and under an assumption of Hardy-
Weinberg equilibrium we can estimate the frequency p of the disease gene from
the population prevalence, 2p(1− p) + p2 = 2p− p2, of the trait.

The simplest illustration of a parametric analysis arises from considering
a three generation pedigree of an affected grandparent, say the grandfather,
the intervening parent, say the father, and an affected grandchild. We assume
the grandmother and mother are unaffected, so under the assumption of full
penetrance the father is also affected. Assume there is a marker that has re-
combination θ with the trait, and assume that all marker alleles in the pedigree
are unique, so we know exactly which marker allele passes from the affected
grandfather, to the father, and the allele that the father then passes to the
grandchild. If in addition to the disease allele, the father passes to his child the
marker allele he received from the grandfather, then by definition there is no
recombination between the disease allele and the marker allele. This happens
with probability 1 − θ. If the father passes the allele he inherited from the
grandmother, there is recombination with the disease allele, which happens
with probability θ. If we let R denote the number of recombinations, 0 or 1,
we have a Bernoulli variable with Pr(R = r) = θr(1 − θ)1−r. If we have a
sample of n such grandchildren, the total number of recombinations in the
sample would be binomial with probability θ, and we could test the hypoth-
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esis θ = 1/2 by counting these recombinations. Observe that the grandfather
and grandson share one allele IBD at the marker locus if and only if R = 0.
Hence a test based on the number of recombinations is equivalently a test
based on the number of alleles shared IBD, so the parametric analysis is in
this case equivalent to a nonparametric analysis based on number of alleles
shared IBD. Observe also that in this scenario there can be multiple affected
grandchildren in a pedigree without any essential changes, and that unaffected
grandchildren also provide linkage information. For them, however, recombi-
nations have probability 1 − θ and non-recombinations have probability θ,
since they are assumed not to have inherited the disease allele. Finally note
that this simple scenario would become substantially more complex if there
are sporadic cases and/or the penetrance of the disease allele is less than one,
since then we could not be sure that the grandchild has the disease allele nor
that it comes from the grandfather. In that case an appropriate parametric
likelihood function would involve the penetrances g0, g1, g2 and the allele
frequency p in addition to θ.

Returning to the case of affected sib pairs, to put parametric and non-
parametric analysis on similar footing we assume a two generation pedigree,
but parental phenotypes are unknown. If there are few sporadic cases in the
population and the disease is rare (and dominant), we would be willing to
suppose that there is exactly one copy of the disease allele in the parental
generation. But we do not know which of four marker alleles present in the
parents and lying on the same chromosome as the disease related locus (we
assume as above that markers are completely informative) is actually linked
to the disease allele itself. (Genetic terminology is that the linkage phase is
unknown.) Hence we consider the four possibilities to be equally likely. The
analysis is more complicated but similar in principle to that given above. It
leads to the number of alleles shared IBD by the siblings, so we eventually
arrive at the probabilities in (9.4), or more generally the corresponding prob-
abilities, say πi(θ) for a marker at recombination distance θ from the disease
gene. These probabilities would be assumed known except for the parameter θ.
To test the null hypothesis θ = 1/2 (no linkage) against a specific alternative
value θ < 1/2, we could use the log likelihood ratio statistic

2∑

j=0

Nj log[πj(θ)/πj(1/2)] , (9.8)

which is often maximized with respect to θ to reflect the fact that the true
θ is almost always unknown. Under the conditions described above, the non-
centrality parameter of this statistic is typically large if θ is small, but would
be small if the true θ is close to 1/2.

A detailed development of this approach, especially the modifications re-
quired to deal with the fact that for complex diseases the allele frequencies
and penetrances are essentially never known, is beyond the scope of this book.
The most important strength of a parametric approach, to which we return in
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Chap. 11, is that, subject to being able to perform the required calculations, it
generalizes directly to pedigrees having varying numbers and configurations of
affecteds and to arbitrary combinations of pedigrees. This property has played
an important role in dealing with single gene traits of large penetrance, where
large pedigrees with multiple affecteds are common. It is less important for
dealing with complex diseases, involving small penetrances where pedigrees
with large numbers of affecteds are rare.

The weakness of a parametric approach is that for complex diseases there
may be multiple genes of incomplete penetrance that may interact with each
other or with the environment, as well as non-genetic cases of the disease
(g0 > 0), with the result that one has no clear idea of the number or values
of the relevant penetrances and allele frequencies. In addition, since modern
DNA analysis has made available a large number of mapped markers, the
emphasis on testing an hypothesis about θ seems misplaced. We are prepared
to assume that some markers are closely linked to the relevant genes. However,
the complexity of the genetics can lead to small noncentrality parameters, even
at tightly linked markers, so the true signal at a linked marker may be small
compared to the apparent signals arising from chance fluctuations at spurious
markers throughout the genome. Hence in our outlook we have emphasized
a null hypothesis to the effect that at the marker locus under consideration
there is effectively no departure from Mendelian segregation of genotypes, so
the noncentrality parameter of any test statistic is zero.

To gain somewhat more insight into the nature of a parametric analysis and
prepare for a related discussion in Chap. 11, suppose (to simplify calculations)
that δ̌ = 0 and α̌ is small. By using the Taylor series approximation log(1 +
x) ≈ x − x2/2, valid for small |x|, one can show that the log likelihood ratio
statistic at a marker locus t assumed to be a recombination distance of θ from
the trait locus is approximately

ξ(1− 2ϕ)Zt − ξ2(1− 2ϕ)2/2 (9.9)

where Zt is the approximately normal statistic defined above and ξ =
(n/2)1/2(α̌/Q2) is its noncentrality at the trait locus τ . So far we have re-
garded ξ as known. If we admit that it is unknown, the parameters ξ and
ϕ cannot be estimated separately if we only observe Zt. Only the parameter
η = ξ(1− 2ϕ) can be estimated.

At this point there are different possibilities for proceeding. (i) If we max-
imize the preceding expression with respect to η = ξ(1 − 2ϕ) ≥ 0, we get
[max(Zt, 0)]2/2, where the nonnegativity restriction arises from the fact that
the parameter η cannot be negative. This would be equivalent to the statistic
Zt (for one-sided alternatives), but as we shall see, the equivalence for this
simple problem turns out to be the exception, not the rule. (See Prob. 9.11 for
an example and the related discussion in Chap. 11.) (ii) If we take the attitude
that markers are reasonably dense, so the distance from the nearest marker
to the trait locus is likely to be small, we might simply set ϕ = 0 in (9.9)
and scan the genome for maxima with respect to t. The result is a monotonic
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function of max Zt, hence is again equivalent to using max Zt directly. (iii) If
we take into consideration that we have a collection of mapped markers, the
situation is similar to that in Chap. 7. For the asymptotic Gaussian model,
where the log likelihood at τ is given by (9.9) with t = τ and ϕ = 0, we can
also compute the likelihood function for a trait locus τ lying between markers
ti and ti+1. Using the notation of Chap. 7 (but with ϕ in place of θ), we have
that E0[Zτ |Zti

, Zti+1 ] = σ′τWZ, var0[Zτ |Zti
, Zti+1 ] = 1 − σ′τWστ , and hence

the likelihood function equals

E0[exp(ξZτ − ξ2/2)|Zti , Zti+1 ] = exp(ξσ′τWZ − ξ2σ′τWστ/2) .

For ξ regarded as known, the likelihood ratio statistic for a genome scan would
be the maximum over τ of the expression appearing in the exponent. If ξ is
regarded as unknown, we can maximize over ξ ≥ 0 as well. This leads to a
one-sided version of the statistic in Chap. 7. Based on the results of Chap. 7,
it seems unlikely that these statistics will be substantially more powerful than
the simpler statistics studied earlier in this chapter.

