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Introduction 

A simple method for forecasting. Does not 

require long series. Enables to decompose the 

series into a trend and seasonal effects. 

Particularly useful method when there is a 

need to forecast many series in “real time”. 

 
Simple exponential smoothing 

Suppose that we have a stationary series, 

1 2, ,..., NX X X , and we want to forecast 1NX +   

as a linear combination of previous 

observations: 0 1 1
ˆ ( ,1) ,...N NX N C X C X −= + +   

 
It makes sense to require 0 1 2 ...C C C> > >  since 

we are dealing with a time series.  

 
Let 

0
(1 ) 1i

i ii
C Cα α ∞

=
= − =∑⇒  ,  0 1α≤ ≤ .  



 3

Simple exponential smoothing (cont.) 

2
1 2

ˆ ( ,1) (1 ) (1 ) ...N N NX N X X Xα α α α α− −= + − + − +   

1 2(1 )[ (1 ) ...]N N NX X Xα α α α α− −= + − + − +  
⇓ 

 ˆ ˆ ˆ( ,1) (1 ) ( 1,1) ( 1,1)N NX N X X N X N eα α α= + − − = − + ; 
 
    1

ˆ[ (1)]N N Ne X X −= − . 
 
Notice: ˆ ˆ ˆ ˆ( ,2) ( ,1) (1 ) ( ,1) ( ,1)X N X N X N X Nα α= + − =   
             and so forth.    

Optimality of simple exponential 
smoothing.  
 
Let  1 2( ...)t t t tX μ ε β ε ε− −= + + + +   

 1 1 1(1 )t t t t t t tW X X ε β ε ε θε− − −= − = − − = −  MA(1) 

Under the MA(1) model: 

1 1 1
ˆ ˆ ˆ ˆ(1) [ (1)] (1) (1 )[ (1)]t t t t t t tX X X X X X Xθ θ− − −= − − = + − −   

         1 1
ˆ ˆ(1) [ (1)]t t tX X Xα− −= + − ;   (1 )α θ= − . 

• Forecasting equation of exponential smooth. 
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Choise of α  for simple smoothing 
  
A- Subjective considerations 

B- By minimization of sum of squares of    
     forecasting errors: 
 

1 2 2 1
ˆ (1,1) ( )X X e X X= = −⇒  

  

2 1 2 1

3 3 2 1

ˆ ˆ(2,1) (1,1) (
[ (1 ) ]

X X e X X X
e X X X

α α
α α

= + = + −
= − + − , ...

⇒
⇒

)
 

Estimation of α  by minimization of 2
2

N
tt

e
=∑  , or 

a weighted sum.  Minimization can be carried 

out by a grid search in the range 0 1α< < . 
 

Important: simple exponential smoothing can 

only be applied to a stationary series. For a 

nonstationary series it is no longer effective.  

Example: 

0 1 1 1 1
ˆ0 (1 ) (1)t t t tX t X X Xγ γ γ α α − += + > + − <; ⇒ . 
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Exponential smoothing:  
Holt & Winters method 

 
A. Additive decomposition: t t t tX L S u= + +  

tL - trend level at time t  , tS  - seasonal effect,  

tu  - irregular (noise) term. 
 

Iterative process. When a new observation 
1tX +  becomes available, update tL , TR  (slope, 

see below) and tS  as follows: 
 

( ) ( )( )1
11 1t

tt t ttX SL L Rα α+
++

= − + − + ;        

( ) ( )1 1 1t t t tR L L Rγ γ
+ +
= − + − ; 

( ) ( )1 1

1 11
1*t t

t tt tS SX Lδ δ+ +

+ ++
= − + − ;   

1
1

1
0

0
s

t i

t
i

S
−

+ +

+
=

=∑ . 

Forecast m steps ahead:   
             ( )ˆ t m

t t tt
m m SL RX

+= + +  
  
0 , , 1δ γ α≤ ≤  are smoothing coefficients. 
 

