
Population Genetics (52642)

Benny Yakir

1 Introduction

In this course we will examine several topics that are related to population
genetics. In each topic we will discuss briefly the biological background
and present simple probabilistic models that are used in order to model
the biological phenomena. We will attempt to investigate the statistical
implication of these models via simulations and mathematical analysis. The
R programming system, which will be introduced in class, will be used for
the simulations. The needed mathematical background for the mathematical
analysis will be provided in class.

The first half of the course will deal with processes in experimental pop-
ulation. The second half will consider models appropriate for natural pop-
ulations. The topic we intend to explore are (subject to changes):

Elementary facts about the birds and the bees: In this section we will
discuss the basics of mating and reproduction.

Basic R: Here we introduce the basic features and structure of the R sys-
tem.

Inbreeding at a single locus: Here we deal with selfing and brother-sister
matings in experimental populations and its effect on heterozygosity
of a single locus.

Recombination in experimental genetics: Crossing is initiated between
two inbred populations and a pair of loci is considered. Crossovers
during meiosis may produce recombinant offspring. The dynamics of
the creation of such recombinants will be examined for some crossing
designs.

Congenics: Congenic strains are created via a repeated application of se-
lective crossing. In order to investigate the genomic structure of

1

such strains at multiple loci we will include models for the process
of crossovers across the genome.

To add...

2 Elementary Facts About the Birds and the Bees

2.1 The Cell and its Structure

The body of most living things that come to mind when we think of life is
made of cells. There are many types of cells, about 200 in human. Nonethe-
less, these cells share some common properties. In particular, they all have
a nucleus. This nucleus contains the instructions for producing the tens
of thousands of different types of proteins that make and operate the cell.
These instructions are read to special templates, called m-RNA and edited
within the nucleus. The cells uses these templets to produce the needed
proteins according to demand and in a controlled manner. The instructions
that are stored in special molecules – DNA – in the nucleus are the genetic
material that passes on from generation to generation.

2.2 Chromosomes and DNA

The DNA is a special type of molecule. The molecule is made of repetitive
unites of base pairs, which are attached to each other to form a very long
chain. There are four types of bases, marked by the letters A, T, C and G.
The base A always pairs with the base T and the base C with G. The genetic
information for forming and operating the organism is coded using these
four bases. The DNA molecules are packed in the molecule in units called
chromosomes. In human there are 22 pairs of homologous chromosomes
(autosomes) and a special pair of sex chromosomes. In female there is a
pair of homologous X chromosomes and in male a pair composed of an X
chromosome and a Y chromosome. One of the copies in each of the pairs is
inherited from the mother and the other copy is inherited from the father.

2.3 Meiosis, the Formation of Gametes, and Crossovers

The process that leads to the formation of the eggs in the female and the
sperms in the males is called meiosis. At the initiation of this process is
a cell with DNA content as described in the previous subsection. At the
termination of the process four cells are formed, each with only one copy

2

of each autosome and with one sex chromosome. During the process the
number of chromosomes is doubled and the original cell splits into four.

During the process of splitting the four homolog copies of a chromosome
between the four cells crossovers may occur. These cross over involve an
exchange of intervals of DNA between the two homologous copies. Conse-
quently, the final single copy of an autosome that ends in each of the four
cells may be composed of a mosaic in which an interval of DNA that orig-
inated from the father may be followed by an interval that originated from
the mother and vice versa.

2.4 Reproduction

In the process of reproduction the genetic material of sperm cell is merged
with that of an egg cell to form the first cell of child to be. As a conclusion of
the discussion that was carried out we may identify that the genetic material
of the child is composed of the contribution of the father and the contribution
of the mother. These contributions come in complete chromosomal units.
Each of these unites, however, are a blend of genetic material contributed
from the parent’s parents.

3 Introduction to R

R is a freely distributed software for data analysis. In order to introduce
R let us quote the first paragraphs from the manual Introduction to R by
W. N. Venables, D. M. Smith and the R Development Core Team. (The
full document, as well as access to the installation of the software itself, are
available online at http://cran.r-project.org/):

“R is an integrated suite of software facilities for data manipu-
lation, calculation and graphical display. Among other things it
has

• an effective data handling and storage facility,

• a suite of operators for calculations on arrays, in particular
matrices,

• a large, coherent, integrated collection of intermediate tools
for data analysis,

• graphical facilities for data analysis and display either di-
rectly at the computer or on hardcopy, and

3

• a well developed, simple and effective programming lan-
guage (called S) which includes conditionals, loops, user
defined recursive functions and input and output facilities.
(Indeed most of the system supplied functions are them-
selves written in the S language.)

