
7 Infinite Populations – Two Loci

7.1 Linkage Disequilibrium

Linkage equilibrium coresponds to the statistical independence of the alleles
in two loci of a randomly selected gamete. Unlike the Hardy-Weinberg
Equilibrium, linkage equilibrium does not materialize in one generation of
random mating. In order to illustrate convergence to linkage equilibrium
consider two bi-allelic loci inherited from the same parent. Denote, as before,
the alleles of the first locus by A and a and use B and b to denote the alleles of
the second locus. Let θ be the recombination fraction between the two loci.
Let us examine the probability of the haplotype A/B in a given generation,
namely the relative frequency in that generation of pairs of loci inherited
from the same parent with allele A at the first locus and allele B at the
second. Call this probability pAB. Under linkage equilibrium this probability
equals the product of the marginal probabilities pApB. In general, one may
consider the difference D = pAB−pApB as a measure of linkage disequilibrium
in the population. Consider the level of linkage disequilibrium in the next
generation following random mating. The haplotype A/B will emerge as a
result of one of two possibilities. In the case where recombination does not
occur in the parent, the haplotype appears in an offspring if it was inherited
from the parent. The probability of inheritance is pAB. If recombination in
the parent does take place, then the given haplotype will emerge if the allele
in the parent at the first locus of one homologous chromosome is A and the
allele at the second locus of the other homolog is B. The probability of the
first event is pA and the probability of the second event is pB. Under random
mating, hence Hardy-Weinberg equilibrium, the two loci inherited from the
different grandparents are independent. It follows that the probability in
the case of recombination is pApB. Combining these arguments, we see that
the disequilibrium in the next generation is equal to:

D̃ = (1− θ)pAB + θpApB − pApB = (1− θ)× (pAB − pApB) = (1− θ)D .

By recursion we find that after g generations the level of linkage disequilib-
rium shrinks to Dg = (1−θ)g×D0. Hence under random mating there is rel-
atively fast convergence to linkage equilibrium; but unlike Hardy-Weinberg
equilibrium, linkage equilibrium does not occur in a single generation, even
when the two loci are on different chromosomes.
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7.2 Estimating Linkage Disequilibrium

Let us assume that we are provided with a sample of unrelated individuals
from some target population. A pair of bi-allelic markers are genotyped
for each of the individuals in the sample with the goal of determining the
distribution of the two-locus haplotypes. In order to clarify the issues in-
volved and to make the presentation more targeted we consider a numerical
example as we walk through the details of the discussion. Return to the
artificial data presented in the previous chapter, which was saved as an R
dataframe under the name “CR”. This dataframe contains genotype infor-
mation from 3260 individuals collected for three SNPs. In the chapter we
tested the association between these SNPs and the disease status and found
strong association between snp1 and the disease and between snp3 and the
disease. In light of these results one may raise a question regarding the
relationship between these two markers: are both markers so strongly corre-
lated with each other that each should be considered equivalent to a single
marker, or is each marker providing independent information with respect
to the association with the disease?

In order to address this question we would like to assess the correlation
coefficient r between snp1 and snp2. Here we are motivated by the pre-
sumption that a correlation coefficient close to one (in absolute value) is
an indication that the first possibility is correct and a correlation coefficient
closer to zero supports the second possibility. We are tempted to address the
issue of estimating the correlation coefficient from genotypic data by first
computing a table of frequencies of haplotype the two SNPs, and then using
the estimated distribution in order to compute the correlation coefficient.

Let us initiate the process by taking a second look at the numerical
example:

> CR <- read.table("CaseRandom.csv",header=TRUE,sep=",")
> table(CR$snp1,CR$snp3)

C/C T/C T/T
A/A 172 265 119
T/A 228 880 492
T/T 74 440 590

The table we formed represents the joint distribution of genotypes in our
sample. Each person in the sample appears in one of the table entries. Each
person, however, is represented by a pair of haplotypes associated with the
pair of copies of the given autosome. In order to make the point, we rewrite
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the same table in a different format in Table 1