9.6 Estimating the Number of Alleles Shared IBD

In general, IBD status, which is the basis for the statistics discussed above,
is not observed directly. It needs to be inferred from genotype information.
Assume that both parents of the siblings were recruited and the genotypes
of all the given members of the family were obtained. If multi-allelic mark-
ers are used, one may be able to observe that at a particular locus the two
parents have four distinct alleles. This favorable scenario enables the precise
determination of the IBD status of the siblings. At the other extreme, if both
parents are homozygous, then the specific marker provides no information re-
garding the IBD status of the siblings at that locus. The marker is then said
to be uninformative. There may also exist intermediate cases, e.g., where one
parent is homozygous while the other is heterozygous, or when both parents
are heterozygous for the same two alleles. Such markers are denoted partially
informative. However, even when a marker is partially informative or totaly
uninformative, there may be other markers nearby which are either informa-
tive or at least partially informative. If these markers are sufficiently close,
so there is little chance of recombination, one may attempt to infer the IBD
status at the given locus based on the genotypes at those nearby loci and
then conduct a genome scan with reconstructed IBD statistics. The problem
of partial information regarding IBD relations among the affected siblings
and the need to exploit genotype information from nearby markers in order
to reconstruct the IBD becomes even more acute if the parents are not avail-
able for genotyping. This is commonly the case in late onset diseases, such
as Alzheimer disease, in which the participating affected siblings are typically
older and are less likely to have living parents.
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Recall that markers fall into two main classes: SNPs, which are bi-allelic,
and various classes of multi-allelic markers, e.g., SSRs, which often have 4–
10 alleles. While SNPs are much more numerous and more easily genotyped,
they are individually less informative. In most of the following we concentrate
on SNPs and find that because each one by itself is relatively uninformative,
there is a considerable loss of information unless they are reasonably dense.
The programs are easily adapted to multi-allelic markers and show that SSRs
can be more widely separated without a corresponding loss of information.

In this section we will investigate the effect of partial information regarding
the IBD relations on the statistical properties of the test statistics. We will
substitute for the unknown IBD statistic its conditional expectation, given the
genotypic information at hand. This is similar to the case of missing genotypes
that was discussed in Chap. 7. However, the computation of the conditional
expectation is more complex and will require application of algorithms that
were originally developed in the context of what are called hidden Markov
models, or HMM in short.

The section is divided into three subsections. In the first subsection we
will develop R code for the simulation of pedigrees. The HMM algorithms will
be presented in the second subsection. In the third subsection we will explore
the statistical properties of a genome scan with affected sib pairs when only
their genotypes are available. The tools that were developed in the first two
subsections will be used in that exploration.

9.6.1 Simulating Pedigrees

Our first goal is to develop R code that will enable us to simulate affected sib
pairs. The programs we develop are similar to those developed in the chapters
that dealt with experimental genetics. However, there is a major difference
between the situation we previously considered and the current one. In the
experimental designs that we considered before, subjects were not preselected
based on their phenotypes. In particular, the segregation of genetic material
from one generation to the next followed Mendel’s segregation rules. In the
case at hand, however, the subjects are selected because they express the
trait (a disease). This selection rule results in a distortion of the segregation
of alleles in loci linked to trait-related genes. In fact, it is exactly this distortion
that allows us to detect such loci. As a result, we now need to rewrite our
programs in order to allow for distortion in the segregation in the presence of
a trait locus.

Start with an adaptation to the new setting of the function “meiosis.chr”,
which simulates the gamete being segregated from a parent to an offspring:

> meiosis.link <- function(GF,GM,markers,qtl,inhe)
+ {
+ n <- nrow(GF)
+ GS <- GF
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+ loci <- sort(c(qtl, markers))
+ rec.frac <- (1-exp(-0.02*diff(loci)))/2
+ index <- 1:length(markers)
+ from.GM <- inhe
+ for (i in index[markers >= qtl])
+ {
+ rec <- rbinom(n,1,rec.frac[i])
+ from.GM <- from.GM*(1-rec) + (1-from.GM)*rec
+ GS[from.GM==1,i] <- GM[from.GM==1,i]
+ }
+ from.GM <- inhe
+ for (i in rev(index[markers < qtl]))
+ {
+ rec <- rbinom(n,1,rec.frac[i])
+ from.GM <- from.GM*(1-rec) + (1-from.GM)*rec
+ GS[from.GM==1,i] <- GM[from.GM==1,i]
+ }
+ return(GS)
+ }

Observe that in the default application in the definition of the function
“mating” below, which corresponds to the null case of no trait locus and
which obeys Mendel’s laws of segregation, the inheritance vector at the first
marker consists of realizations of independent 0-1 random variables. The seg-
regation of the rest of the markers is determined in the first loop according
to the process of recombination in exactly the same way it was done in the
function “meiosis.chr”. The second loop is not activated.

If a trait related locus does exist at a locus denoted “qtl”, then the se-
lection rule may distort the distribution of the inheritance indicator at that
locus. This distorted distribution will be generated externally, and the result-
ing vector of the inheritance indicator at the trait locus may be imported in
the argument “inhe”. The distortion is reflected at the markers on both sides
of the trait locus due to linkage and the process of recombination. The process
to the right of the trait locus is generated in the first loop and the process to
the left is generated in the second loop.

Subjects’ pairs of parental gametes are stored in a list. This list contains
two matrices, one for each gamete. The columns of the matrices correspond to
the markers and the rows to independent copies. The function “mating” is an
adaptation to the new setting of the function “cross” which was applied in
the context of experimental genetics. It takes as input two subjects (a father
and a mother) and returns as output a new subject (an offspring):

> mating <- function(fa,mo,markers,qtl=markers[1],
+ inhe.fa=rbinom(nrow(fa$pat),1,0.5),
+ inhe.mo=rbinom(nrow(mo$pat),1,0.5))
+ {
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+ pat <- meiosis.link(fa$pat,fa$mat,markers,qtl,inhe.fa)
+ mat <- meiosis.link(mo$pat,mo$mat,markers,qtl,inhe.mo)
+ return(list(pat=pat, mat=mat))
+ }

As an illustration of the application of the code let us generate the pro-
cesses of IBD on a given chromosome for 10 independent pedigrees with mark-
ers spaced 20 cM apart:

> n.ped <- 10
> markers <- seq(0,140,by=20)
> n.mark <- length(markers)
> fa <- list(pat=matrix(1,n.ped,n.mark),
+ mat=matrix(2,n.ped,n.mark))
> mo <- list(pat=matrix(3,n.ped,n.mark),
+ mat=matrix(4,n.ped,n.mark))
> sib1 <- mating(fa,mo,markers)
> sib2 <- mating(fa,mo,markers)
> ibd <- (sib1$pat==sib2$pat)+
+ (sib1$mat==sib2$mat)
> ibd

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] 0 1 0 0 0 1 1 1
[2,] 2 2 1 0 0 0 1 1
[3,] 1 1 0 0 0 1 1 1
[4,] 2 2 1 2 0 0 2 2
[5,] 2 2 2 1 1 1 1 1
[6,] 1 1 1 1 2 1 0 1
[7,] 0 0 0 1 1 1 2 2
[8,] 1 1 2 1 1 1 1 2
[9,] 1 2 2 2 2 1 1 0

[10,] 1 1 2 1 0 0 0 0

Here the markers are fully informative and the IBD process can be computed
directly from the alleles of the offspring.

