
4 Inbreeding at a Single Locus

4.1 Inbred Strains

The genome of a random animal from an outbred population is polymorphic.
To clarify this statement we note that in general the DNA molecule of a given
chromosome of some specie are almost identical to each other. Hence, if we
select two such molecules, be it the homologous copies of the same individual
or a copy from each of a pair of individuals, we will find that the sequential
composition of the base-pairs is essentially identical. However, differences
between the two copies may emerge at some points. For example, the base-
pair composition at a given locus for one of the copies may be different from
the base-pair composition of the other copy at the same locus. The two
variants are called alleles. Typically, one will not find more than two distinct
alleles at the same locus. (Although, in principle, four different alleles may
be observed.) If both alleles are frequent enough in the population, say
the minor allele frequency is more than 1%, then the locus is considered to
be a Single Nucleotide Polymorphism (SNP). Millions of such SNPs were
mapped to date in the human genome. Millions more are being mapped
in the context of genome projects of many other species. Other types of
polymorphism, not SNPs, are present but are less frequent. The genetic
variability among individuals has a major contribution to the variability in
phenotype.

In order to investigate biological properties of a given specie it is con-
venient to homogenize the genetic background. For that propose special
inbred strains are created. Such strains have the property that all members
of the strain have identical copies of their DNA. Outside of the scientific
context, inbred strains are known as pure breeds and are popular between
dogs and cats breeders.

Genetically homogeneous inbred strains are created by a process of suc-
cessive brother–sister mating. Random drift in finite inbred populations
eventually results in the fixation of a given locus, namely in the extinction
of all other alleles. Once a locus is not polymorphic, it remains so in all sub-
sequent generations. With additional brother–sister mating, the genomes
in the population become less and less polymorphic. The formal definition
of an inbred strain requires at least 20 generations of strict brother–sister
mating. Some of the classical inbred strains have a history of more than 100
generations of inbreeding.

In order to understand the dynamics of inbreeding, in the following two
subsections we will investigate the process of forming an inbred strain via the
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process of selfing and strict brother-sister mating. In the next subsection,
we take a closer look at a mathematical analysis of inbreeding.

4.2 Inbreeding via Selfing

There are known examples of diploid organisms that have the ability of
self reproduction that involves meiosis. Most notable are some species of
plants, for example Arabidopsis. Male and female germ cells are produced
by the organism and merge to form offsprings. The genetic decomposition
of an offspring need not be identical to that of the parent since the process
of reproduction involves random sampling from the genetic material of the
parent.

In this subsection we will investigate the dynamics associated with the
process of repeated selfing. Starting from a founder plant a new plant is
formed via self reproduction. This plant self-reproduces to form the next
generation and so on. Of interest will be the genetic decomposition of ran-
dom offsprings in each generation and how this decomposition varies from
generation to generation.

Initially we will attempt to see what woould be the final outcome of the
process of self reproduction at a given locus. We assume that the locus is on
an autosome and is polymorphic with two alleles: “A” and “a”. The founder
plant is sampled from an heterogenous population. At the investigated locus
it may be of one of the three possible genotypes: “AA”, “Aa”, or “aa”.

Consider the selection of 10 independent copies of the chromosome locus,
assuming that the frequencies in the population of the two alleles are 0.3
and 0.7, respectively:

> n.rep <- 10
> allele <- c("A","a")
> p.allele <- c(0.3,0.7)
> sample(allele,n.rep,rep=TRUE,prob=p.allele)
[1] "a" "a" "a" "a" "A" "A" "a" "A" "A" "a"

(Read the help file of the function sample.)
A founder planet is composed of two copies of the locus. For the sack of

this investigation we will assume that these two copies, one inherited from
the father of the founder and the other from the mother of the founder, are
independent.

> pat <- sample(allele,n.rep,rep=TRUE,prob=p.allele)
> mat <- sample(allele,n.rep,rep=TRUE,prob=p.allele)
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> pat
[1] "a" "a" "a" "a" "a" "A" "a" "a" "a" "a"

> mat
[1] "A" "a" "A" "a" "A" "A" "a" "a" "a" "a"

> plant <- list(pat=pat,mat=mat)
> plant
$pat
[1] "a" "a" "a" "a" "a" "A" "a" "a" "a" "a"

$mat
[1] "A" "a" "A" "a" "A" "A" "a" "a" "a" "a"

A list is a special type of vector that does not restrict its components to
be of the same type. They can be any type of object, and may vary from
component to component. As we see in the example, the components may
be refered to by name.

