
5 Inbreeding at Several Loci

5.1 Recombinant inbred Strains (RI)

are a special type of inbred strains. They are constructed by an outcross of
two established inbred parental strains. From the second generation of F2

animals, which are not genetically identical, a set of pairs is selected. Each
selected pair is used in order to create a new inbred strain via repeated
brother–sister mating. Eventually, a set of inbred strains is created, which
is called a recombinant inbred set. Each strain in a given set is genetically
homogeneous within, but is genetically different from the other strains in
the set and from the original parental strains. Thus, at each locus for which
the original strains differ, the new recombinant inbred strain is homozygous
for one of the two alleles. However, the parental source of the allele may
vary from one strain to the next within the recombinant inbred set, and at
different loci the source of the allele may be different parental strains. For
example, if the original parental strains are A/B and a/b homozygous at
two loci (i.e., one strain is AA at one locus and BB at another, while the
other strain is aa at the first locus and bb at the other), recombinant inbreds
can be A/B, A/b, a/B, or a/b homozygous at those two loci. There are
23 = 8 possibilities with three loci, 24 = 16 with four, etc.

The name of the RI set is formed by combining the names of the two
parental inbred strains. For example, if the F1 mice are created by mating
an A female and a C57BL/6J (B6) male, then the resulting recombinant
inbred set is denoted AXB. If, on the other hand, the female is a B6 and
the male is A then the set is called BXA.

Recombinant inbred sets can be used for mapping traits. At each locus
the allele is equally likely to have come from each of the parental strains.
A major advantage of recombinant inbred sets, and an important motiva-
tion for their establishment, is that genotypes are fixed for the entire set.
Consequently, the experiment for mapping a trait with recombinant inbreds
is conducted by phenotyping mice from the different strains that form the
set. Genotyping is unnecessary for the commercially available sets, since
their genotypes have already been determined. In addition, since mice from
the same strain are genetically identical, one can average the phenotypes
of a number of different mice from the same strain, which has the effect of
decreasing the environmental variance relative to the genetic variance.
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5.2 The Recombination Fraction

Crossovers between chromosomal segments may occur during meiosis. These
crossovers cause the gamete that passes to an offspring to be a mosaic of
genetic material originating from the two grandparents. A recombination
event between two loci occurs whenever the number of crossovers is odd. In
this case, the genetic material at one locus is from one grandparent, whereas
the genetic material at the other locus is from the other grandparent. The
probability of a recombination is known as the recombination fraction and
is denoted by θ. The value of θ depends on the relative position of the two
loci. The closer they are on a chromosome, the closer the recombination fre-
quency is to zero. At the other extreme, for loci on different chromosomes,
the recombination frequency is 1/2, which is equivalent to independent as-
sortment of the chromosomes. It may be shown under some very general
assumptions that θ can never be greater than 1/2.

Consider two loci that are polymorphic with respect to the two parental
pure inbred strains. Denote by a the allele of one strain at one locus, and
by b the allele of the same strain at the other locus. Similarly, for the other
strain, denote by A and B the alleles at the two loci. Within each inbred
strain the loci are not polymorphic. In short, we can say that the first strain
is a/b homozygote and the second strain is A/B homozygote. Regardless of
what crossovers may occur during the formation of the outcross, the gamete
that passes on to the F1 mouse from the first strain is always a/b, and the
gamete that passes on from the second strain is always A/B. Consequently,
the F1 mouse must be (A/B, a/b) heterozygote.

The gamete that is passed on from an F1 parent to its offspring can be
any one of the four possible types. If a recombination does not occur during
meiosis, then the gamete may be either A/B or a/b with equal probability.
If a recombination does occur, then the gamete may be A/b or a/B, again
with equal probabilities. We call gametes of the second kind recombinant
gametes. The probability of recombinant gametes in a given cross is an
essential parameter for the assessment of the cross as a resource for QTL
mapping. The aim in this section is to evaluate this parameter for the
backcross, intercross, and a recombinant inbred strain.

The evaluation of the fraction of recombinants for the backcross and for
the intercross is straightforward. For the backcross one of the gametes is
inherited from an inbred parent and cannot be recombinant. The other is
inherited from the F1 and is recombinant with probability θ. Consequently,
the probability that a random gamete taken from a backcross population
is recombinant equals θ/2. For the intercross both gametes come from an
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F1 parent. The probability of random gamete to be recombinant is ex-
actly θ. The situation for the recombinant inbred is more complex. Before
attempting an exact mathematical analysis let us examine the fraction of
recombinants by simulation.