Next we turn to the simulation of pedigrees under the alternative distri-
bution. In Sect. 9.2 we investigated the distribution of the IBD status at the
trait locus as a function of the allele and penetrance frequencies, given that
both siblings are affected. The distribution of the inheritance vectors is a re-
flection of the IBD distribution. The inheritance vector has four components,
indicating the parental source of the gamete segregated from (i) the father
and (ii) the mother of the first sibling and (iii) the father and (iv) the mother
of the second sibling. Observe that the marginal probability of each of the
grandpaternal origins in components (i)–(iv) is 1/2. The IBD relation intro-
duces dependence between the components. When the IBD status equals zero,
then the parental sources for (i) and (iii) and for (ii) and (iv) are opposite.
When the IBD status equals two, the parental sources are the same. When
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the IBD status equals one, then for one pair the parental source is the same
and for the other it is opposite:

> inhe.vector <- function(ibd.prob,n.ped)
+ {
+ ibd.qtl <- sample(0:2,n.ped,replace=TRUE,prob=ibd.prob)
+ sib1.pat <- rbinom(n.ped,1,0.5)
+ sib1.mat <- rbinom(n.ped,1,0.5)
+ pat.equal <- rbinom(n.ped,1,0.5)
+ sib2.pat <- sib1.pat*pat.equal+(1-sib1.pat)*(1-pat.equal)
+ sib2.mat <- sib1.mat*(1-pat.equal)+(1-sib1.mat)*pat.equal
+ inhe <- cbind(sib1.pat,sib1.mat,sib2.pat,sib2.mat)
+ inhe[ibd.qtl==0,3:4] <- 1-inhe[ibd.qtl==0,1:2]
+ inhe[ibd.qtl==2,3:4] <- inhe[ibd.qtl==2,1:2]
+ return(inhe)
+ }

The program works by simulating first the independent components (i) and
(ii) from the marginal Bernoulli distribution. Using random assignment, some
of the rows are set to have (iii) match (i) and (iv) opposite to (ii) while the
other rows are set in the opposite way. This corresponds to having IBD equal
to one. Subsequently, the relations between the components are changed to
the appropriate relations in the rows where IBD is equal to zero and in the
rows where it is equal to two. The IBD itself is generated from the appropriate
alternative distribution, which is provided in the argument “ibd.prob”. To
illustrate consider the additive model in which we take p = 0.2, g0 = 0.1,
α = 0.4:

> n.ped <- 10^5
> ibd.prob <- DistIBD(0.2,0.1,0.5,0.9)
> qtl <- 80
> inhe.qtl <- inhe.vector(ibd.prob,n.ped)
> fa <- list(pat=matrix(1,n.ped,n.mark),
+ mat=matrix(2,n.ped,n.mark))
> mo <- list(pat=matrix(3,n.ped,n.mark),
+ mat=matrix(4,n.ped,n.mark))
> sib1 <- mating(fa, mo, markers,
+ inhe.fa=inhe.qtl[,"sib1.pat"],
+ inhe.mo=inhe.qtl[,"sib1.mat"],qtl=qtl)
> sib2 <- mating(fa, mo, markers,
+ inhe.fa=inhe.qtl[,"sib2.pat"],
+ inhe.mo=inhe.qtl[,"sib2.mat"],qtl=qtl)
> ibd <- (sib1$pat==sib2$pat)+(sib1$mat==sib2$mat)
> sum(ibd.prob*0:2)
[1] 1.137339
> 2*mean(inhe.qtl[,1:2]==inhe.qtl[,3:4])
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[1] 1.1369
> round(apply(ibd,2,mean),4)
[1] 0.9996 1.0098 1.0261 1.0622 1.1369 1.0605 1.0288 1.0108

A susceptibility locus is present 80 cM from the telomere, next to the 5th
marker. Note that the average IBD at the marker is about equal to the expec-
tation computed from the IBD probabilities. The expected IBD is elevated in
the vicinity of the trait locus and it gradually decreases to the null expectation
as markers become more distant from that locus.

Now consider the replacement of the fully informative markers by par-
tially informative ones. The information provided by markers is in the form
of the classification of pedigrees based on the genotypes of those members for
which the genotypes are obtained. For example, we will assume in the sequel
that genotypes are obtained for both siblings but not for their parents. We
will also assume that the markers have n.al distinct alleles, with the default
value of two. Genotype measurement for an individual returns the combined
reading of its pair of homologous chromosomes, without distinguishing the
parental source. Hence, for bi-allelic markers one may obtain three distinct
genotypes. More generally, for markers with n.al alleles the total number of
distinct genotypes is n.al(n.al+1)/2. The total number of genotypes for pair
of siblings is the square of the number of individual genotypes.

We will find it easier to simulate and compute the distribution of the
four parental alleles of the two siblings. However, it should be realized that
these alleles are not observable. Instead, what one gets to observe are the
genotypes, which are a many-to-one mapping of the four alleles. As a first
step we introduce a function that maps alleles to genotypes:

> genotype <- function(a1,a2,a3,a4,n.al=2)
+ {
+ a.m <- pmin(a1,a2)
+ a.M <- pmax(a1,a2)
+ g1 <- a.M + (a.m-1)*(n.al-a.m/2)
+ a.m <- pmin(a3,a4)
+ a.M <- pmax(a3,a4)
+ g2 <- a.M + (a.m-1)*(n.al-a.m/2)
+ g <- g1 + (g2-1)*n.al*(n.al+1)/2
+ return(g)
+ }

In the specific case of a bi-allelic markers the function returns the combined
genotypes coded as an integer between one and 32 = 9.

The function “ped.geno” takes as input a pair of siblings and a vector
of population allele distribution. It produces as an output a matrix of coded
genotypes. Each column of the matrix corresponds to a marker and each row
corresponds to a pedigree. Markers are assumed to be identically distributed
and in linkage equilibrium, and pedigrees are assumed to be unrelated (which
means statistical independence):
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> ped.geno <- function(sib1,sib2,f=rep(1/2,2))
+ {
+ n.ped <- nrow(sib1$pat)
+ n.mark <- ncol(sib1$pat)
+ n.al <- length(f)
+ par.al <- list()
+ for(par in 1:4) par.al[[par]] <-
+ matrix(sample(1:n.al,n.ped*n.mark,
+ replace=TRUE,prob=f),n.ped,n.mark)
+ a <- inhe <- c(sib1,sib2)
+ for (v in 1:4) for (par in 1:4)
+ a[[v]][inhe[[v]]==par] <-
+ par.al[[par]][inhe[[v]]==par]
+ geno <- genotype(a[[1]],a[[2]],a[[3]],a[[4]],n.al)
+ return(geno)
+ }

The function works by simulating alleles (integers in the range between 1 and
n.al) for each of the four parental gametes. The function “sample” is used in
order simulate the alleles from the population distribution of marker alleles.
The lists “sib1” and “sib2” store two matrices each with the index of the
parental source of the gamete. The resulting inherited alleles are computed
and sorted in the list “a”. Finally, the function “genotype” is applied in order
to compute the resulting genotype codes.

9.6.2 Computing the Conditional Distribution of IBD

The goal in this subsection is to reconstruct the unobserved process of IBD
in a pedigree using the marker genotypes. This will be conducted by the
calculation of the conditional expectation of the full-information statistic –
the total number of alleles inherited IBD for the two siblings – given the
genotypic information at hand. This conditional expectation is straightforward
to compute once the conditional distribution of IBD, given the genotypes, is
known. The calculation of the latter is the subject of this subsection.

The probabilistic structure of the observations may be modeled using a
“hidden” process. The hidden process is the process of IBD at the markers.
This process may not be observed directly, but it does have an effect on the
distribution of the observed genotypes. This effect may be exploited in order
to make inference on the underlying hidden process. In particular, when the
underlying hidden process is Markovian and the distribution of an observa-
tion is determined by the state of the hidden process at the location of the
observation, independently of its values at other locations, the model is called
a hidden Markov model (HMM). Our case fits into this setting since the pro-
cess of IBD is Markovian and since markers were assumed to be in linkage
equilibrium.
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Table 9.1. Conditional distribution of genotypes of ASP, given the IBD status.