We use the function “meiosis” that we wrote before in order to produce
gametes. The function is applied twice, once to produce the gamete of the
male germ cell and then to produce the gamete of the female germ cell. We
wrap the process of self-reproduction of an offspring plant in the function
“selfin”:

> selfing <- function(plant)
+ {
+ pat <- meiosis(plant$pat,plant$mat)
+ mat <- meiosis(plant$pat,plant$mat)
+ return(list(pat=pat, mat=mat))
+ }

Let us repeat the process of self-reproduction for 100 generation and see
what type of plants it produces:

> for(g in 1:100) plant <- selfing(plant)
> plant
$pat
[1] "A" "a" "A" "a" "a" "A" "a" "a" "a" "a"

$mat
[1] "A" "a" "A" "a" "a" "A" "a" "a" "a" "a"

As we can see in this example after 100 generations there were no het-
erozyguous plants with the “Aa” genotype, only homozygotes. In order to
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varify that this is not a random finding let us increase the sample size of
the simulation to include 100,000 independent repeates of the process of relf
reproduction over 100 generations:

> n.rep <- 10^5
> pat <- sample(allele,n.rep,rep=TRUE,prob=p.allele)
> mat <- sample(allele,n.rep,rep=TRUE,prob=p.allele)
> plant <- list(pat=pat,mat=mat)
> table(plant$pat,plant$mat)

a A
a 48973 21269
A 20815 8943

As we expect, among founders the distribution of genotypes is random, with
approximately 0.49 = 0.72 homozygote of type “aa”, 0.09 = 0.32 homozygote
of type “AA” and 0.42 = 2× 0.7× 0.3 heterozygote plants.

> for(g in 1:100) plant <- selfing(plant)
> table(plant$pat,plant$mat)

a A
a 69988 0
A 0 30012

After 100 generations only homozyote plants are present. In 70% of the lines
they are of type “aa” and in the other 30% they are of type “AA”.

Homework Question 4.1. Plot the frequency of homozygote as a function
of the number of generations of self fertilization. Compute and save the
frequency in each iteration of the “for” loop. Use the function ”plot” in
order to make the plot.

We now turn to a mathematical analysis of inbreeding. Consider a self-
fertilizing plant and a locus at which that plant may be heterozygous. We
are interested in the probability, Hg, that it is still heterozygous after g
generations of self-fertilization. We have assumed that H1 = 2p(1 − p), for
p = 0.3. The key to our analysis is to write Hg in terms of Hg−1. The
equation is Hg = 1

2Hg−1, which follows from the observation that in order
for the plant to be heterozygous after g generations it must be heterozy-
gous after g− 1 (because we are neglecting the possibility of mutation) and
whichever allele at the given locus is in the egg, the other allele must occur
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in the sperm. This latter event occurs with probability 1/2. By iterating
this basic relation, we have Hg = 1

2Hg−1 = (1
2)2Hg−2 = · · · (1

2)g−1H1.

Homework Question 4.2. Compute the theoretical probability of heterozy-
gosity and add it as a line to the plot. You may use the function “line” to
add the line.

We compute the probability of heterozygosity in each of the 20 genera-
tions of self-fertilization and add the line to the plot:

> H <- 0.5^(1:20)
> lines(H,col=gray(0.5))

The decay is also exponential. Observe the good agreement between the
simulations and the theoretical computations. The function “lines” is a
low-level plotting function that adds lines to existing plots.