Table 1: Joint distribution of genotypes for a pair of markers
snp1 snp2 frequency haplotype 1 haplotype 2
A/A C/C 172 A-C A-C
A/A T/C 265 A-T A-C
A/A T/T 119 A-T A-T
A/T C/C 228 A-C T-C
A/T T/C 880 A-T and T-C or A-C and T-T?
A/T T/T 492 A-T T-T
T/T C/C 74 T-C T-C
T/T T/C 440 T-T T-C
T/T T/T 590 T-T T-T

Observe that the actual frequency in the sample of haplotypes can be
partially inferred from the genotypes. For example, we can infer that each
of the 172 subjects with a genotype A/A in snp2 and a genotype C/C in
snp1 must carry a pair of A-C haplotypes. It is also the case that each of
the 265 subjects who are heterozygote at snp1 but A/A-homozygote at snp2
must carry a single copy of the A-C haplotype (and a single copy of the A-T
haplotype). Similarly, it can be inferred that each of the 228 subjects of the
4th row of Table 1 carries a single copy of the A-C haplotype (and a single
copy of the T-C haplotype).

However, for the 880 double-heterozygote at the 5th row of the table
one cannot determine the haplotype composition, since both the pair (A-
T,T-C) and the pair (A-C,T-T) are consistent with the genotype. The other
subjects in the sample do not carry the A-C haplotype.

One may conclude, thus, that the frequency of the A-C haplotype may
be any number between 2 × 172 + 265 + 228 = 837 and 837 + 880 = 1717,
out of a total of 2× 3260 = 6520 haplotypes in the sample.

Denote by 0 ≤ ϑ̃ ≤ 1 the proportion in the sample of double-heterozygote
individuals which have the combination (A-C,T-T) of haplotypes. Given the
value of ϑ̃ we can conclude that the frequency of the haplotype A-C in the
sample is 837 + ϑ̃× 880. Likewise, for a given value of ϑ̃, the frequencies of
the other 3 haplotypes in the sample are given by the entries in Table 13.2:

Denote the probabilities of the four haplotypes by pi, 1 ≤ i ≤ 4, ac-
cording to the four rows of Table 2. Natural estimates of these probabilities
as functions of ϑ̃ are the corresponding relative frequencies, i.e., the entries
of the table divided by the total number of 6520. Since we assume that
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Table 2: The frequency in the sample of the four haplotypes, given the
proportion of (A-C,T-T) double-heterozygotes

Haplotype Frequency

A-C 837 + ϑ̃× 880
A-T 995 + (1− ϑ̃)× 880
T-C 816 + (1− ϑ̃)× 880
T-T 2112 + ϑ̃× 880

haplotypes are inherited as a unit (i.e., without recombination), each one
can be regarded as a single allele. Assuming they are in Hardy-Weinberg
equilibrium, one can express the unknown ϑ̃ in terms of the allele frequen-
cies. The probability of obtaining a double-heterozygote is p1p4 +p2p3. The
probability of a person have the pair of haplotypes (A-C,T-T), given that
he or she is double-heterozygote, is:

ϑ =
p1p4

p1p4 + p2p3
. (10)

Equating ϑ with ϑ̃ we get from Table 2 the relation:

ϑ =
(837 + ϑ 880)(2112 + ϑ 880)

(837 + ϑ 880)(2112 + ϑ 880) + (995 + (1− ϑ) 880)(816 + (1− ϑ) 880)
,

(11)
which can be solved in order to obtain a numerical value for ϑ, and thereby
numerical values for the haplotype frequencies.

Before providing a more general justification of the proposed procedure
let us implement it in the numerical example

> N <- c(837,995,816,2112)
> H <- 880
> hetero <- function(th,N,H)
+ {
+ f <- N + c(th,1-th,1-th,th)*H
+ t <- f[1]*f[4]/(f[1]*f[4] + f[2]*f[3])
+ return(th - t)
+ }
> th <- uniroot(hetero,c(0,1),N=N,H=H)$root
> th
[1] 0.7806138
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The function “uniroot” finds in this case the value of “th” which solves
the given equation. This value can be used to determine the distribution of
haplotypes and the value of r:

> f <- N + c(th,1-th,1-th,th)*H
> p <- f/sum(f)
> c <- p[1]*p[4]-p[2]*p[3]
> p1 <- p[1]+p[2]
> p2 <- p[1]+p[3]
> r <- c/sqrt(p1*(1-p1)*p2*(1-p2))
> r
[1] 0.3002771
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