IBD=0 IBD=1 IBD=2

1=(0,0) (1− f)4 (1− f)3 (1− f)2

5=(1,1) 4f2(1− f)2 f(1− f) 2f(1− f)
9=(2,2) f4 f3 f2

2=(0,1) 2f(1− f)3 f(1− f)2 0
4=(1,0) 2f(1− f)3 f(1− f)2 0
6=(1,2) 2f3(1− f) f2(1− f) 0
8=(2,1) 2f3(1− f) f2(1− f) 0

3=(0,2) f2(1− f)2 0 0
7=(2,0) f2(1− f)2 0 0

The distribution of a HMM is fully determined by the initial distribution
and the transition matrices of the underlying Markov process and by the
conditional distribution of the observations, given the states of the underlying
process. The latter refers in our case to the conditional distribution of the pair
genotypes of the siblings, given the IBD status at the marker.

The conditional distribution of the genotypes of the siblings, given the
IBD process, is a function of the frequency of the alleles in the population. If
there is no identity-by-descent among the alleles of the siblings (IBD=0), the
two genotypes are independent and follow the Hardy-Weinberg distribution.
In the case where exactly one pair of alleles has a common source (IBD=1),
then the other two alleles (one in each sibling) are independent of each other
and of the IBD allele. Finally, when each of the two alleles in one sibling has a
matching IBD allele in the other sibling (IBD=2), then the genotypes of the
two siblings fully match. The distributions of the siblings’ genotypes for a bi-
allelic marker and for each of the IBD situations is given in Table 9.1. To avoid
confusion we have used the letter f to represent the population frequency of
the allele of the marker. In contrast, we have used the letter p to represent
the frequency of the allele D of the trait locus.

The function “geno.given.ibd” computes this table for allele frequencies
denoted by the vector f (with the default of uniformly distributed bi-allelic
marker):

> geno.given.ibd <- function(f=c(0.5,0.5))
+ {
+ n.al <- length(f)
+ P.0 <- outer(outer(f,f),outer(f,f))
+ P.1 <- P.2 <- array(0,dim=rep(n.al,4))
+ for(a2 in 1:n.al) for(a1 in 1:n.al)
+ for(a3 in 1:n.al) for(a4 in 1:n.al)
+ {
+ if (a1==a3 & a2==a4)
+ {
+ P.2[a1,a2,a3,a4] <- f[a1]*f[a2]
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+ P.1[a1,a2,a3,a4] <- f[a1]*f[a2]*(f[a1]+f[a2])/2
+ }
+ if (a1==a3 & a2!=a4)
+ {
+ P.1[a1,a2,a3,a4] <- f[a1]*f[a2]*f[a4]/2
+ }
+ if (a1!=a3 & a2==a4)
+ {
+ P.1[a1,a2,a3,a4] <- f[a1]*f[a3]*f[a2]/2
+ }
+ }
+ a1 <- rep(1:n.al,n.al^3)
+ a2 <- rep(rep(1:n.al,rep(n.al,n.al)),n.al^2)
+ a3 <- rep(rep(1:n.al,rep(n.al^2,n.al)),n.al)
+ a4 <- rep(1:n.al,rep(n.al^3,n.al))
+ geno <- genotype(a1,a2,a3,a4,n.al)
+ P.0 <- tapply(as.vector(P.0),geno,sum)
+ P.1 <- tapply(as.vector(P.1),geno,sum)
+ P.2 <- tapply(as.vector(P.2),geno,sum)
+ P <- cbind(P.0,P.1,P.2)
+ colnames(P) <- paste("State=",0:2,sep="")
+ return(P)
+ }

The function works by computing the distribution of the vector of four alleles
for the two siblings in each of the IBD situations. The results are stored
in three vectors, each of length n.al to the fourth power. The probabilities
for the different genotypes are computed by summation of the four allelic
probabilities according to the level of the genotype. This is carried out with
the aid of the function “tapply”. The function “tapply” takes as input a
vector, a factor, and a function. The function is applied to the collection of
values of the vector that correspond to each given level of the factor.

The other component is the distribution of the unobserved IBD process.
This process is generated in the case under consideration as a function of
the four inheritance indicators. Each of these indicators can be viewed as
an independent process with two states (0 or 1). The states of the processes
may change from one marker to the next, depending on the recombination
fraction. Under a model of no crossover interference (the Haldane model)
these independent inheritance processes are Markovian. As it turns out, for
the specific pedigree structure of two siblings the process of IBD is Markovian
as well. The transition matrix of going from one marker to the next, which
was discussed on our analysis of J in Sect. 9.3, is computed in the function
“trans.mat”:
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> trans.mat <- function(theta)
+ {
+ phi <- 1-theta^2-(1-theta)^2
+ Tr <- matrix(c((1-phi)^2,2*phi*(1-phi),phi^2,
+ phi*(1-phi),phi^2+(1-phi)^2,phi*(1-phi),
+ phi^2,2*phi*(1-phi),(1-phi)^2),3,3,byrow=TRUE)
+ colnames(Tr) <- paste("to.IBD=",0:2,sep="")
+ rownames(Tr) <- paste("from.IBD=",0:2,sep="")
+ return(Tr)
+ }

For example, when the distance between two markers is 20 cM, then the
fraction of recombination and the transition matrix are given by:

> theta <- 0.5 - 0.5*exp(-0.02*20)
> round(trans.mat(theta),3)

to.IBD=0 to.IBD=1 to.IBD=2
from.IBD=0 0.525 0.399 0.076
from.IBD=1 0.200 0.601 0.200
from.IBD=2 0.076 0.399 0.525

It can be shown that the null IBD distribution: (1/4, 1/2, 1/4) is the stationary
distribution of such a matrix, i.e., multiplication of the transition matrix on
the left by this row vector produces exactly the same vector:

> Pr <- c(0.25,0.5,0.25)
> Pr%*%trans.mat(theta)

to.IBD=0 to.IBD=1 to.IBD=2
[1,] 0.25 0.5 0.25

The initial distribution and transition matrices of the Markov process and
the conditional distribution of the observations determine the joint distribu-
tion of the observations and of the hidden process in a straightforward way. In
principle, the determination of the conditional distribution of the hidden pro-
cess, given the observation is a straightforward application of Bayes’ formula.
However, a näıve attempt to apply the formulas will face severe computational
problems when the number of markers is even moderately large. Indeed, the
sample space of the possible paths of the IBD processes over the set of mark-
ers grows exponentially fast in powers of three as a function of the number
of markers. An attempt to compute directly the posterior distribution of the
paths may require the manipulation of an extremely large number of terms
and turns out to be impractical if more than a score of markers is considered.

As a remedy, clever algorithms have been developed for computation in
HMM scenarios where the unobserved process possesses a Markovian struc-
ture and the observations are conditionally independent, given the states of
the unobserved process. These algorithms exploit the sequential independence
of the components of the process in order to subdivide the task of summing
an exponential number of products into a sequence of multiplications of sums
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with a fixed number of summands. Below we apply two basic algorithms that
were developed for computation in such a setting: The forward and the back-
ward algorithms.

Denote by J(tm) the IBD process at the mth marker and by Pr(Gm | j)
the probability of the observed genotypes at that marker, given that the IBD
status is j. Denote the transition probability for the IBD process by Tij =
Pr(J(tm) = j | J(tm−1) = i), which also equals Pr(J(tm−1) = j | J(tm) = i),
since the process of recombination does not depend on the way we order the
markers, but only on the distance between them. In principle Tij will also
depend on m when distances between markers vary. The forward algorithm
computes recursively the quantity Fm(j) = Pr(G1, G2, . . . , Gm, J(tm) = j),
which is the joint distribution of the genotypes up to locus tm and IBD status
at that locus. It does so by conditioning on the states of hidden process at
the locus tm−1 and exploiting the Markovian structure and independence in
order to obtain the relation:

Fm(j) =
∑

i

Pr(G1, G2, . . . , Gm, J(tm−1) = i, J(tm) = j)

=
∑

i

{
Fm−1(i)× Tij × Pr(Gm | j)

}
.

