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Abstract

Surveillance can be based, in some change-point detection problems, on

a sequence of invariant statistics. Gordon and Pollak (1997) prove that,

under certain conditions, the Average Run Length (ARL) to false alarm

of invariance-based Shiryayev-Roberts detection schemes is asymptotically

the same as that of the dual classical scheme that is based on the original

sequence of observations. In this paper we give alternative conditions under

which the two ARL coincide and demonstrate that these conditions are

satisfied in cases where Gordon and Pollak’s conditions are difficult to check.
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1 Introduction

The setting of the classical change-point problem has initial observations

which are independent and identically distributed, until a change occurs

at some unknown point in time ν. Subsequently, the distribution changes,

though the observations are again independent and identically distributed.

One obtains the observations sequentially, with the goal of raising an alarm

as soon as it becomes clear that the distribution has changed. The pre-

change distribution is assumed to be known. Classical surveillance schemes

invariably make heavy use of this knowledge, and ignorance of the precise

specification of the pre-change distribution typically renders them inopera-

ble.

In practice, there are many situations in which the pre-change distribu-

tion is only partially specified, or not specified at all. A typical example is

discussed in Wilson et. al. (1979). There, a scheme for monitoring the qual-

ity of laboratory tests is constructed. Samples are sent at regular intervals

for assay. One is on the lookout for a change of variance. (The observa-

tions are assumed to be normally distributed.) The scenario is such that

the initial variance is unknown.

In this setting, the pre-change distribution is known up to a nuisance pa-

rameter. A naive approach to this problem would call for estimation of the

unknown parameter and subsequent use of classical procedures with the true

value of the parameter replaced by its estimate. (This assumes the possibil-

ity of obtaining a learning sample from the pre-change distribution.) The

difficulty with this approach is that the operating characteristics of classical

schemes are very sensitive to misspecification of distributional parameters.
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(See Section 2.4 in van Dobben de Bruyn, 1968. See also Table 1 in Gordon

and Pollak, 1995.)

This difficulty can be both overcome and (sometimes) circumvented.

Overcoming this difficulty requires an analysis of the operating character-

istics which takes into account the fact that there are parameters being

estimated. This approach was taken by Siegmund and Venkatraman (1992).

See also Lai (1995). Circumvention can be done if the problem possesses

invariance properties. The idea is to base surveillance on a sequence of

invariant statistics instead of on the original observations. The invariance

causes the pre-change distribution of the sequence to be devoid of unknown

parameters, thereby making the pre-change distribution (of the invariant

statistics) known. This approach was taken by Pollak and Siegmund (1991)

in a parametric setting and by Macdonald (1990), Gordon and Pollak (1994,

1995, 1997), Bell, Gordon and Pollak (1992) in a nonparametric one.

While the invariance approach is appealing, it does entail difficulties.

The dependence between the invariant statistics makes evaluation of operat-

ing characteristics more difficult. Gordon and Pollak (1997) prove a general

theorem which states (under certain conditions) that the ARL to false alarm

of invariance-based Shiryayev-Roberts detection schemes is asymptotically

the same as that of the parallel classical scheme for the case where the pre-

change parameters are known. Gordon and Pollak (1997) require that three

conditions (A, B and C) be satisfied.

Problems which can be solved using Gordon and Pollak’s theorem are de-

tection of a change in the mean of a normal distribution with known variance

where the initial value of the mean is unknown, detection of a change in the

scale parameter of a gamma distribution with unknown initial scale (Gor-
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don and Pollak, 1997), detection of a decrease in the variance of a normal

distribution where the mean and the initial variance are unknown (Damian,

1994) and a variety of nonparametric detection schemes (Bell, Gordon and

Pollak, 1992; Gordon and Pollak, 1994, 1995, 1997). Nonetheless, there are

a number of problems (such as detection of an increase in the variance of a

normal distribution where the mean and the initial variance are unknown,

and detection of a change in the mean of a normal distribution where the

variance and the initial mean are unknown) for which Gordon and Pollak’s

theorem seems to be very hard to apply. The main difficulty lies with show-

ing fulfillment of Gordon and Pollak’s condition C.

In this paper, an alternative to Gordon and Pollak’s theorem is pre-

sented. Essentially, conditions A and B are (roughly) preserved, but con-

dition C is relaxed, facilitating proofs in cases where Gordon and Pollak’s

theorem is hard to apply. This alternative theorem is shown to handle the

two cases mentioned in the previous paragraph as being examples of situa-

tions where Gordon and Pollak’s theorem is apparently hard to apply.