The functions “meiosis” and “cross” can be used in order to simulate a
recombinant inbred strain. However, in the original programs we considered
only a single locus. Modifications are needed in order to track two loci
instead of one. Below is an edited version of the original function. In
the original version of the function “meiosis” the objects “GF” and “GM”
were vectors. In the new version these two objects are matrices with a
column dimension of two. The first column represents the QTL, and the
second represents another locus, which may be linked to the QTL. The
recombination fraction between the two loci is added as a new argument to
the function:

> meiosis.rec <- function(GF,GM,rec.frac)
+ {
+ N <- nrow(GF)
+ GS <- GF
+ from.GM <- rbinom(N,1,0.5)
+ GS[from.GM==1,1] <- GM[from.GM==1,1]
+ rec <- rbinom(N,1,rec.frac)
+ from.GM <- from.GM*(1-rec) + (1-from.GM)*rec
+ GS[from.GM==1,2] <- GM[from.GM==1,2]
+ return(GS)
+ }

In the code for the new function “meiosis.rec”, the function “nrow” re-
turns the number of rows in a matrix. The segregation of the first locus uses
exactly the same algorithm as before. The segregation of a maternal allele
at the second locus depends on the segregation at the first locus and on the
recombination process. A maternal segregation occurs at the second locus
if such segregation occurs in the first locus and if there is no recombination,
or if there is a paternal segregation at the first locus and a recombination
does occur.

The function cross.rec is practically identical to the function “cross”.
The only modification, which is really needed only for safety reasons, is that
the recombination fraction is explicitly passed to the function “meiosis.rec”.

> cross.rec <- function(fa, mo,rec.frac)
+ {
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+ pat <- meiosis.rec(fa$pat,fa$mat,rec.frac)
+ mat <- meiosis.rec(mo$pat,mo$mat,rec.frac)
+ return(list(pat=pat,mat=mat))
+ }

For convenience we write a new function “rec.count” that returns the
frequency of recombinant gametes in a cross. This function exploits again
the function “table”, which returns in this case the cross table of the fre-
quencies of the different combinations of the levels of “loc1” and “loc2”.
In our case, the output of the “table” function can be treated as a 2 × 2
matrix.

> rec.count <- function(Fn)
+ {
+ loc1 <- c(Fn$pat[,1],Fn$mat[,1])
+ loc2 <- c(Fn$pat[,2],Fn$mat[,2])
+ cross.tab <- table(loc1,loc2)
+ theta <- (cross.tab[2,1]+cross.tab[1,2])/sum(cross.tab)
+ return(theta)
+ }

Finally, we run the simulation and make the plot:

> N <- 10^5
> a <- rep("a",N)
> b <- rep("b",N)
> A <- rep("A",N)
> B <- rep("B",N)
> IB1 <- list(pat=cbind(a,b),mat=cbind(a,b))
> IB2 <- list(pat=cbind(A,B),mat=cbind(A,B))
> F1 <- cross.rec(IB1,IB2,0)
> theta.BC <- theta.F2 <- theta.RI <- NULL
> rec.frac <- seq(0,0.5,by=0.05)
> for (theta in rec.frac)
+ {
+ BC2 <- cross.rec(IB2,F1,theta)
+ theta.BC <- c(theta.BC,rec.count(BC2))
+ F2 <- cross.rec(F1,F1,theta)
+ theta.F2 <- c(theta.F2,rec.count(F2))
+ Fn.fa <- cross.rec(F1,F1,theta)
+ Fn.mo <- cross.rec(F1,F1,theta)
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+ for (g in 2:20)
+ {
+ New.fa <- cross.rec(Fn.fa,Fn.mo,theta)
+ New.mo <- cross.rec(Fn.fa,Fn.mo,theta)
+ Fn.fa <- New.fa; Fn.mo <- New.mo
+ }
+ RI <- list(pat=rbind(New.fa$pat,New.mo$pat),
+ mat=rbind(New.fa$mat,New.mo$mat))
+ theta.RI <- c(theta.RI, rec.count(RI))
+ }
> plot(rec.frac,theta.RI,type="l",xlab="theta",
+ ylab="rec. fraction")
> lines(rec.frac,theta.F2,col=2)
> lines(rec.frac,theta.BC,col=3)
> legend(0,0.5,legend=c("RI","F2","BC"),lty=rep(1,3),col=1:3)

Examine the three lines in the figure. As expected, the backcross and
intercross yield straight lines with slopes 1/2 and 1, respectively. The frac-
tion of recombinant gametes in the recombinant inbred strain is larger and
is not linear. The derivative of the line for recombinant inbred strain at zero
is about equal to four. The greater rate of recombination for recombinant
inbreds arises from the much larger number of meioses involved.