The term environment is intended to characterize it as a fully
planned and coherent system, rather than an incremental accre-
tion of very specific and inflexible tools, as is frequently the case
with other data analysis software.

R is very much a vehicle for newly developing methods of in-
teractive data analysis. It has developed rapidly, and has been
extended by a large collection of packages. However, most pro-
grams written in R are essentially ephemeral, written for a single
piece of data analysis.”

R may be obtained as a source code or installed using a pre-compiled code
on the Linux, Mackintosh and the Windows operating systems. Program-
ming in R for this book was carried out under Windows. You may find more
detailed information regarding the installation of R on the Windows oper-
ating system at http://www.biostat.jhsph.edu/ kbroman/Rintro/Rwin.html.

After installing R under the Windows operating system an icon will be
added to the desktop. Double clicking on that icon will open the window
of the R system, which contains the R Console sub-window. We found it
convenient to have a separate working directory for each project. It is conve-
nient to copy the R icon into that directory and to set the working directory
by coping its path (in double quotes) in the appropriate box ("start in:")
in the Shortcuts slip of the Properties of the icon (which can be selected
by right-clicking the icon.)

The R language is an interactive expression-oriented programming lan-
gauge. The elementary commands may consist of expressions, which are
immediately evaluated, printed to the standard output and lost. Alterna-
tively, expressions can be assigned to object, which store the evaluation of
the expression. In the later case the result is not printed out to the screen.
These objects are accessible for the duration of the session, and are lost at
the end of the session, unless they are actively stored. At the end of the
session the user is prompted to store the entire workspace image, including
all objects that were created during the session. If “Yes” is selected then
the objects used in the current session will be available in the next. If “No”
is selected then only objects from the last saved image will remain.

4

Commands are separated either by a semi-colon (;), or by a newline.
Consider the following example, which we type into the R Console window:

> x <- c(1,2,3,4,5,6)
> x
[1] 1 2 3 4 5 6

Note that in the first line we created an object named x (a vector of length
6, which stores the value 1 . . . , 6). In the second line we evaluated the ex-
pression x, which printed out the actual values stored in x. In the formation
of the object x we have applied the concatenation function c. This function
takes inputs and combine them together to form a vector.

Once created, an object can be manipulated in order to create new ob-
jects. Different operations and functions can applied to the object. The
resulting objects, in turn, can be stored with a new name or with the pre-
vious name. In the latter case, the content of the object is replaced by the
new content. Continue the example:

> x*2
[1] 2 4 6 8 10 12
> x
[1] 1 2 3 4 5 6
> x <- x*2
> x
[1] 2 4 6 8 10 12

Observe that the original content of x was not changed due to the multipli-
cation by two. The change took place only when we deliberately assigned
new values to the object x.

Say we want to compute the average of the vector x. The function mean
can be applied to produce:

> mean(x)
[1] 7

A more complex issue is to compute the average of a subset of x, say the
values larger than 6. Selection of a sub-vector can be conducted by use
of the vector index, which is accessible by the use of square brackets next
to the object. Indexing can be implemented in several ways, including the
standard indexing of a sequence using integers. An alternative method of
indexing, which is natural in many applications, is via a vector with logical
TRUE/FALSE components. Consider the following example:

5

> x > 6
[1] FALSE FALSE FALSE TRUE TRUE TRUE
> x[x > 6]
[1] 8 10 12
> mean(x[x > 6])
[1] 10

Observe that the vector x > 6 is a logical vector of the same length as
the vector x. Only the components of x parallel to the components with
a TRUE value in the logical indexing vector are selected. In the last line of
the example the resulting object is used as the input to the function mean,
which produces the expected value of 10.