Note: each updating equation is a weighted 
average of two estimates of the corresponding 
quantity. One from past observations and a 
new one. 
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Alternative equations for additive 
smoothing 

 
Let   1 1

ˆ (1)t t te X X+ += −    denote the one step 

ahead forecasting error. Then, 

1 1t t t teL L R α
+ +
= + +   ;  

1 1t t teR R αγ+ +
= +  

( )1 1
11

1 1t t
tt t

s e
sS S δ α+ +

++

−
= + − ;         

( )1 1
11

1 1t i t i
tt t e

sS S δ α+ + + +
++

= − −   , 1......( 1)i s= − . 
 

s is the length of the seasonal cycle (4, 12, …).  
  

Implication: if the sum of the seasonal effects 

is nullified at the start of the smoothing ( = 1t ), 

it will remain like this for every time point.                   
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Special case 
 Consider a non-seasonal series; 

1 1 1 1
ˆ (1) ( ) ( )t t t t t t t t t t tX L R e X L R X e L R− − − −= + = − + = + +⇒ ⇒ . 

From previous equations, 

1 1 1t t t t t t tL L R e R R eα αγ− − −− = + − =;  and hence,  
2

1 1(1 ) ( ) [1 (1 ) ]t t t t tB L e e e B eαγ α α γ− −− = + − = − − .  

Similarly, 
2

1 1(1 ) ( ) { [1 (1 ) ] (1 )}t t tB L R B B B B eα γ αγ− −− + = − − + − , 

 2 2(1 ) {(1 ) [1 (1 ) ] (1 )}t tB X B B B B B eα γ αγ− = − + − − + − . 

Or, 1 2 1 22 [ (1 ) 2] (1 )t t t t tX X X e eα γ α− − − −= − + + − + − ;  

optimal prediction for ARIMA(0,2,2). 



 8

Exponential smoothing: 
Holt & Winters method (cont.) 

B. Multiplicative decomposition: 

t t t tX L S I= × ×    

,t tS I  are now percentages ( tS  is a seasonal 
factor, tI  is the irregular term.)  
 

Rationale of multiplicative decomposition: 
the seasonal effect (not seasonal factor) is 

proportional to the trend level. 
Suppose that in months , 12, 24t t t+ +   , 1.1S =  . 

LS L−  LS  L Month 
10 110 100 t  
20 220 200 12t +  
30 330 300 24t +  

 
S   is the seasonal factor, 

LS L−  is the seasonal effect. 
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Exponential smoothing for 
multiplicative decomposition 

 
Possibility I: use the log transformation, apply 

additive smoothing: 

log( ) log( ) log( ) log( )t t t t tY X L S I= = + +   

Transforming back the smoothed values yields 

   (1 )1
1 ( )t

t t
t

LR R
L

γ
γ−+

+

⎛ ⎞
= ×⎜ ⎟
⎝ ⎠

  ; (1 )1
1 1 ( )t

t t tt
t

XL L R
S

α
α−+

+ +

⎛ ⎞
= ×⎜ ⎟
⎝ ⎠

  

  * 1 1 (1 )1
1

1

( )t tt
t t

t

XS S
L

δ
δ+ + −+

+
+

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

;     
1

1
1

0

1
s

t i
t

i

S
−

+ +
+

=

=∏ . 

 
•  Geometric mean of seasonal factors =1. 

 
Forecast: ( ) ( )ˆ m t m

t t t tX m L R S += × × . 
 
Prediction error: / 1

ˆ( / )t t t te X X −= .  
  
Problem: assumes implicitly that the trend 

evolves in constant rates. Not very realistic in 

practice. 
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Exponential smoothing for 
multiplicative decomposition (cont.) 

 
Possibility II: (original procedure of Winter). 

( )( )1
11 1t

tt t t
t

X
S L RL α α+

++

⎛ ⎞
= + − +⎜ ⎟

⎝ ⎠
 ;   

( ) ( )1 1 1t t t tR L L Rγ γ
+ +
= − + −   ; 

( )* 1 11
1

1

1t tt
t t

t

X
S SL

δ δ+ ++
+

+

⎛ ⎞
= + −⎜ ⎟

⎝ ⎠
   ;    

1
1

1
0

s
t i

t
i

sS
−

+ +

+
=

=∑  

Implications:  
The trend evolves in constant increments;  
Arithmetic mean of seasonal factors =1. 

  
Why require that the arithmetic mean of the 

seasonal factors =1? Reasonable to impose 

that the sum of the seasonal effects over s 

successive time points is null. Let s=12. 