The difference between the approach studied in this paper and that of

Gordon and Pollak is essentially the same as the difference between Pol-

lak’s (1987) and Yakir’s (1995) approaches to proving the basic asymp-

totic properties of the ARL to false alarm of the simple Shiryayev-Roberts

schemes.

2 General theory

We consider surveillance for a change in the case where the problem admits

an invariance structure.
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To fix ideas, consider the case of monitoring for an increase of a normal

mean, where none of the parameters are known. Prior to a change, the distri-

bution of the observations is N(µ0, σ
2) and post-change it is N(µ0 + µ, σ2),

where µ0, µ, σ
2 are unknown, µ > 0, and the observations are indepen-

dent. Since µ0 and σ2 are unknown, one cannot apply a standard Cusum

or Shiryayev-Roberts control chart. One way of circumventing this prob-

lem is to exploit the invariance structure (invariance under increasing affine

transformations) and base surveillance on a sequence of invariant statistics

instead of the raw observations. More explicitly, suppose one can obtain a

learning sample X−m, X−m+1, . . . , X−1, m ≥ 2, of pre-change observations

and monitoring commences with the observations X1, X2, . . .. The statistics

Tn =
Xn − X̄−m

S−m
, n = 1, 2, . . . , (1)

where

X̄−m =
∑m
i=1X−i
m

, S−m =

√√√√ 1
m− 1

m∑
i=1

(X−i − X̄−m)2, (2)

form a sequence of invariant statistics. The pre-change distribution of the

sequence is fully known, so that likelihood-ratio based schemes (such as

Cusum or Shiryayev-Roberts) can be applied.

Here we study the ARL to false alarm of Shiryayev-Roberts procedures

for a general setting of a surveillance problem having an invariance structure.

For a formal definition of the general invariance structure, see Gordon and

Pollak (1997).

In the general setting the sequence of raw observations will be denoted

by X−m, X−m+1, . . . , X−1, X1, X2, . . ., where X−m, X−m+1, . . . , X−1 are a

learning sample of size m from the pre-change distribution. The sequence
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of invariant statistics, upon which the surveillance will be based, will be de-

noted by T1, T2, . . . where Tn = Tn(X−m, . . . , Xn). For purposes of defining

likelihood ratios, it is assumed that one can choose a “representative” of the

set of possible post-change distributions without hurting the invariance of

the problem and the sequence {Ti}. (In the aforementioned example, one

can choose a value δ > 0 and pretend that µ = δσ for purposes of defining a

likelihood ratio. For practical purposes, δ would be a value such that there

would be serious interest in detecting an increase in mean of at least δ stan-

dard deviations.) Note that the pre-change properties of any scheme based

on the sequence T1, T2, . . . are the same for all possible values of the nui-

sance parameters, so that in order to study the properties one may choose a

convenient set of nuisance parameters. (In the example, it would be natural

to take µ0 = 0, σ = 1.) Henceforth, we assume that such a choice was made.

We denote by Pk the measure under which X−m, . . . , X−1, X1, . . . , Xk−1

are pre-change observations and Xk, Xk+1, . . . are post-change, where all

nuisance parameters have been set for convenience and a representative have

been chosen. (In the example, this would mean that δ > 0 is fixed and

µ0 = 0, σ = 1.) P∞ will denote the distribution when there is no change

(k =∞). dPk and dP∞ are the appropriate densities with respect to some

σ-finite measure. Denote by Fn the σ-field generated by T1, T2, . . . , Tn.

The main result of this article – Theorem 1 – states that the asymptotic

first-order properties of the ARL to false alarm of the Shiryayev-Roberts pro-

cedure based on the sequence of invariant statistics are the same as those of

the parallel procedure which would have been used had all nuisance param-

eters been known. It is necessary, therefore, to differentiate the notation of

the two cases.
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Define, for 1 ≤ k ≤ n, the likelihood-ratio statistics

Λk(n) =
dPk(T1, . . . , Tn)
dP∞(T1, . . . , Tn)

,

Λfs
k (n) =

dPk(X1, . . . , Xn)
dP∞(X1, . . . , Xn)

.

The (invariant) Shiryayev-Roberts statistics and stopping time are

R(n) =
n∑
k=1

Λk(n), n = 1, 2, . . . ,

NA = inf{n : R(n) ≥ A}.

The Shiryayev-Roberts statistics and stopping time when the nuisance pa-

rameters are fully specified are

Rfs(n) =
n∑
k=1

Λfs
k (n), n = 1, 2, . . . ,

N fs
A = inf{n : Rfs(n) ≥ A}.