Summation in the relation extends over the three possible values of the IBD
process at locus tm−1. Applying this relation recursively, starting with the
initial relation F1(j) = Pr(G1 | j)Pr(J(t1) = j), allows for the computation
of these quantities for all m and j. The number of elements that needs to be
manipulated is proportional to the product of the number of markers with
the number of possible states of the underlying process (which equals three in
our setting).

Denote by m̃ the index of the last marker on the given chromosome.
The backward algorithm is used in order to compute the quantity Bm(j) =
Pr(Gm+1, Gm+2, . . . , Gm̃ |J(tm) = j), namely the conditional distribution of
the genotypes beyond a locus, given the IBD status at the locus. A recur-
sive relation between the quantities can be identified. This time the relation
involves a sum over the states of the process at tm+1 and takes the form

Bm(j) =
∑

i

Pr(Gm+1, . . . , Gm̃, J(tm+1) = i | J(tm) = j)

=
∑

i

{
Bm+1(i)× Tji × Pr(Gm+1 | i)

}
.

The starting values for the recursion are Bm̃(j) = 1.
Let G = (G1, . . . , Gm̃) be the genetic information over the chromosome for

the given pedigree. Since Pr(G, J(tm) = j) = Pr(G1, . . . , Gm̃, J(tm) = j) =
Fm(j)Bm(j), it follows from the definition of conditional probabilities that

Pr
(
J(tm) = j |G)

=
Fm(j)Bm(j)∑
i Fm(i)Bm(i)

. (9.10)
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Consequently, the conditional distribution of IBD, given the genotype infor-
mation, can be computed at each locus as a function of the F and B quantities.

The functions “forward” and “backward” apply the forward and backward
algorithms in order to compute the forward an backward joint distributions
of the genotypes and the IBD states. The first argument to these functions is
an array “G.I” with the conditional probabilities of the observed genotypes
for each of the pedigrees, each of the markers and each of the IBD states. The
second and third arguments are the transition matrix of the IBD process and
its initial distribution, respectively. The output are arrays that contain the
forward and backward probabilities, respectively:

> forward <- function(G.I,Tr,Pr)
+ {
+ n.samp <- dim(G.I)[1]
+ n.mark <- dim(G.I)[2]
+ F <- G.I
+ F[,1,] <- sweep(G.I[,1,],2,Pr,"*")
+ for (i in 2:n.mark)
+ {
+ F[,i,] <- G.I[,i,]*(F[,i-1,]%*%Tr)
+ S <- F[,i,1] + F[,i,2] + F[,i,3]
+ F[,i,] <- sweep(F[,i,],1,S,"/")
+ }
+ return(F)
+ }
> backward <- function(G.I,Tr,Pr)
+ {
+ n.samp <- dim(G.I)[1]
+ n.mark <- dim(G.I)[2]
+ B <- G.I
+ B[,n.mark,] <- 1
+ for (i in seq(n.mark-1,1))
+ {
+ B[,i,] <- (G.I[,i+1,]*B[,i+1,])%*%t(Tr)
+ S <- B[,i,1] + B[,i,2] + B[,i,3]
+ B[,i,] <- sweep(B[,i,],1,S,"/")
+ }
+ return(B)
+ }

Note that in each iteration of the evaluation, the currently computed quan-
tities in F and B are re-scaled to sum to one. This re-scaling increases the
numerical stability of the algorithm, which would otherwise involve the ma-
nipulation of terms that become vanishingly small as the algorithm progresses.
Round off errors would have been a serious concern if that were the case. Ow-
ing to the re-scaling, the terms are no longer the probabilities per se, but
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are only proportional to such probabilities. Nonetheless, the constants of pro-
portionality do not depend on the IBD status at a locus and are therefore
canceled out of both the numerator and the denominator when (9.10) is ap-
plied in order to obtain the target distribution. The actual computation of
the conditional distribution of the states, given the genotypes, is carried out
in the function “marginal.post”. This function takes as input the output
arrays of the functions “forward” and “backward” and produces an array of
the same type with the posterior probabilities of the states:

> marginal.post <- function(F,B)
+ {
+ P <- F*B
+ S <- P[,,1]+P[,,2]+P[,,3]
+ P <- sweep(P,1:2,S,"/")
+ return(P)
+ }

9.6.3 Statistical Properties of Genome Scans

With the tools developed for the simulation of random pedigrees and a func-
tion for the computation of the estimated identity-by-descent probabilities
from the genotypic information, we can start investigating the statistical prop-
erties of mapping in the more realistic setting of partial information. Let us
initiate our investigation by the determination of the expectation and covari-
ance properties of the scanning statistic under both the null and the alter-
native hypotheses. Later, we will consider Gaussian processes with the same
covariance and mean structure and obtain significance thresholds and power
curves. Our investigation will include several inter-marker spacings.

The first simulation is conducted under the null distribution. We simulate
105 independent pedigrees and use them in order to compute the covariance
and mean structure of the reconstructed IBD process. We also assess the
accuracy of the reconstruction at a central locus. The simulation is split into
100 batches in order to avoid running out of memory:

> n.rep <- 10^2
> n.ped <- 10^3
> Delta <- c(35,20,10,5,1)
> ibd.est.null <- matrix(nrow=3,ncol=length(Delta))
> colnames(ibd.est.null) <- paste("Delta=",Delta,sep="")
> rownames(ibd.est.null) <- c("mean","var","mse")
> cor.ibd <- vector(mode="list",length=length(Delta))
> names(cor.ibd) <- paste("Delta=",Delta,sep="")
> cor.est <- cor.ibd
> P <- geno.given.ibd()
> for(i in 1:length(Delta))
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+ {
+ markers <- seq(0,140,by=Delta[i])
+ n.mark <- length(markers)
+ locus <- ceiling(n.mark/2)
+ theta <- 0.5 - 0.5*exp(-0.02*Delta[i])
+ Tr <- trans.mat(theta)
+ fa <- list(pat=matrix(1,n.ped,n.mark),
+ mat=matrix(2,n.ped,n.mark))
+ mo <- list(pat=matrix(3,n.ped,n.mark),
+ mat=matrix(4,n.ped,n.mark))
+ ibd.est <- ibd <- NULL
+ G.I <- array(dim=c(n.ped,n.mark,3))
+ for (rep in 1:n.rep)
+ {
+ sib1 <- mating(fa,mo,markers)
+ sib2 <- mating(fa,mo,markers)
+ geno <- ped.geno(sib1,sib2)
+ for(k in 1:3) G.I[,,k] <-
+ matrix(P[geno,k],n.ped,n.mark)
+ F.P <- forward(G.I,Tr,Pr)
+ B.P <- backward(G.I,Tr,Pr)
+ I.G <- marginal.post(F.P,B.P)
+ ibd.est <- rbind(ibd.est,2*I.G[,,3]+I.G[,,2])
+ ibd <- rbind(ibd,(sib1$pat == sib2$pat)+
+ (sib1$mat == sib2$mat))
+ }
+ ibd.est.null["mean",i] <- mean(ibd.est[,locus])
+ ibd.est.null["var",i] <- var(ibd.est[,locus])
+ ibd.est.null["mse",i] <-
+ mean((ibd[,locus]-ibd.est[,locus])^2)
+ cor.ibd[[i]] <- cor(ibd)
+ cor.est[[i]] <- cor(ibd.est)
+ }

Observe that mean, variance, and mean-square distance between the recon-
structed and actual IBD processes are stored in a matrix called “ibd.est.null”.
The columns of this matrix correspond to the different inter-marker spacings.
The correlation matrices are stored in a list named “cor.est”. For later com-
parison, we also store the correlation structure of the actual IBD process in
the list “cor.ibd”.