If 
12

1
/12 1tt

S
=

=∑ , ⇒  
12 12

1 1
( ) ( 1) 12 ( , )t t t t t t tt t
L S L L S Cov L S

= =
− = − =∑ ∑ = 0 .  

• Trend level and seasonal factors  
  “uncorrelated”. 
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Starting values for smoothing 
Suppose that the series is long enough such 
that we can use the first 3 years for starting 
values. 

Trend levels: 1 [2][12]
24 tX , centered moving 

average. First a simple moving average of 12 
successive points and then a simple moving 
average of every two successive averages. 
This way the first trend value is for t=7. 
 

Seasonal effects (factors): average the two 
differences ˆˆ( )t t tX L S− ≅  (additive 
decomposition) or the two ratios ˆ( / )t t tX L S≅  
(multiplicative decomposition), for each 
calendar month. Subtract (divide by) the 
mean of the resulting estimates from each 
estimate such that their mean equals 0 for the 
additive decomposition (equals 1 for the 
multiplicative decomposition). 

Increment: 25 36 13 24
1 1ˆ ˆ ˆ ˆ( ... ) ( ... )

12 12
L L L L+ + − + + , or  

                    just, 36 35
ˆ ˆ( )L L− . 
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Graphical test for choosing between  
additive and multiplicative  decomposition 

 

Compute  ˆ
tL  for the whole series in the same 

way as for the starting values, and ˆ ˆ( )t t tS X L= − . 
Plot ˆ

tS  against ˆ
tL  for each calendar month 

separately.  
 

The monthly estimates ˆ
tS  may be subjected to 

large noise, so an alternative procedure is to 
plot the annual geometric means 

12 1/12
1

ˆ( | |)ij ijj
X L

=
−∏  against 12 1/12

1
ˆ( )ijj
L

=∏ .  
 
Rationale: Denote ˆ ˆ( )ij ij ijS X L= − . If  ij j ijS K L=  

⇒  12 12 12 12

1 1 1 1
( | |) | |ij j ij ijj j j j

S K L K L
= = = =

= =∏ ∏ ∏ ∏ . 

 
Graphical test of smoothing performance 

(CUSUM) 
 

Let 1 1m e= , 2 1 2 1 2m m e e e= + = +  ... 1t t tm m e−= + ,  

tm = the sum of forecasting errors until time t . 

Plot tm  against t . 
1

1 [ / | |] 1t
t kk

m e
=

− ≤ ≤∑  and we 

expect it to be close to 0. 
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Example 
The table below shows the sales of a business 
in 4 years. 
 
Year\quarter I II III ΙV  

1 221 303 358 288 
2 221 325 398 326 
3 257 358 421 364 
4 275 380 464 421 

 
It is desired to forecast the amount of sales in 
the third and fourth quarters of Year 4, using 
the data until the second quarter of Year 4.  
 
We shall use the first 3 years for starting 
values and start the smoothing from the third 
quarter of Year 3 ( 11t = ). Let 0.1α γ δ= = = .  
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Computation of starting values 

Starting values for trend levels: 1[2][4]
8 tX . 

 
2 1 1 2

ˆ 0.125 0.25 0.25 0.25 0.125t t t t t tL X X X X X− − + += + + + +
 

3
ˆ 0.125 221 0.25(303 358 288) 0.125 221 292.5L = × + + + + × =
 
Similar computations yield, 

Year\quarter I II III ΙV  
1 287* 289.75* 292.5 295.25
2 303 312.75 322 330.63
3 337.63 345.25 352.25 357.25
4 365.38 377.88 390.38* 402.88*

 
(*) The first two values are computed by 

subtracting the estimated increment (295.25-

292.5). The last two values are computed by 

adding the estimated increment (377.88-

365.38). These values are used for the 

graphical test but are not needed for the 

smoothing process.  



 15

Computation of starting values (cont.) 
 

Starting values for seasonal effects: 
ˆ ˆ( )t t tS X L= −  
 
Year\quarter I II III ΙV  Mean

1 -66.0 13.25 65.5 -7.25 1.375
2 -82.0 12.25 76 -4.63 0.405
3 -80.6 12.75 68.75 6.75 1.905
4 -90.4 2.12 73.62 18.12 0.87 

 
• The table shows that the series is highly 

seasonal. Annual average of seasonal effects 

close to zero despite of very rough estimation 

of trend levels. 
 