In Theorem 1 the P∞-asymptotic properties of NA/A and N fs
A /A are

compared. In the process of proving the theorem auxiliary stopping times

are used. Given r, r = r(A) such that logA � r(A) � A, the (invariant

and truncated) Shiryayev-Roberts statistics and stopping time are

QA(n) =
n∑

k=bn/rcr+1

Λk(n), n = 1, 2, . . . ,

τA = inf{n : QA(n) ≥ A}.

The (fully specified and truncated) Shiryayev-Roberts statistics and stop-

ping time are

Qfs
A (n) =

n∑
k=bn/rcr+1

Λfs
k (n), n = 1, 2, . . . ,

τ fs
A = inf{n : Qfs

A (n) ≥ A}.

Consider the following conditions:
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Condition 1 There exists a function r = r(A) such that for any given ε1 >

0 one can find constants θ1 > 1 and A1. For this function and constants, and

for all A ≥ A1 and t ≥ ε1A one can find an event B1 = B1(Xt+1, . . . , Xt+r)

such that:

P∞

(Xt+1, . . . , Xt+r) ∈ B1, sup
t<k≤n≤t+r

∣∣∣∣∣∣ Λk(n)

Λfs
k (n)

− 1

∣∣∣∣∣∣ > ε1

 ≤ ε1r

A
e−

θ1t
A

and

P∞ ((Xt+1, . . . , Xt+r) 6∈ B1) ≤ ε1
r

A
.

The function r = r(A) should be such that, as A → ∞, r(A)/A → 0 but

r(A)/ logA→∞.

Condition 2 Given the function r = r(A) from Condition 1 and given any

ε2 > 0 and C2 <∞ one can find A2 such that the relation

n∑
k=1

Pk(NA > n) ≤ ε2r

holds for all A ≥ A2 and C2A ≥ n ≥ ε2A.

Theorem 1 If Conditions 1 and 2 hold, then the limit (in P∞-distribution)

of NA/A, as A→∞, is exponential with scale λ, where

λ = lim
A→∞

A/E∞N
fs
A .

Moreover, E∞NA/A→A→∞ 1/λ.

Remark 1: The constant λ satisfies 0 < λ < 1. Its exact value can be

computed by standard renewal theory. (See Pollak, 1987).

2
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Remark 2: Condition 1 is similar in nature to Condition A in Gordon

and Pollak (1997). To see the connections between Condition B in Gordon

and Pollak (1997), which deals with the P∞-behavior of the likelihood ratios

that define the statistic R(n), and Condition 2 here notice that

n∑
k=1

Pk(NA > n) = E∞ [R(n)1I(NA > n)] .

2

Before proving Theorem 1 we will state and prove two lemmas that

deal with the properties of the invariant and truncated Shiryayev-Roberts

stopping time τA.

Lemma 1 Given r = r(A), let t be an integer multiple of r. Then for any

A, for which r/A < 1,

P∞(τA > t) ≥ e−
1

1−(r/A)
t
A .

Proof : It is easy to see that

P∞(τA ≤ t | τA > t− r) =

P∞

(
sup

t−r<n≤t
QA(n) ≥ A

∣∣∣∣∣ τA > t− r
)

= E∞

[
P∞

(
sup

t−r<n≤t
QA(n) ≥ A

∣∣∣∣∣F t−r
)∣∣∣∣∣ τA > t− r

]
.

However, {QA(n) : t − r < n ≤ t} is a sub-martingale with respect to

the measure P∞(· | F t−r) and the filter {Fn : t − r < n ≤ t}. Moreover,

E∞[QA(t) | F t−r] = r. Hence, by Doob’s Inequality,

P∞

(
sup

t−r<n≤t
QA(n) ≥ A

∣∣∣∣∣F t−r
)
≤ r

A
.
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Thus

P∞(τA ≤ t | τA > t− r) ≤ r

A
.

By induction one gets that

P∞(τA > t) ≥
(

1− r

A

) t
r

.

Finally, the relation log(1+x) ≥ x/(1+x), valid for all x > −1, can be used

to show that (
1− r

A

) t
r

≥ e−
1

1−(r/A)
t
A ,

and the result follows.

2

Let r = r(A) be such that r(A)/A→ 0 but r(A)/ logA→∞, as A→∞.

For the fully specified case it can be shown that for any ε1 > 0 and for any

large A: ∣∣∣∣∣Ar P∞

(
sup

t<n≤t+r
Qfs
A (n) ≥ A

)
− λ

∣∣∣∣∣ < ε1,

where λ was defined in Theorem 1. (See Yakir, 1995.)