Let us examine the mean, the variance, and the quality of reconstruction
under the null distribution:
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> round(ibd.est.null,3)
Delta=35 Delta=20 Delta=10 Delta=5 Delta=1

mean 1.001 1.002 1.001 1.002 0.998
var 0.126 0.155 0.217 0.292 0.425
mse 0.374 0.343 0.284 0.208 0.075

Several insights emerge. First, it can be seen that the expected value of the
estimated IBD is about equal to the expectation of the true IBD, which is one.
As a matter of fact, it can be shown mathematically that the expectations of
the estimated and the true IBD coincide. This follows from the fact that the
estimated expression is a conditional expectation and the mathematical fact
that the expectation of a random variable is equal to the expectation of its
conditional expectation. (Symbolically, E(J) = E[E(J |G)].)

Second, one can conclude that the variance of the estimated IBD is less
than the variance of the actual IBD, which is equal to 1/2. Moreover, the
denser the markers are, the closer the variance is to 1/2. Mathematically the
relation between variances of the actual IBD J and the estimated IBD, which
we denote by Ĵ , is given by the relation

var(J) = var(E(J |G)) + E(var(J |G)) = var(Ĵ) + E(var(J |G)) > var(Ĵ).

The more informative G is, the more similar Ĵ is to J and the closer their
variances are to each other.

Third, a closer examination of the numbers in the second and third rows
reveals that their sum equals one-half – the variance of the actual IBD statistic.
In mathematical terms one can express this relation in the form:

E[(Ĵ − J)2] = E[var(J |G)].

Substituted into the previous equation, this relation shows that the closer the
variance of the reconstructed IBD is to the variance of the actual IBD, the
more accurate the reconstruction is, as measured by its mean squared error.

In the computation of a scanning statistic, standardization is carried out
with the standard deviation of the estimated IBD. The resulting statistic has a
zero mean and a unit variance under the null distribution. The Gaussian lim-
iting distribution of the process of statistics is determined by the correlation
structure. In Fig. 9.3 the correlation function between a statistic computed
for a central marker and the statistics computed at the flanking markers is
plotted. The spacing between markers is 10 cM. The code that produced the
figure is:

> markers <- seq(0,140,by=10)
> plot(markers,cor.ibd$"Delta=10"[8,],pch=19,ylab="cor.")
> points(markers,cor.est$"Delta=10"[8,])
> legend(1,0.99,legend=c("Actual","Estimated"),pch=c(19,1))

The correlation values for the actual IBD process are plotted in solid black
and the values for the estimated IBD process are plotted in black and white.
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Fig. 9.3. Correlation functions between markers for IBD processes (for an inter-
markers spacing of ∆ = 10 cM).

Observe that in general the correlations for the estimated process are larger
than for the actual IBD process. Indeed, the same set of genotypes is used
in order to infer the IBD status at the different markers. This increases the
correlation beyond the correlation that results from the recombination pro-
cess. A byproduct of this increase in the correlation will be a decrease in the
size of the threshold that should be used to ensure a given significance level
in a genome scan. Indeed, the first step in the investigation of the statistical
properties of a genome scan involves a slight readjustment of the threshold to
the new setting. We will get to that below.

Before considering the process of test statistics let us examine the proper-
ties of the reconstructed IBD when a susceptibility gene is present. We con-
sider the same inter-markers spacings and assume that the locus is perfectly
linked to the central marker. We assume an additive model for the trait with
p = 0.1, g0 = 0.05, and α = 0.225. The means, variances, and mean square
errors are computed for the marker linked to the trait locus. The simulation
applies, with some obvious modifications, the same code as before:

> ibd.prob <- DistIBD(0.1,0.05,0.275,0.5)
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> ibd.est.alt <- ibd.est.null
> for(i in 1:length(Delta))
+ {
+ markers <- seq(0,140,by=Delta[i])
+ n.mark <- length(markers)
+ qtl <- ceiling(n.mark/2)
+ theta <- 0.5 - 0.5*exp(-0.02*Delta[i])
+ Tr <- trans.mat(theta)
+ fa <- list(pat=matrix(1,n.ped,n.mark),
+ mat=matrix(2,n.ped,n.mark))
+ mo <- list(pat=matrix(3,n.ped,n.mark),
+ mat=matrix(4,n.ped,n.mark))
+ G.I <- array(dim=c(n.ped,n.mark,3))
+ ibd.est <- ibd <- NULL
+ for (rep in 1:n.rep)
+ {
+ inhe.qtl <- inhe.vector(ibd.prob,n.ped)
+ sib1 <- mating(fa, mo, markers,qtl=markers[qtl],
+ inhe.fa=inhe.qtl[,"sib1.pat"],
+ inhe.mo=inhe.qtl[,"sib1.mat"])
+ sib2 <- mating(fa, mo, markers,qtl=markers[qtl],
+ inhe.fa=inhe.qtl[,"sib2.pat"],
+ inhe.mo=inhe.qtl[,"sib2.mat"])
+ geno <- ped.geno(sib1,sib2)
+ for(k in 1:3) G.I[,,k] <-
+ matrix(P[geno,k],n.ped,n.mark)
+ F.P <- forward(G.I,Tr,Pr)
+ B.P <- backward(G.I,Tr,Pr)
+ I.G <- marginal.post(F.P,B.P)
+ ibd.est <- c(ibd.est,2*I.G[,qtl,3]+I.G[,qtl,2])
+ ibd <- c(ibd,((sib1$pat == sib2$pat)+
+ (sib1$mat == sib2$mat))[,qtl])
+ }
+ ibd.est.alt["mean",i] <- mean(ibd.est)
+ ibd.est.alt["var",i] <- var(ibd.est)
+ ibd.est.alt["mse",i] <- mean((ibd-ibd.est)^2)
+ }

The matrix “ibd.est.alt” stores the mean, the variance, and the mean
square error for the marker fully linked with the trait:

> round(ibd.est.alt,3)
Delta=35 Delta=20 Delta=10 Delta=5 Delta=1

mean 1.042 1.052 1.073 1.096 1.144
var 0.116 0.147 0.218 0.297 0.420
mse 0.353 0.325 0.267 0.193 0.068
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As expected, the mean of the estimated IBD is elevated. The elevation is more
apparent when markers are denser. The variance and mean square error are,
however, hardly affected by the change in distribution from unlinked to linked.
This last observation is consistent with the mathematics of local alternatives,
where one varies the mean but not the covariance structure.

It is more convenient to interpret the effect that the missing information
may have on the statistical power by considering the noncentrality parameter.
This parameter is equal to the difference between the alternative and the null
expectations, multiplied by the square root of the sample size and divided
by the null standard deviations. If we take, for example, a trial with 400
pedigrees, then we obtain

> n <- 400
> ncp.ibd <- sqrt(2*n)*(sum(ibd.prob*0:2)-1)
> ncp.app <- ncp.ibd*sqrt(ibd.est.null["var",]/0.5)
> ncp.sim <- sqrt(n)*(ibd.est.alt["mean",]-1)/
+ sqrt(ibd.est.null["var",])
> ncp <- rbind(ncp.sim,ncp.app)
> round(ncp.ibd,3)
[1] 4.744
> round(ncp,3)

Delta=35 Delta=20 Delta=10 Delta=5 Delta=1
ncp.sim 2.351 2.640 3.139 3.552 4.412
ncp.app 2.383 2.638 3.128 3.626 4.372

The noncentrality parameter for a fully informative marker with complete
linkage is 4.744. The same parameter for the same marker when only partial
information is available was computed in two different ways. In the variable
“ncp.sim” it was computed directly based on the results of the simulations.
In the variable “ncp.app” it was approximated using (9.11) given below.