For comparison consider a different example:

> x*(x > 6)
[1] 0 0 0 8 10 12
> mean(x*(x >6))
[1] 5

In this example we multiplied a vector of integers x with a vector of logical
values (x > 6). The result was a vector of length 6 with zero components
where the logical vector takes the value FALSE and the original values of x
where the logical value takes the value TRUE. Two points should be noted.
First, observe that R can interpret a product of a vector with integer compo-
nents and a vector with logical components in a reasonable way. Standard
programming languages may have produced error messages in such a cir-
cumstance. In this case, R translates the logical vector into a vector with
integer values — one for TRUE and zero for FALSE. The outcome, a product
of two vectors with integer components, is a vector of the same type. The
second point to make is that multiplication of two vectors is conducted term
by term. It is not the inner product between vectors. A different operator
is used in R in order to preform inner products.

Next let us try to program in R functions that simulate the processes
meiosis and mating. Imagine a given locus on a given chromosome with two
possible variate forms (alleles). One is denoted by “A” and the other by “a”.
We have in mind aa animal, say a laboratory mouse, that produces gametes.
Assume that the paternal allele of the mouse is “A” and the maternal allele
is “a”.

> n <- 9
> pat <- rep("A",n)

6

> mat <- rep("a",n)
> pat
[1] "A" "A" "A" "A" "A" "A" "A" "A" "A"
> mat
[1] "a" "a" "a" "a" "a" "a" "a" "a" "a"
> mode(pat)
[1] "character"

Observe that pat and mat are vectors of character strings. They are of length
9. The function rep is useful to produce repetitions of patterns. Combining
it with the function seq, that forms regular sequences is useful at times.

The gametes that are produced by the process of meiosis may be of
either of the types at the given locus. According to Mendel’s first law of
segregation, the probabilities of the two types are even:

> from.mat <- rbinom(n,1,0.5)
> offspring <- pat
> from.mat==1
[1] TRUE TRUE FALSE TRUE TRUE TRUE TRUE FALSE TRUE
> offspring[from.mat==1]
[1] "A" "A" "A" "A" "A" "A" "A"
> mat[from.mat==1]
[1] "a" "a" "a" "a" "a" "a" "a"
> offspring[from.mat==1] <- mat[from.mat==1]
> offspring
[1] "a" "a" "A" "a" "a" "a" "a" "A" "a"
> 2:6
[1] 2 3 4 5 6
> offspring[2:6]
[1] "a" "A" "a" "a" "a"
> offspring[-(2:6)]
[1] "a" "a" "A" "a"

In the final part of this demonstration we use integers to index components
of the vector. The minus sign is used in order to identify the indices we
would like to exclude.

It would be convenient to wrap the code that produces random gametes
in a function. R functions produced with the aid of the function function.
The arguments of the produced function are identified in the brackets. The
function evaluates the expression that follows. Composite expressions can
be combined together by placing them within curly brackets. The output

7

of the function may be specified with the function return. Otherwise, the
function returns the evaluation of the expression.

> meiosis <- function(GF,GM)
+ {
+ from.GM <- rbinom(length(GF),1,0.5)
+ GS <- GF
+ GS[from.GM==1] <- GM[from.GM==1]
+ return(GS)
+ }
> meiosis(pat,mat)
[1] "A" "a" "a" "a" "A" "a" "A" "a" "A"

The the process of mating a father mouse is donating its gametes (sperm)
to the mother. These gametes merge with the mother’s gametes (eggs) to
produce the offsprings.

> male <- list(pat=rep("A",n),mat=rep("a",n))
> female <- list(pat=rep("a",n),mat=rep("a",n))

We consider a father, which is heterozygote at the given locus and a mother,
which is homozygote at that locus. An animal is represented by a list,
which contains the two grand-parental alleles. List in R are a special type of
vector. Each entry to a vector of type “list” can store any type of object,
regardless of the type of objects in the other entries. Here each entry stores
a vector. The entries in this example are given names, which can then be
used in order to refer to the entry. We demonstrate that using the function
“cross”, which simulates the formation of offspring by crossing a mother
mouse with father mouse:

> cross <- function(fa,mo)
+ {
+ pat <- meiosis(fapat,famat)
+ mat <- meiosis(mopat,momat)
+ return(list(pat=pat, mat=mat))
+ }

Running the function produces:

> cross(male,female)
$pat
[1] "A" "a" "a" "A" "A" "a" "a" "A" "A"

8

$mat
[1] "a" "a" "a" "a" "a" "a" "a" "a" "a"

9