4.3 Brother-Sister Inbreeding

As we saw, when considering inbreeding by selfing, that by the 20th gen-
eration of inbreeding there is a very large probability of fixation. Our goal
in this subsection is to understand the dynamics of that probability when
mating is involved. As a simple example we consider a minimal population
of size two, which contains one male and one female. The size of the popula-
tion is maintained in each generation by selecting one brother and one sister
of the current generation as parents for the next generation. We start by
simulating such populations and recording the probability of heterozygosity
in each generation. For the simulation we use the function “cross” that
was written in the previous section:

> pat <- sample(allele,n.rep,rep=TRUE,prob=p.allele)
> mat <- sample(allele,n.rep,rep=TRUE,prob=p.allele)
> mo <- list(pat=pat,mat=mat)
> pat <- sample(allele,n.rep,rep=TRUE,prob=p.allele)
> mat <- sample(allele,n.rep,rep=TRUE,prob=p.allele)
> fa <- list(pat=pat,mat=mat)
> Fn.fa <- cross(fa,mo)
> Fn.mo <- cross(fa,mo)
> p.bs <- mean(c(Fn.fa$pat != Fn.fa$mat,Fn.mo$pat != Fn.mo$mat))
> for (g in 2:20)
+ {
+ New.fa <- cross(Fn.fa,Fn.mo)
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+ New.mo <- cross(Fn.fa,Fn.mo)
+ Fn.fa <- New.fa; Fn.mo <- New.mo
+ p.bs[g] <- mean(c(Fn.fa$pat != Fn.fa$mat,Fn.mo$pat != Fn.mo$mat))
+ }
> points(p.bs,col="blue")

Note that the expression “Fn.fa$pat != Fn.fa$mat” produces a logi-
cal vector (“TRUE” if the animal is heterozygous and “FALSE” otherwise).
The same holds true for the other expression, which is concatenated by the
function “c” to form a single logical vector. The function “mean” expects a
numerical vector as an input and computes its average value. Before com-
puting the mean, the logical vector is converted into a numerical vector by
setting “TRUE” equal to one and “FALSE” equal to zero. The result is the
relative frequency of “TRUE”s, i.e., the relative frequency of heterozygous
mice.

We add the simulated probabilities to the plot as blue points with the
aid of the low-level function “points”. Observe that the probability of
heterozygosity decays exponentially as a function of the number of brother–
sister mating generations. The dynamics of the decay, however, is very
different from the dynamics in selfing.

One can analyze the probability of heterozygosity in brother–sister mat-
ing using the same tools as in the case of self-fertilization. In this case,
however, one must consider heterozygosity two generations back as well.
It turns out that the recursive formula for heterozygosity is given by the
equation:

Hg =
1
2
Hg−1 +

1
4
Hg−2 . (1)

Homework Question 4.3. Prove the recursion (1), compute the sequence
of probabilities, and add them to the plot.

Instead of proving the given recursion we apply an approach that is anal-
ogous to the argument given above for selfing. It tracks the genotypes in the
population in each generation and uses techniques based on Markov chains
for the computation of probabilities. Although requiring more mathemati-
cal analysis than (1), it appears to be relatively easily adapted to deal with
more complex problems.

The population is of size two in each generation. Each mouse in the
population may either be in state 0, 1, or 2, depending on its genotype.
Denote by 0-0 and 2-2 the states where both mice are homozygous for the
same allele, and note that these are absorbing states. Once such a state is

15



reached, the process will remain indefinitely in the same state. The other
states, denoted here by 1-0, 2-0, 1-1, and 2-1 are transient. Fixation occurs
when the process reaches an absorbing state. At initiation a distribution is
set for all states. Given the state of the population at a given generation,
the distribution over the states in the next generation can be described by
a transition probability matrix. The distribution in generation g is given by
multiplying the distribution in generation g−1 by the probability transition
matrix.