Lemma 2 If Condition 1 holds then the limit (in P∞-distribution) of τA/A,

as A → ∞, is exponential with scale λ. Moreover, the P∞-expectation of

τA/A converges to 1/λ.

Proof : Assume that Condition 1 holds and that A is large. Let

B2 =

{
sup

t<k≤n≤t+r

∣∣∣∣∣ Λk(n)

Λfs
k (n)

− 1

∣∣∣∣∣ ≤ ε1
}
.

On the event B2 it is true that

(1− ε1) sup
t<n≤t+r

Qfs
A (n) ≤ sup

t<n≤t+r
QA(n) ≤ (1 + ε1) sup

t<n≤t+r
Qfs
A (n).
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For any t ≥ ε1A, t an integer multiple of r, one can write

P∞(t < τA ≤ t+ r) = P∞

(
t < τA, sup

t<n≤t+r
QA(n) ≥ A

)

≤ P∞

(
t < τA, (1 + ε1) sup

t<n≤t+r
Qfs
A (n) ≥ A

)
+ P∞((Xt+1, . . . , Xt+r) ∈ B1, B

c
2)

+ P∞((Xt+1, . . . , Xt+r) 6∈ B1, t < τA)

≤ P∞(t < τA)
r

A

×
[
(1 + ε1)(λ+ ε1) +

ε1e
−θ1(t/A)

P∞(t < τA)
+ ε1

]
,

since {t < τA} is independent of (Xt+1, . . . , Xt+r).

In a similar fashion

P∞(t < τA ≤ t+ r) ≥ P∞

(
t < τA, (1− ε1) sup

t<n≤t+r
Qfs
A (n) ≥ A,B1, B2

)
≥ P∞(t < τA)

r

A

×
[
(1− ε1)(λ− ε1)− ε1e

−θ1(t/A)

P∞(t < τA)
− ε1

]
.

The result follows Lemma 1 and induction (see the proof of Theorem 1

below).

2

Proof of Theorem 1: Let ε2 > 0 be a given small number. Define, for

any A, t0 = t0(A) = bε2A/rcr, where r = r(A) is an integer, and bxc is the

integer part of x. It can be shown, using a measure transformation, that

P∞(NA ≤ t0) =
t0∑
n=1

P∞(NA = n)

=
t0∑
n=1

n∑
k=1

Ek
[1I(NA = n)

R(n)

]
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=
t0∑
k=1

t0∑
n=k

Ek
[1I(NA = n)

R(NA)

]

=
t0∑
k=1

Ek
[1I(k ≤ NA ≤ t0)

R(NA)

]
.

It can be concluded, since R(NA) ≥ A, that P∞(NA ≤ t0) ≤ t0/A ≤ ε2.

Hence, P∞(NA > t0) ≥ 1− ε2.

Let C2 be a given large number. Consider any t, an integer multiple of

r, such that t0 ≤ t but t+ r ≤ C2A. It is easy to see that

P∞(t < NA ≤ t+ r) ≥ P∞

(
t < NA, sup

t<n≤t+r
QA(n) ≥ A

)
≥ P∞(t < NA)× r

A

×
[
(1− ε1)(λ− ε1)− ε1e

−θ1(t/A)

P∞(t < NA)
− ε1

]
.

Hence,

P∞(NA ≤ t+ r |NA > t) ≥
r

A
×
[
(1− ε1)(λ− ε1)− ε1e

−θ1(t/A)

P∞(t < NA)
− ε1

]
. (3)

Likewise,

P∞(t < NA ≤ t+ r) ≤ P∞

(
t < NA, sup

t<n≤t+r
QA(n) ≥ (1− ε)A

)

+P∞

(
t < NA, sup

t<n≤t+r
{R(n)−QA(n)} ≥ εA

)

≤ P∞(t < NA)
(1− ε)

× r

A

×
[
(1 + ε1)(λ+ ε1) +

ε1e
−θ1(t/A)

P∞(t < NA)
+ ε1

]

+P∞

(
t < NA, sup

t<n≤t+r
{R(n)−QA(n)} ≥ εA

)
.
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Consider the stopping time Tε,A,t, where

Tε,A,t = inf{t < n : R(n)−QA(n) ≥ εA}.