Looking at the numbers we see that the noncentrality parameter is severely
deflated if the inter-marker spacing is more than 5 cM. If the spacing is 1 cM
or less, then one recovers most of the noncentrality parameter. Another obser-
vation is the similarity between the actual noncentrality values as computed
by simulations and the following approximation for these values. This approx-
imation takes the general form:

E(Ẑt) ≈ cor
(
Ĵ(t), Ĵ(τ)

)×
[var(Ĵ(τ))
var(J(τ))

]1/2

× E(Zτ ) , (9.11)

where E(Zτ ) = ξ is the noncentrality parameter which was considered in
the previous section and computed at the trait locus under the assumption
of completely informative markers, while the statistic Ẑt is the test statis-
tic computed at a marker and based on the reconstructed IBD. The term
var(J(τ)) is the variance of the actual IBD process, 1/2 in this case, and
var(Ĵ(t)) is the variance of the reconstructed IBD, computed at the marker.
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The term cor
(
Ĵ(t), Ĵ(τ)

)
corresponds to the correlations between elements of

the reconstructed process.
The noncentrality parameter conveniently decomposes into three factors.

The rightmost factor measures the contribution of the genetic effect, com-
bined with the sample size. The central factor measures the reduction in the
noncentrality parameter due to missing information. The leftmost factor mea-
sures the effect of using a marker that is only partially correlated with the
trait locus.

Although we learn something from examining the noncentrality parame-
ter, we now carry out a more comprehensive investigation of the statistical
properties of genome scans when only the siblings are available for genotyp-
ing. The first stage involves finding the appropriate thresholds for the different
inter-marker spacings. For the actual IBD process we use the analytical ap-
proximations that were developed in Chap. 4. For the reconstructed IBD we
use simulations. Observe that the correlation structure of a scanning process
formed by the summation of independent copies of reconstructed IBD pro-
cesses is the same at the correlation structure of a single such process. Hence,
we can use the correlation matrices that we found for the reconstructed pro-
cesses as inputs for the function that simulates the Gaussian processes.

> library(MASS)
> Delta <- c(35,20,10,5,1)
> z <- matrix(nrow=2,ncol=length(Delta))
> colnames(z) <- paste("Delta=",Delta,sep="")
> rownames(z) <- c("ibd","ibd.est")
> n.rep <- 10^2
> n.iter <- 10^4
> for(d in 1:length(Delta))
+ {
+ z["ibd",d] <- uniroot(OU.approx,c(3,4),beta=0.04,
+ Delta=Delta[d],length=140*23,chr=23,center=0.05,
+ test="one-sided")$root
+ n.mark <- 140/Delta[d] + 1
+ Z.max <- NULL
+ for(i in 1:n.rep)
+ {
+ Z <- mvrnorm(n.iter,rep(0,n.mark),cor.est[[d]])
+ Z.max <- c(Z.max,apply(Z,1,max))
+ }
+ z["ibd.est",d] <- sort(Z.max)[n.rep*n.iter*(1-0.05/23)]
+ }
> round(z,3)

Delta=35 Delta=20 Delta=10 Delta=5 Delta=1
ibd 3.338 3.461 3.603 3.722 3.907
ibd.est 3.322 3.425 3.515 3.587 3.742
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As expected from our comparison of correlations, the threshold levels for the
reconstructed IBD are slightly smaller than the threshold levels for the actual
IBD process. We will use these lower thresholds in order to determine the
power.

For the actual IBD process we use the analytical approximation that was
developed in Chapter 6. For the estimated IBD we again use simulations.
Motivated by the theory of local alternatives, we simulate the process un-
der the alternative distribution using the same covariance structure that was
used under the null. The mean function is computed based on the approxi-
mation (9.11) and is added to each row of the random part using the function
“sweep”:

> xi <- seq(3,6,by=0.1)
> n.rep <- 10
> power.ibd <- matrix(nrow=length(xi),ncol=length(Delta))
> colnames(power.ibd) <- names(z)
> power.est <- power.ibd
> for (d in 1:length(Delta))
+ {
+ power.ibd [,d] <-
+ power.marker(z["ibd",d],0.04,Delta[d],xi)
+ n.mark <- 140/Delta[d] + 1
+ qtl <- ceiling(n.mark/2)
+ rho <- sqrt(ibd.est.null["var",d]/0.5)*
+ ((cor.est[[d]])[qtl,])
+ Z <- mvrnorm(n.iter,rep(0,n.mark),cor.est[[d]])
+ for (i in 1:length(xi))
+ {
+ ncp <- xi[i]*rho
+ Z1 <- sweep(Z,2,ncp,"+")
+ power.est[i,d] <-
+ mean(apply(Z1,1,max) >= z["ibd.est",d])
+ }
+ }

Let us plot the power functions:

> plot(range(xi),c(0,1),type="n",xlab="xi",ylab="power")
> gr <- gray(0.75*(1:length(Delta))/length(Delta))
> for(d in 1:length(Delta))
+ {
+ lines(xi,power.ibd[,d],col=gr[d])
+ lines(xi,power.est[,d],col=gr[d],lty=2)
+ }
> legend(xi[1],1,bty="n",legend=colnames(z),
+ lty=rep(1,ncol(z)),col=gr)
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Fig. 9.4. Power functions for an IBD process (solid line) and an inferred process
(broken line). The QTL in complete linkage with the central marker. Bi-allelic mark-
ers are used.

The output is presented in Fig. 9.4. Observe the dramatic effect on the power
of failing to reconstruct the IBD process accurately enough. When markers
are placed one cM apart, then most of the power is retained. However, a
substantial fraction of the power is lost when markers are set 5 cM apart and
becomes worse as the markers become more spread apart.

The exact same programs that were used to generate Fig. 9.4, which
refers to SNPs, can be used in order to generate power curves for SSR
markers. Consider, for example, markers with five uniformly distributed al-
leles. The only changes that are needed are the replacement of line “P <-
geno.given.ibd()” by the line “P <- geno.given.ibd(rep(1/5,5))” in
one location and the line “geno <- ped.geno(sib1,sib2)” by the line “geno
<- ped.geno(sib1,sib2,rep(1/5,5))” in two locations.

After making these changes and rerunning the programs one gets new
significance thresholds and new power curves that are given in Fig. 9.5:
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Fig. 9.5. Power functions for an IBD process (solid line) and an inferred process
(broken line). The QTL in full linkage with the central marker. Uniformly distributed
five-allelic markers are used.

Delta=35 Delta=20 Delta=10 Delta=5 Delta=1
ibd 3.338 3.461 3.603 3.722 3.907
ibd.est 3.321 3.442 3.563 3.663 3.841

Clearly, for markers separated by more than a few cM, the SSRs provide
more information than the SNPs. Indeed, SSRs at 5 cM appear to be roughly
comparable to SNPs at 1 cM. If markers are multi-allelic or if parents are
also genotyped, then one can recover more information and mitigate to some
extent the effect of separated markers. Nevertheless, when one takes account
of the effect of a value of β twice as large as one finds in backcross or intercross
designs and the additional loss of information due to incompletely informative
markers, one should plan to place markers substantially closer in human than
in experimental genetics. With microsatellite markers it is common to use
an inter-marker spacing of about 10 cM, and 5 cM would be substantially
better. For SNPs, which are generally less informative but more common
than microsatellites, the marker spacing should be about 1 cM, or less.
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9.7 Bibliographical Comments

The idea of using affected sib pairs to map disease genes goes back to Pen-
rose [58]. James [42] observed that the regression models used for quantitative
traits could also be used for qualitative traits if one treated the (unobserved)
penetrance of a qualitative trait as a quantitative phenotype. Risch [65] pro-
vided an elegant theoretical framework for single marker applications. For
discussion of genome scans, see Feingold, Brown, and Siegmund [28] and Lan-
der and Kruglyak [48].

The standard paradigm of parametric linkage analysis is due to Mor-
ton [56], and is described in detail by Ott [57].