•  The figures in the table don’t indicate that 

the seasonal effects increase when the trend 

increases, so an additive decomposition 

seems right. (One can apply both procedures 

and compare the forecasts.)  



 16

Graphical test 
 

 

- 1 0 0

- 8 0

- 6 0

- 4 0

- 2 0

0

2 0

4 0

6 0

8 0

1 0 0

2 8 0 3 0 0 3 2 0 3 4 0 3 6 0 3 8 0 4 0 0

 
 

The Figure shows very clearly that there is no 
apparent relationship between ˆ

tS  and ˆ
tL , 

suggesting that the additive decomposition is 
more appropriate. 
 

Computation of the annual geometric means of 
ˆ ˆ| | | |t t tS X L= − yields:  

 

(1) (2) (3) (4)25.39, 24.38, 26.28, 22.49G G G G= = = = . 
 

The annual geometric means of ˆ
tL  are: 

 

(1) (2) (3) (4)291.11, 316.93, 348.02, 383.88L L L L= = = =
 

• The annual geometric means of the trend 
levels increase, but the annual geometric 
means of the seasonal effects are more or less 
constant. 

tŜ
 

tL̂ 
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Computation of starting values for 
smoothing 

 
*
1 [ 82 ( 80.63)]/ 2 81.32S = − + − = −  
*
2 (12.25 12.75) / 2 12.5S = + =  
*
3 (65.5 76) / 2 70.75S = + =          ⇒     * 1S = −  
*
4 (7.25 4.63) / 2 5.94S = − + = −  

 
Starting values for seasonal effects by quarter: 

*
1 1 * 80.32S S S= − = − , 2 13.5S = , 3 71.75S = , 
4 4.94S = −  

 
We start the smoothing at time =10t . 
 

10 10 10 9
ˆ ˆ ˆ ˆ345.25, 7.62L R L L= = − =  
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Smoothing under the additive 
decomposition 

 

11 11 10
ˆ (1) 421 (345.25 7.62 71.75) 3.62e X X= − = − + + = −

 

11
10

ˆ 71.75S = →  seasonal effect computed at time 
10t =  for time 11t = . 

 

Smoothed values for time =11t  

11 10 10 11
ˆ ˆ ˆ 345.25 7.62 0.1( 3.62) 352.83L L R eα= + + = + + − =

 

2
11 10 11

ˆ ˆ 7.62 (0.1) ( 3.62) 7.58R R eαγ= + = − − =  
 

3
3 10 110.75 (1 )

71.75 0.75 0.1 0.9( 3.62) 71.51
S S eδ α= + −

= + × × − =
 

 

4
4 10 110.25 (1 )

4.94 0.25 0.1 0.9( 3.62) 5.02
S S eδ α= − −

= − − × × − = −
 

 

1
1 10 110.25 (1 )

80.32 0.25 0.1 0.9( 3.62) 80.40
S S eδ α= − −

= − − × × − = −
 

 

2
2 10 110.25 (1 )

13.5 0.25 0.1 0.9( 3.62) 5.02
S S eδ α= − −

= − × × − = −
 4

1
0jj

S
=

=∑          

 

New forecast: 

11(1) 352.83 7.58 5.02 355.4X = + − =   
 

New forecast error: 12 364 355.4 8.61e = − =  
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Smoothing (cont.) 
 
Continuing the same way for times 

12, 13t t= = and 14t =  yields the following 
smoothed values: 
 
time ˆ

tL  ˆ
tR  1̂S  2Ŝ  3Ŝ  4Ŝ  ˆ (1)tX  1te +  

t=12 361.27 7.66 -
80.21

13.61 71.70 -
4.44 

288.72 -
13.72

t=13 368.8 7.52 -
81.14

13.30 71.40 -
4.75 

389.62 -9.62

t=14 376.22 7.42 -
81.36

12.62 71.20 -
4.97 

454.84 9.16 

 
Prediction for time t=15: 

14
ˆ (1) 376.22 7.42 71.2X = + + = 454.84  

15 464 454.84e = − = 9.16 (less than 2%). 

Prediction for time t=15: 

14
ˆ (2) 376.22 2 7.42 4.97X = + × − = 386.1 

15e = 34.9  (8% error) 