It follows that,

P∞

(
t < NA, sup

t<n≤t+r
{R(n)−QA(n)} ≥ εA

)
= P∞(t < NA, Tε,A,t ≤ t+ r)

and

P∞(t < NA, Tε,A,t ≤ t+ r) =
t+r∑

n=t+1
P∞(t < NA, Tε,A,t = n)

=
t+r∑

n=t+1

t∑
k=1

Ek
[1I(t < NA, Tε,A,t = n)

R(n)−QA(n)

]

=
t∑

k=1

Ek

[
1I(t < NA, Tε,A,t ≤ t+ r)
R(Tε,A,t)−QA(Tε,A,t)

]

≤ 1
εA

t∑
k=1

Pk(t < NA).

It follows, applying Condition 2, that

P∞(NA ≤ t+ r |NA > t) ≤
r

A
×
[

1 + ε1
1− ε

(λ+ ε1) +
ε1

1− ε

(
e−θ1(t/A)

P∞(t < NA)
+ 1

)
+

ε2
εP∞(t < NA)

]
(4)

Given any δ, 1 − λ > δ > 0, choose ε, ε1, and then ε2, all small enough

to ensure that

1− e−
r
A

(λ+δ) ≥ r

A

[
1 + ε1
1− ε

(λ+ ε1) +
ε1(2− ε2)

(1− ε)(1− ε2)
+

ε2
εe−C2(λ+δ)

]
1− e−

r
A

(λ−δ) ≤ r

A

[
(1− ε1)(λ− ε1)− ε1

1− ε2
− ε1

]
,

for all A such that r/A is small. It follows from (3), (4) and induction that

e−(λ−δ) t−t0
A ≥ P∞(NA > t) ≥ (1− ε2)e−(λ+δ) t

A ,
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for all t, ε2A ≤ t ≤ C2A, t an integer times r. The limit in distribution of

NA/A is thus obtained. The limit E∞NA/A → 1/λ follows from the fact

that NA/A is dominated by τA/A.

2

3 Examples

Consider a setting in which the observations are independent and the in-

control distribution is normal with mean µ0 and variance σ2. One can

envision a number of surveillance problems:

(i) a change in mean,

(ii) a change in variance,

(iii) a change in both mean and variance.

Nuisance parameters in all three cases can be either:

(a) an unknown initial mean,

(b) an unknown initial variance or

(c) both initial mean and initial variance unknown.

Consider problems (i) and (ii) in the above list: The case of no nuisance

parameters (i.e. the in-control distribution is fully specified) was handled

by Pollak (1987).

Case (i.a) – detecting a change in mean when the initial mean is un-

known but the initial variance is known – was studied by Pollak and Sieg-

mund (1991). (See also Gordon and Pollak, 1997.)
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Case (ii.a) – detecting a change in variance when the initial variance

is known but the initial mean is unknown – was handled by Gordon and

Pollak (1997).

Case (ii.c) – detecting a change in variance when both the initial mean

and initial variance are unknown – was tackle by Damian (1994), who

solved the problem of detecting a decrease in variance using Gordon and

Pollak’s (1997) Theorem 1.

The asymptotics of the ARL to false alarm in the other cases has not

been worked out. The difficulty of applying Gordon and Pollak’s Theorem 1

lies in showing that their Condition C is satisfied.

To show that our Theorem 1 can handle such cases, we fully work out

two examples:

Example 1: Case (i.c) – detecting a change in mean when the initial mean

and variance are both unknown.

Example 2: Case (ii.c) – detecting an increase in variance when the initial

mean and variance are both unknown.

Again, we assume that X−m, X−m+1, . . . , X−1 is a learning sample of

m independent observations from the in-control distribution. Ensuing ob-

servations are X1, X2, . . .. Surveillance is based on the statistics {Tn}, de-

fined in (1). This sequence is a sequence of invariant statistics both for

Example 1 and for Example 2. We use
∑n
i=−m to denote sums of the form∑−1

i=−m +
∑n
i=1.

In Example 2, an explicit form of the likelihood ratio is available. There-

fore it will be developed first. We consider the case where the representative

post-change distribution is N(µ, c2σ2), where c2 > 1 has a fixed (known)
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value. We apply Theorem 1, assuming for convenience that the pre-change

distribution is N(0, 1). (As mentioned above, this entails no loss of general-

ity.) Straightforward calculations yield

Λfs
k (n) = c−(n−k+1) exp

{
1
2

(
1− 1

c2

) n∑
i=k

X2
i

}

and

Λk(n) =
c−(n−k+1)√m+ n√
k − 1 + m+n−k+1

c2

×


m− 1 +

∑n
i=1 T

2
i −

(
∑n

i=1 Ti)
2

m+n

m− 1 +
∑k−1
i=1 T

2
i +

∑n

i=k T
2
i

c2
−

(∑k−1
i=1 Ti+

∑n

i=k
Ti

c2

)2

m+k−1+n−k+1
c2



m+n−1
2

.