Considerable effort has gone into the problem of reconstructing IBD re-
lations from marker data. One of the first and still widely used programs
for this purpose is based on the Elston-Stewart [24] algorithm, implemented
in the software SAGE. As befits its vintage, this algorithm is particularly
adept at dealing with large pedigrees and a relatively small number of mark-
ers. Two widely used and freely available programs that are built around a
hidden Markov model of the kind discussed in the text are GENEHUNTER
(Kruglyak et al. [46]) and MERLIN (Abecassis et al. [2]). Both of these pro-
grams can handle essentially any number of markers, but have problems in
dealing with large pedigrees. ALLEGRO [33] began its existence as something
of an offspring of GENEHUNTER, but lately [34] seems to have developed
an independent life of its own.

These programs also provide suites of statistical methods that utilize the
IBD reconstruction for gene mapping. The reconstruction is computationally
intensive, so the programs should be optimized; and since the goals are reason-
ably clear, one would usually want to use programs prepared by professionals.
The statistical applications, on the other hand, are comparatively easy to pro-
gram using available statistical software, and the appropriate methods are not
so generally agreed on. Hence one might want to use the IBD reconstruction
of, for example, GENEHUNTER or MERLIN as a preliminary step to one’s
own statistical analysis.

Problems

9.1. (a) Plot the mean function of the Z statistic for an additive model with
g0 = 0.05, for various values of p, α, and n.
(b) For inter-marker spacing of ∆ = 5 cM, plot the power function for various
values of p, α, and n.
(c) For p = 0.1 and α = 0.4, how large a value of n is required to have 90%
power to detect a gene perfectly linked to a marker?

9.2. Use (9.4) to find the probabilities of IBD for an additive model with
g0 = 0. Note, in particular, that these probabilities depend only on p and
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not on the penetrances g1 = α, g2 = 2α. Do the same for the dominant
model g0 = 0, g1 = g2 = α. Make numerical comparisons of the noncentrality
parameters of (N2−N0)/(n/2)1/2 for the two models for different values of p.
Do you find your numerical results surprising?

9.3. The probabilities of IBD for the recessive model 0 = g0 = g1 < g2 are
given by

π0 =
p2

(1 + p)2
, π1 =

2p

(1 + p)2
, π2 =

1
(1 + p)2

,

where p is the frequency of the allele D in the population.
(a) Write an R function that computes the power to detect a susceptibility
gene as a function of the relevant parameters.
(b) Plot the power function for various values these parameters.

9.4. The statistic Z1 = (N2 − N0)/(n/2)1/2 is designed for an additive
model. For a recessive model, where σ2

D À σ2
A , an alternative is Z2 =

(N2 − n/4)/(3n/16)1/2.

(a) Explain why this is a reasonable statistic (for example, by calculating its
noncentrality parameter).
(b) For the additive and recessive models of the preceding two problems, for
which g0 = 0, compare the noncentrality parameters of Z1 and Z2 as functions
of p. For which values of p does Z2 have a substantially larger noncentrality
parameter than Z1? (See Chap. 11 for additional discussion of alternative
statistics when the dominance variance may be important.)

9.5. Consider the model (2.3) for the penetrance y, where e is assumed to
contain environmental effects and possibly the effect of other genes that are
unlinked to the trait locus at τ . Since two siblings are expected to share
genetic material and are also likely to share a common environment, we allow
for a covariance r = cov(e1, e2). How should the assumption (9.1) be changed?
What is the effect of this generalization on (9.2) and (9.4)?

9.6. Simulate significance thresholds at various inter-marker distances when
markers are only partially informative and compare these thresholds to those
obtained (either by simulation or by theoretical approximations) for fully in-
formative markers. Now make similar comparisons of the power of genome
scans based on the appropriate thresholds.

9.7. An alternative to the additive model, which is also particularly tractable,
is the multiplicative relative risk model. The penetrances are given by g0 > 0,
g1 = g0R, g2 = g0R

2, where R > 1 is called the relative risk. Assuming Hardy-
Weinberg equilibrium, for a sib pair find expressions for Pr(Both affected)
and the conditional probability Pr(Both affected|J(τ) = j) for j = 0, 1, 2.
Generalize this model to consider two (unlinked) genes acting multiplicatively
between loci.
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Remark 9.2. It is possible to reduce this to the canonical form given in Sect. 9.1
and apply the results given in the text; but the properties of this model are
sufficiently simple that one can also carry out the desired calculations from
first principles.

9.8. Let σ2
D = 0 in (9.4). The log likelihood function for the data (N0, N1, N2)

parametrized by α̌/Q2 is `(α̌/Q2) = N2 log(1 + α̌/Q2) + N0 log(1 − α̌/Q2).
Show that the statistic Z introduced in the text is the score statistic for testing
the hypothesis H0 : α̌ = 0, which is of the form ˙̀(0)/{E0[ ˙̀(0)]2}1/2. (We use
the dot notation for derivatives. See Chap. 1 for a discussion of the score
statistic.)

9.9. Let πi(θ) = Pr(J(t) = i|A) for a marker t at a recombination fraction θ
from a trait locus τ . Show that πi(θ) is of the same form as (9.4), but with α̌
replaced by α̌(1− 2ϕ) and δ̌ replaced by δ̌(1− 2ϕ)2.

9.10. The affected sib pair method is based on the observation that affected
sibs are likely to share an excess of alleles IBD at a locus that increases
susceptibility to the trait. A sib pair of whom one affected and one unaffected
is likely to share a deficit of alleles IBD at a trait locus. Assuming there is no
dominance variance, develop a model for using affected/unaffected sib pairs
for gene mapping. Find the score statistic or an otherwise reasonable statistic
and evaluate its noncentrality parameter. Can you give conditions where these
sib pairs would be as useful as affected sib pairs? Does it seem plausible that
these conditions might sometimes be satisfied?

9.11. Suppose that our sample consists of n1 affected/unaffected sib pairs, as
in the preceding problem, and n2 affected sib pairs. Assuming a parametric
model, where we regard the penetrances and allele frequencies as known, and
the validity of (9.8), propose an approximate Gaussian log likelihood ratio
statistic to combine these two kinds of sib pairs. Observe that this involves a
specific linear combination of the two Z statistics, with weights that depend
on the hypothesized values of the noncentrality parameters. (This issue is
discussed again in Chap. 11.)

9.12. Give an analysis along the lines of Sects. 9.1–9.3 for samples of (i)
an affected grandparent and grandchild (ii) affected half-sibling pairs, (iii)
affected first cousins pairs.

Remark 9.3. Determining the recombination parameter for first cousins in-
volves a more difficult argument than the other two cases.

9.13. Compute the probability distribution of the total number of alleles
shared IBD by a trio of siblings.

9.14. Show that (9.3) can be re-written in the form

E(y1y2|J) = E(y1y2) + (J − 1)α̌− (I{J=1} − 1/2)δ̌ .
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9.15. Recall that a trait is called recessive if δ = −α. Consider a child whose
parents are related to each other, e.g., siblings or first cousins. Let F denote
the coefficient of relatedness of the parents. Using the model (2.3) together
with the assumption that E(e) = 0, show that the probability the child is
affected is Q1 = m + FσD. In particular, the probability that an inbred child
is affected is larger than the probability m that a child of unrelated parents
is affected. An individual is said to be homozygous by descent (HBD) at the
locus t if the two alleles at that locus are IBD. Hence the the probability of
HBD at a random locus is the coefficient of relatedness of the parents. Explain
how you could use a sample of inbred affected individuals, e.g., a sample of
affected children of first cousins, to map a recessively acting gene. What would
be the noncentrality parameter at a trait locus in a large sample in terms of
the sample size n, Q1, F , and σ2

D? How would your analysis change if you
want to consider the possibility of a second gene, which is unlinked to and
does not interact with the first gene?


