Solution to HW 2

Question 1.18 Show that one obtains the exponential smoother also as
least squares estimator of the weighted approach

with Y; = Y, for ¢ < 0.

Solution: Use the fact that for ¢ < 0 one has that Y; = Yj in order to get
that
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The derivative with respect to p of the (weighted) sum of squares is equal
to
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and the second derivative is equal to
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The solution obtained by equating the first derivative to zero is indeed a
minimum since the second derivative is positive. Equate the first derivative
to zero to get the equation:

t—1 t—1

S (—afYis+[(1-a) /ey =p- {3 (1 —ay +[(1-a)'/a]} .

=0 J

Il
o

However,
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It follows that the solution is equal to
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which is the exponential smother as indicated by Lemma 1.2.8.
Question 1.13 Verify that the empirical correlation r(k) at lag k for the
trend y, =t,t =1,...,n is given by
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Plot the correlogram for different values of n. This example shows, that the

correlogram has no interpretation for non-stationary processes (see Exercise
1.20).

Solution: The empirical correlation is defined by the formula (see Page
36):
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We will use the formulas
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to get that t =n(n+1)/(2n) = (n+1)/2 and
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where { = ?;lk t/(n—k)=(n—Fk+1)/2. It follows that
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where the sum of the sum of squares is obtained from (1) with n replaced
by n — k. Also
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The summation of all the terms produces a representation to the term
P+ k=)t —1):
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The correlation is obtained by dividing the last line by (1).