Denote by Q the sub-matrix of transition probabilities between transient
states and let π′0 be a row vector giving an initial distribution over these
states. We are interested in the case

π′0 = (4 · 0.3 · 0.73, 2 · 0.32 · 0.72, 4 · 0.32 · 0.72, 4 · 0.33 · 0.7) ,

which corresponds to starting distribution over transient states which is
obtained by sampling the two parents from the population independently.
The distribution over the transient states after g generations is the vector
π′0Q

g, where Qg corresponds to the multiplication of the matrix Q by itself
g times. The probability of heterozygosity after g generations is π′0Q

gv,
where v′ = (1/2, 0, 1, 1/2), since 1/2 of the animals in the state 1-0 are
heterozygous, none of the animals in 2-0 is heterozygous, etc. In order to
make the analysis more concrete let us put the computer to work:

> hetero.states <- paste(c(1,2,1,2),"-",c(0,0,1,1),sep="")
> hetero.states
[1] "1-0" "2-0" "1-1" "2-1"
> Q <- matrix(0,4,4)
> Q

[,1] [,2] [,3] [,4]
[1,] 0 0 0 0
[2,] 0 0 0 0
[3,] 0 0 0 0
[4,] 0 0 0 0
> rownames(Q) <- colnames(Q) <- hetero.states

> Q["1-0",c("1-0","1-1")] <- c(0.5,0.25)
> Q["2-0","1-1"] <- 1
> Q["1-1",] <- c(0.25,0.125,0.25,0.25)
> Q["2-1",c("1-1","2-1")] <- c(0.25,0.5)
> Q

1-0 2-0 1-1 2-1
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1-0 0.50 0.000 0.25 0.00
2-0 0.00 0.000 1.00 0.00
1-1 0.25 0.125 0.25 0.25
2-1 0.00 0.000 0.25 0.50

Let us explain: Q is an object of the class “matrix”. It was created with
the aid of the function “matrix”. Elements of the matrix are identified by
the double indexing format “[,]”, left for rows and right for columns. Sub-
matrices can be assigned by appropriate selection of indices, with rules that
follow similar patterns as the rules used for indexing vectors. As in vectors,
names can be used for indexing. The first row of the matrix Q corresponds to
the probabilities of transition from the state 1-0 to any of the four transient
states. For example, if one parent has the genotype 0 and the other the
genotype 1, then there is a 50% chance that one of the offspring will have
genotype 0 and the other genotype 1. There is a 25% chance that both will
have the genotype 1 and a 25% that both will have the genotype 0. The
last case produces an absorbing state. This computation gives rise to the
first row of the matrix Q. Similar computations will lead to the other rows
of the matrix.

> initial <- c(4*0.3*0.7^3,2*0.3^2*0.7^2,4*0.3^2*0.7^2,4*0.3^3*0.7)
> het.count <- c(0.5,0,1,0.5)
> hetero.prob <- NULL
> QQ <- Q
> for (g in 1:20)
+ {
+ hetero.prob[g] <- initial %*% QQ %*% het.count
+ QQ <- QQ %*% Q
+ }
> lines(hetero.prob,col="blue")
> legend(13.1,0.42,
+ legend=c("selfing","brother-sister"),
+ lty=c(1,1),col=c(1,4))

The vector “initial” gives the starting state; it was denoted by π0

above. The vector “het.count”, denoted above by v, is used in order to
compute the probability of heterozygosity from the distribution of transient
states. The vector “hetero.prob” stores the computed probabilities. Ini-
tially this vector is assigned a null value. This creates an object that can
be identified and manipulated by R, but contains no information. Informa-
tion is accumulated in each iteration of the “for” loop. Note that the final
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length of “hetero.prob” need not be preassigned. The system automat-
ically expands the object upon request. Finally, observe that the binary
operation “%*%” corresponds to matrix multiplication, unlike the operation
“*”, which is applied term-by-term. (Try both “Q * Q” and “Q %*% Q” to
see the difference between the two operations.)

The results of the theoretical computation are added to the plot in with
the aid of the function “lines”. Note the good agreement between the
simulation and the theoretical computation. For clarity, a legend is added
with the low-level plotting function “legend”. The first two arguments of
the function are used in order to determine the location of the upper-left
corner of the legend box in the figure; and the other arguments set the text,
the type, and the color of the lines to appear inside the box. The line type
must be provided. In the current case the first and the third lines are of the
same type: “lty = 1”, which corresponds to a solid line. A broken line, for
example, corresponds to type 2. Observe that since there are two lines in
the legend, the argument should be a vector of length two.

Homework Question 4.4. Describe the dynamics of heterozygosity in
brother-sister mating if the process is initiated by crossing together two in-
bred strains, that are homozygote within each population but are heterozygous
between populations.