It is easy to see that the value of the statistic Λk(n) does not change if

we add a constant to all of the Xi’s or multiply by a positive constant. It

follows, by subtracting X̄−m from each of the Xi’s in the expression bellow,

and dividing them by S−m, that

Λk(n) =
c−(n−k+1)√m+ n√
m+ k − 1 + n−k+1

c2

×


∑n
i=−mX

2
i −

(∑n

i=−mXi
)2

m+n∑k−1
i=−mX

2
i + 1

c2
∑n
i=kX

2
i −

(∑k−1
i=−mXi+ 1

c2

∑n

i=kXi

)2

m+k−1+(n−k+1)/c2


m+n−1

2

.

Hence,

Λk(n)

Λfs
k (n)

=
exp

{
−1

2

(
1− 1

c2

)∑n
i=kX

2
i

}
√

m+k−1
m+n + 1

c2

(
1− m+k−1

m+n

) ×

15



1 +
uk(n)−

(
1− 1

c2

)∑n
i=kX

2
i

(m+ n− 1)σ̂2
n

−
m+n−1

2

,

were

σ̂2
n =

1
m+ n− 1

 n∑
i=−m

X2
i −

(
∑n
i=−mXi)2

m+ n


and

uk(n) =
(∑n

i=−mXi
)2

m+ n
−

(∑k−1
i=−mXi + 1

c2
∑n
i=kXi

)2

m+ k − 1 + (n− k + 1)/c2
.

Denote bk(n) = (1− 1/c2)
∑n
i=kX

2
i . It follows that

2 log
Λk(n)

Λfs
k (n)

≥ − 1
σ̂2
n

[bk(n)|σ̂2
n − 1|+ |uk(n)|]−O

(
n− k
n+m

)
,

2 log
Λk(n)

Λfs
k (n)

≤ 1
σ̂2
n

bk(n)|σ̂2
n − 1|+ |uk(n)|

1 + uk(n)−bk(n)
(m+n−1)σ̂2

n

+ O
(
n− k
n+m

)
,

where O (x) /x is a bounded function in x.

Let B1 = {
∑t+r
i=t+1X

2
i ≤ 4r}. It follows that over the event B1 the ran-

dom variables bk(n), |
∑k−1
i=t+1Xi| and |

∑n
i=kXi| are all bounded by a con-

stant times r. The bound is uniform in k and n, where t < k ≤ n ≤ t + r.

Hence, over the event B1, |uk(n)| ≤ Z2 × O (r/t) + |Z| × O
(
r/
√
t
)

+

O
(
r2/t

)
, with Z =

∑t
i=−mXi/

√
t+m. Therefore, given any ε′ > 0,

P∞
(
B1, supt<k≤n≤t+r |uk(n)| > ε′

)
< e−dt/r

2
, for some positive d = d(ε′).

The distribution of both (m+ n− 1)σ̂n and
∑t+r
i=t+1X

2
i is χ2. The moment

generating function of which and large deviation theory can be used to show

that for any ε′ > 0

P∞
(
supt<n≤t+r |σ̂2

n − 1| > ε′/r
)
≤ re−gt/r

2
, and

P∞
(∑t+r

i=t+1X
2
i > 4r

)
≤ e−r/2.

with g = g(ε′) > 0. Condition 1 is accounted for by taking r = r(A) such

that r2 logA/A→ 0, as A→∞, but r/ logA→∞.
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In order to verify Condition 2 notice that

Pk(NA > n) = Pk(maxj≤n
∑j
l=1 Λl(j) < A) ≤ Pk (Λk(j) < A) ,

for any j, k ≤ j ≤ n. In particular, let j = jk = k + bε′′rc, for some

ε2/3 > ε′′ > 0 and for all k such that ε2r/3 < k < n − ε2r/3. Consider the

events

B2 = {|
∑j
i=kX

2
i − (j − k + 1)c2| ≤ ε′′(j − k + 1)},

B3 = {σ̂2
j ≤ 1 + ε′′},

B4 = {uk(j) ≥ −ε′′(j − k + 1)},

Note that

2 log Λk(j) ≥ (1− c−2)σ̂−2
j

j∑
i=k

X2
i − log(c2)(j − k + 1) + uk(j)/σ̂2

j − o (1) ,

where o (1)→ 0 as ε′′ → o. It follows that if ε′′ is small enough but ε′′r/ logA

is large then

Pk(Λk(j) < A) ≤ Pk(Bc
2) + Pk(Bc

3, B2) + Pk(Bc
4, B2).