5.3 A Mathematical Derivation of the Recombination Frac-
tion for Recombinant Inbreds

The probability in question can be derived by consideration of the different
genotypes in the population and examination of a related Markov chain.
Here we outline an alternative approach, which is developed in Kimura.
The beauty of this approach is that it allows substantial simplification in
the analysis by exploiting the many symmetries that are present.

Consider, in particular, three probabilities, computed for the pair of male
and female mice at the gth generation of inbreeding:

Cg = The probability that a randomly selected gamete is of the type A/b.

Sg = The probability that a randomly selected gamete in a randomly se-
lected mouse carries the allele A and, at the same time, the other
gamete of that mouse carries the allele b (at the other locus).

Tg = The probability that a random gametes in a randomly selected mouse
carries the allele A and a random gamete in another mouse carries the
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allele b (again, at the other locus).

Of course, we are interested in Cg, which is equal to one-half the proba-
bility of a recombinant gamete. However, keeping track of the other two
probabilities will allow us to write down the recursive relations:

Cg = (1− θ)Cg−1 + θSg−1 (6)
Sg = Tg−1 (7)
Tg = 0.5 Tg−1 + 0.5× (0.5 Cg−1 + 0.5 Sg−1) . (8)

The first relation follows from the fact that the random gamete is inher-
ited from an animal in the previous generation. On the one hand, if no
recombination takes place, then the segregated gamete is A/b if and only
if it appears in the parent (and is the one selected). On the other hand, if
a recombination does take place, then the gamete A/b occurs if the event
described in the definition of Sg holds for the parent. The second relation
follows simply by the fact that the two gametes of the offspring are a random
sample of the gametes of the parents. Recombination is not relevant in this
computation, since we are considering only the marginal frequencies of each
of the two different loci in the parents. Consider, last, relation (8). The
first locus for one offspring and the second locus for the other offspring are
either inherited from different parents or from the same parent with equal
probabilities. In the former case we get that the probability of the event in
question is identical to the same probability for the parents. In the later
case, however, there are two possibilities. Either both originate from the
same gamete or from the two homologous gametes. Again, each possibility
has probability of 1/2. The conditional probability of the event when they
originate from the same gamete is Cg−1 and the conditional probability when
they emerge from homologous gametes is Sg−1. Note that recombination is
again irrelevant, since only marginal probabilities are of concern.

The solution of the recursion (6–8) requires some extra work. Let ug =
(Cg, Sg, Tg)′ and observe the relation

ug = Qug−1, (9)

where

Q =

 1− θ θ 0
0 0 1

0.25 0.25 0.5

 .

The matrix Q is a transition probability matrix, since its rows sum to 1.
Hence it can be regarded as defining a Markov chain. From the theory of
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Markov chains it is ensured to have a stationary distribution π = (π1, π2, π3)′

with the property that π′ = π′Q. Solving this system of equations together
with the condition that

∑
i πi = 1 produces:

π′ = (1, 2θ, 4θ)/(1 + 6θ) .

By (9) and stationarity we get π′ug = π′Qug−1 = π′ug−1 = · · · = π′u0, for
all g. All entries to the vector ug converge to the same quantity, C∞, since
the population is becoming more and more inbred. Since C0 = 0, S0 = 0.5,
and T0 = 0.25 we have u′0 = (0, 1/2, 1/4), and hence

C∞ = lim
g→∞

π′ug = π′u1 = 2θ/(1 + 6θ) .

Since a recombinant is either A/b or a/B, and these are equally likely,
we can obtain the exact formula for the fraction of recombination in a re-
combinant inbred strain: 4θ/(1 + 6θ). Observe that the derivative of this
fraction at θ = 0 is indeed equal to four. Our work will be completed when
we add the exact curve for a recombinant inbred strain to:

> lines(rec.frac,4*rec.frac/(1+6*rec.frac),lty=2)

Observe, again with reassurance, the excellent agreement between the sim-
ulated and the theoretically computed curves.

Homework Question 5.1. Repeat the analysis of the recombination frac-
tion that was conducted in class for the case of brother-sister mating to the
case of selfing. Start by modifying the R code to allow dealing with self-
fertilization and plot the recombination fraction in the final generation as
a function of the fraction in a single meiosis. Try to compute the theoret-
ical values of the recombination fraction by adapting the analysis that was
carried out in class to this situation. Compare the theoretical and simulated
curves to each other.
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