Solution to HW 7

Question 2.29 (i) Consider the process

v, € fort=1
Pl aYiii 4+ fort>1

i.e., ¥; equals the AR(1)-process, conditional on Yy = 0. Compute E(Y})
Var(Y;) and Cov(Yy, Yiis). Is there something like asymptotic stationarity
for t — o0?
(ii) Choose a € (—1,1), a # 0, and compute the correlation matrix of
Yi,.... Y.

Solution: Use the recursion
Vi=aYi1+e=a"Yio+ae1+e=a"Y3+ad’qo+ag_1+e="
in order to get the representation:

Y, = a'Yy + atilel + at7262 4+ 4+ a2et_2 + aei—1 + €

If Yy = 0 we get a representation for Y; that involves the white noise only.
All the white-noise elements have zero mean and variance o2 and they
are uncorrelated. Consequently,

To get the covariance (Cov(f/t, YHS) notice that

t—1 t—2 2
Yi=a"Te1+a" e+ +aeg_o+ a1+ €

Vigs = a7 e + a7 26 + - aPeriso + a6rpso1 + €rys

in order to obtain that

t—1
o ) 1— 2t
Cov(Yy, Yigs) = 02 Zcﬁ(az)2 = o%a® n _22 .
i=0

When ¢ — oo (and s is fixed) we get that the covariance and the variance

converge to the variance and covariance of the stationary AR(1)-process.
For part (ii) see the attached R code.



Question 2.30 Use the IML function ARMASIM (or R) to simulate the
stationary AR(2)- process

Y; = —-0.3Y;—1 +0.3Y;2 + € .

Estimate the parameters a; = —0.3 and as = 0.3 by means of the Yule-
Walker equations using the SAS procedure PROC ARIMA.

Solution: The stationary variance of the AR(2) process satisfies v(0) =
a1y(1) + a2y(2) + o2. From the Yule-Walker Equations we get that v(1) =
a17(0) +agy(1), hence y(1) = y(0)a1 /(1 —az). Also, ¥(2) = a17(1) +azy(0).
Therefore,

7(0) = ary(1) + a2y(2) + 0® = araz + 1)3(1) + a37(0) + o”

It follows that
v(0) =0?/(1 — af(az +1)/(1 — az) — a3) .

The stationary process can be generate by simulating (Yp, Y1) from the
stationary distribution and applying the AR(2) formula for generating sub-
sequent observations. (See the R code.)

As an exercise we can treat the simulated numbers as if they were real
data and use them in order to estimate the parameters. For the Yule-Walker
approach we compute (1) and 7(2) and solve the equation r = Ra, were
r = (r(1),7(2)), a = (a1,a2) and R is a 2 x 2-matrix with 1 in the main
diagonal and 7(1) being the off-diagonal element. (See the R code.)

Question 2.31 Show that the value at lag 2 of the partial autocorrelation
function of the MA(1)-process

Yi=e¢ +ae_1,

is )
a

= rara

Solution: The empirical autocorrelation is obtained by taking the last
element in the vector R,;lrk, where Ry is the autocorrelation matrix up to
lag k — 1 observations and rj are the first k autocorrelations. The partial
correlation function is obtained by the conducting the same operation to the
theoretical counterparts.



Recall that for the MA(1)-process p(1) = a1/(1 + a?) and p(2) = 0. Tt
follows that the matrix of autocorrelations for k = 2 is

b= < p(ll) p(ll) > - Pi= 1—1/)(1)2< —Pl(l) _pl(l) >

The partial autocorrelation of lag 2 is obtained by taking the inner product
between the second row of Py, and the vector (p(1),0):

—p() X pM) +1x0 _ (a/(1+ad)? _ a?

e P GNP R

which produces the result.

Question 2.34 Compute the autocovariance function of an ARMA(1,2)-
process.

Solution: In the spirit of Examples 2.2.7 and 2.2.9, we first find the values
of o, using Theorem 2.2.6 and then apply Theorem 2.2.8 in order to obtain
the autocovariances.

Indeed, g = 1. For w = 1 we use the second expression of the final
display at (2.15) to get that ay = b1 + a1. The third expression produces
ag = by +ajay = by + ay(by + ay).

Using these evaluations to compute covariances we get from the first
equation in (2.16) that

Y(0) — a1y(1) = o (az + bro + ba)
v(1) = a17(0) = o (b1 + by)
7(2) = ary(1) = o”bs

and v(k) = a1y(k — 1) = a¥2~(2), for k > 2. From the second equation we
get that (1) = a17(0) + o?(b1ay + by). Plugging this in the first equation
gives

7(0) = a1[a1y(0) + o*(bray + ba)] + o?(ag + brag + by)
- 02 a9 + (al + 1)b10[1 + (al + ]_)bz
N 1-— a%
v(1) = a17(0) + o (bray + by)

7(2) = a1y(1) 4 o2by .

= 7(0)