Large deviation arguments can be used to show that Pk(Bc
2) ≤ exp{−d2r},

for some positive d2 that depends on ε′′. On the event B2 the relation

σ̂2
j ≤

∑k−1
i=−mX

2
i /(j +m− 1) + (c2 + ε′′)(j − k + 1)/(j +m− 1) holds. This

can be used to show that Pk(Bc
3, B2) ≤ exp{−d3k}, for some positive d3

(that depends on ε′′). Finally, on the event B2,

uk(j) = Z2 ×O ((j − k)/k) + Z ×O
(
(j − k)/

√
k
)

+ o (1) ,

where Z =
∑k−1
i=−mXi/

√
k +m− 1, O (·) is a bounded function, and o (1)→

0 as ε′′ → 0. It follows that Pk(Bc
4, B2) ≤ exp{−d4k}, for yet another d4 > 0.

17



The above claims can be summed up in order to concluded that for some

d > 0
n∑
k=1

Pk(NA > n) ≤ (2/3)ε2r + 3AC2e
−dr.

Condition 2 thus follows, provided that r = r(A) is such that r/ logA→∞,

as A→∞.

Consider next Example 1 – detecting a change in mean when the ini-

tial mean and variance are both unknown. We consider the case where

the representative post-change distribution is N(µ+ δσ, σ2), where δ has a

fixed (known) value. We apply Theorem 1, again assuming for convenience

(without loss of generality) that the pre-change distribution is N(0, 1).

Recall that

σ̂2
n =

1
n+m− 1

 n∑
i=−m

X2
i −

(∑n
i=−mXi

)2
m+ n

 .
and define X̄n =

∑n
i=−mXi/(m + n). It is shown in an appendix that the

likelihood ratio of the invariant statistics for the case of detecting a change

in the mean is given by

Λk(n) = E exp

{
√
Wδ

∑n
i=k

(
Xi − X̄n

)
σ̂n

− (n− k + 1)
δ2

2
+

(n− k + 1)2δ2

2(n+m)

}
,

where expectation is with respect to W . The random variable W is inde-

pendent of the observations Xi, −m ≤ i ≤ n, and has Gamma distribution

with both shape and scale equal to (m+ n− 1)/2.

The fully-specified likelihood ratio for this case is given by

Λfs
k (n) = exp

{
δ

n∑
i=k

Xi − (n− k + 1)δ2/2

}
.

Hence,

Λk(n)

Λfs
k (n)

= exp

{
(n− k + 1)2δ2

2(n+m)
− δ(n− k + 1)X̄n

}

18



×E exp

{
δ

n∑
i=k

(Xi − X̄n)(
√
W/σ̂n − 1)

}
.

The crucial part in the estimation of the ratio between the invariant and

the fully-specified likelihood ratios — thus showing Conditions 1 and 2 —

depends on bounding the term ∆k(n) = ∆k(X−m, . . . , Xn, n), where

∆k(n) = E
[
exp

{(√
W/σ̂n − 1

)
vk(n)

}]
− 1,

and vk(n) = δ
(∑n

i=kXi − (n− k + 1)X̄n
)
.

It follows that

|∆k(n)| = E
[
exp

{(√
W/σ̂n − 1

)
vk(n)

}
1I(
√
W/σ̂n > 1)

]
−E

[
exp

{(√
W/σ̂n − 1

)
vk(n)

}
1I(
√
W/σ̂n < 1)

]
+P(
√
W/σ̂n < 1)− P(

√
W/σ̂n > 1),

where, again, the computation of the probability and of the expectation is

with respect to W . However, on the event {
√
W/σ̂n > 1},

√
W/σ̂n − 1 <

W/σ̂2
n − 1
2

and E
[
exp

{
(1/2)(W/σ̂2

n − 1)vk(n)
}

1I(W/σ̂2
n > 1)

]
is equal to

exp
{
−vk(n)

2

}(
1− vk(n)

σ̂2
n(m+ n− 1)

)−m+n−1
2

×P
(
W/σ̂2

n > 1− vk(n)
σ̂2
n(m+ n− 1)

)
Likewise, on the event {

√
W/σ̂n < 1},

√
W/σ̂n − 1 > W/σ̂2

n − 1

and E
[
exp

{
(W/σ̂2

n − 1)vk(n)
}

1I(W/σ̂2
n < 1)