Homework Question 4.5. Investigate the dynamics of heterozygosity when
a new generation is created by mating a mouse from the given population
with an mouse from one of the two inbred strains.

4.4 Kimura’s Probabilistic Approach

Attempting to extend the method of inheritance of the composition of geno-
types through the generations will turn out to be very difficult. The number
of states of the associated Markov process increases very rapidly as a func-
tion of the number of loci considered, the number of distinct allele, or the
number of subjects in the population. Symmetries between states can be
exploited in order to reduce complexity. Still, keeping track of all possi-
bilities become too tedious even in relatively simple models. A solution to
the problem was found by Motoo Kimura in his paper A probability method
for treating inbreeding systems, especially with linked genes. In this paper
Kimura proposed to keep track only of probabilities of carefully selected
events in the population instead of the entire genotypic composition of the
population. This allows for the more direct exploitation of symmetries of
models and reduces the complexity dramatically. We will demonstrate in
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this subsection Kimura’s approach for the determination of the dynamics of
heterozygosity reduction of multi-allelic loci in larger populations, with and
without self fertilization. In the next section the approach will be used in
order to determine the recombination rate following inbreeding.

Let us remove the assumption that the number of alleles is two at most
and denote the distinct alleles at a given locus by A1, . . . , Ad. An exact
model for mating is needed when the population size is more than one in
the case of selfing and more then two in the case of sexual reproduction.
We will use the model of random mating, in which paring of two gametes is
independent of their genotypes.

Start with a population of plants that can self fertilize. Take the popula-
tion size N to be fixed and consider an autosomal locus. At each generation
a plant is a result of selfing with probability 1/N and is a result of mat-
ing with probability 1 − 1/N . Let us define two types of evens regarding
population t: (i) Two homologous copies of a random individual share the
same allele, and (ii) Two random copies from two distinct individuals share
the same allele. We denote the probability of the first event by It and the
probability of the second event by Jt. Note that the two events satisfy the
recursion:

It =
1
N

(0.5 + 0.5It−1) +
(
1− 1

N

)
Jt−1 (2)

Jt =
1
N

(0.5 + 0.5It−1) +
(
1− 1

N

)
Jt−1 , (3)

for t ≥ 1. It follows that for t ≥ 2:

It =
1
N

(0.5 + 0.5It−1) +
(
1− 1

N

)
It−1

and, upon substituting Ht = 1− It,

Ht =
(
1− 1

2N

)
Ht−1 =

(
1− 1

2N

)t−1
H1 .

Observe that when N = 1 we get again the relation we obtained previously.

Homework Question 4.6. Compute the probabilities I0 and J0 in an out-
bred population. Give conditions under which I0 = J0.

Homework Question 4.7. Plot the dynamics of the reduction of heterozy-
gosity for various population sizes.

Consider next a population with two distinct sexes. Assume that the
population is composed of NM and NF and we consider again the two events
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and their probabilities. In the development of the recursions we need to
include the generations of grand parents, since the two copies of a random
individual may not originate from the same parent as in the case of selfing
but may originate from the same grandparent. The probability that this is
the case, the parallel of the probability 1/N in the case of selfing, is given
by

1
Ne

=
1
4
( 1
NM

+
1

NF

)
.

The relations we obtain for this case are:

It =
1

Ne
(0.5 + 0.5It−2) +

(
1− 1

Ne

)
Jt−2 (4)

It−1 = Jt−2 , (5)

hence
It =

1
2Ne

+
(
1− 1

Ne

)
It−1 +

1
2Ne

It−2 .

The resulting relation for proportion of heterozygosity is

Ht =
(
1− 1

Ne

)
Ht−1 +

1
2Ne

Ht−2 .

Again, when NF = NM = 1 this relation produces the relation we observed
before.

Homework Question 4.8. Plot the dynamics of the reduction of heterozy-
gosity for various values for NF and NM. Consider, in particular, the case
where NM = 1 but NF varies.

Homework Question 4.9. (More difficult) Write an R code that generates
the process of breeding in populations of constant size and random mating.
Compare between the results of simulations based on this code and the theo-
retical derivation.
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