]
is equal to

exp {−vk(n)}
(

1− 2vk(n)
σ̂2
n(m+ n− 1)

)−m+n−1
2
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×P
(
W/σ̂2

n < 1− 2vk(n)
σ̂2
n(m+ n− 1)

)
The above discussion leads to the following approximation:

|∆k(n)| ≤

∣∣∣∣∣∣exp
{
−vk(n)

2

}(
1− vk(n)

σ̂2
n(m+ n− 1)

)−m+n−1
2

− 1

∣∣∣∣∣∣
+

∣∣∣∣∣∣exp {−vk(n)}
(

1− 2vk(n)
σ̂2
n(m+ n− 1)

)−m+n−1
2

− 1

∣∣∣∣∣∣
+P

(∣∣∣W/σ̂2
n − 1

∣∣∣ ≤ 2 |vk(n)|
σ̂2
n(m+ n− 1)

)
.

However, the mode of a Γ(s, s) distribution is attained at (s − 1)/s. It

follows that the last expression in the above approximation is bounded by

a constant times |vk(n)|/
√
m+ n+ 1.

This approximation, together with arguments parallel to those used for

Example 2, can be applied in order to show that conditions 1 and 2 hold for

Example 1.
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Appendix
We seek a convenient representation of the likelihood ratio of the invariant

statistics for the case of a change in the mean. Let there be given the random

couple (T, S). Consider two distinct (joint) distributions for this element.

For ease of notations, assume that the distributions are represented by two

continuous densities with a common support: fk(t, s) and f∞(t, s). Assume,

furthermore, that the marginal densities of S, both under Pk and under P∞,

are identical. Hence,

fk(t)
f∞(t)

=
∫
fk(t, s)ds∫
f∞(t, s)ds
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=
∫

fk(t, s)
f∞(t, s)

f∞(t, s)∫
f∞(t, u)du

ds

=
∫

fk(t|s)
f∞(t|s)

f∞(s|t)ds.

If, in particular, T = (T1, . . . , Tn) and S = (U, V ), where U = X̄−m and

V = (m− 1)S2
−m, then the conditional likelihood ratio becomes

fk(t|s)
f∞(t|s)

= exp

{ √
v√

m− 1
δ

n∑
i=k

ti − (n− k + 1)
δ2

2
+ (n− k + 1)δu

}
(5)

The random variables U and V are independent. The marginal dis-

tribution of V is χ2
(m−1) and the marginal distribution of U is N(0, 1/m).

Standard Bayesian argumentation can be used to show that the conditional

distribution of U , given V and Fn, is Gaussian. The conditional mean and

variance of that distribution are given by

E(U | v,Fn) = −
√
v√

m− 1

∑n
i=1 ti

n+m
, var(U | v,Fn) =

1
n+m

.

The conditional distribution of V , given Fn, is a Gamma distribution with

shape parameter given by (n+m− 1)/2 and scale parameter given by

1
2(m− 1)

[
n∑
i=1

t2i +m− 1− (
∑n
i=1 ti)

2

n+m

]
.

Integrating the conditional likelihood ratio (5) with respect to the con-

ditional distribution of U yields

exp

{ √
v√

m− 1
δ

n∑
i=k

(
ti −

∑n
i=1 ti

n+m

)
− (n− k + 1)

δ2

2
+

(n− k + 1)2δ2

2(n+m)

}

Define the random variable W by

W =
V

m− 1
· 1
m+ n− 1

·
[
n∑
i=1

T 2
i +m− 1− (

∑n
i=1 Ti)

2

m+ n

]
.
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Note that W is independent of Fn and has a Gamma distribution with both

shape and scale equal to (m+ n− 1)/2. Moreover, it can be shown that

(n+m− 1)
n∑
i=k

(
Ti −

∑n
i=1 Ti
n+m

)/[
n∑
i=1

T 2
i +m− 1− (

∑n
i=1 Ti)

2

m+ n

]

is equal to
∑n
i=k

(
Xi − X̄n

)
/σ̂2

n, where X̄n =
∑n
i=−mXi/(m+ n) and

σ̂2
n =

1
n+m− 1

 n∑
i=−m

X2
i −

(∑n
i=−mXi

)2
m+ n

 .
Therefore,

Λk(n) = E exp

{
√
Wδ

∑n
i=k

(
Xi − X̄n

)
σ̂n

− (n− k + 1)
δ2

2
+

(n− k + 1)2δ2

2(n+m)

}
,

where expectation is with respect to W .

Remark : The computation of the likelihood ratio Λk(n) involves inte-

gration.

2
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