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We use moments from the covariance matrix for spatial panel data to estimate the param-
eters of the spatial autoregression model, including the spatial connectivity matrix W. In
the unrestricted spatial autoregression model, the parameters are underidentified by one
when W is symmetric. We show that a special case exists in which W is asymmetric and its
parameters are exactly identified. If the panel data are stationary and ergodic, spatially and
temporally, the estimates of W and the spatial autoregression coefficients are consistent.
Spatial panel data for house prices in Israel are used to illustrate this methodology.

When observations are available over time as well as across space, these constraints (on W)
can be relaxed. In the particular case where the time dimension is larger than the spatial
dimension, a spatial weight matrix is no longer necessary . . . (Anselin 1988, p. 176)

Introduction

Ever since its inception in the 1970s, the spatial connectivity matrix, commonly denoted by its
row-standardized version, W, has been imposed rather than estimated. Matrix W is imposed
exogenously based on a general notion of how distance affects connectivity.1 In principle,
goodness-of-fit tests may be used to chose between rival definitions of W. In practice, however,
most researchers impose W without empirically testing its restrictions. If W is misspecified,
parameter estimates are likely to be biased and inconsistent in models containing spatial lags
(Stakhovych and Bijmolt 2008). Cuaresma and Feldkircher (2012) show how estimates of
income convergence across European regions may be biased up to 100%, depending on the
specification of W.

In this article, we propose a methodology to estimate W from spatial panel data. Our
estimator is based on the method of moments and is entirely nonparametric. Specifically, our
estimator is designed for the spatial autoregression model in which W is estimated rather than
imposed and in which the spatial autoregression model is heterogeneous across spatial units.

Attempts to estimate W empirically fall into two main groups. The first infers W from the
data using various geostatistical modeling techniques.2 The second, originally proposed by Meen
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(1996), involves the estimation of spatial autocorrelation (SAC) coefficients by regressing residu-
als for region i at time t on the residuals for all other regions. This method is feasible if the panel
is sufficiently long, so that the number of data points exceeds the number of spatial units.
Bhattacharjee and Jensen-Butler (2006) extend this idea to the case in which the SAC coefficients
are inferred from the estimated covariance matrix of the spatial errors. They use this method to
study the diffusion of housing demand across U.K. regions.

Our proposed methodology is similar to that of Bhattacharjee and Jensen-Butler (2006),
except that we are concerned with the estimation of spatial lag coefficients, whereas they are
concerned with SAC. Specifically, we hypothesize a spatial autoregression model to be estimated
from spatial panel data. We infer W directly from the covariance matrix for the data, from which
we also infer heterogeneous spatial autoregression coefficients. We show that W and the spatial
autoregression coefficients frequently are not identified because insufficient moment conditions
exist. To address this issue, we suggest a special case in which W is asymmetric and the spatial
autoregression coefficients are exactly identified and may be estimated consistently. Moreover,
we show that this special case turns out to be numerically and computationally tractable. We
present an empirical application for this special case using spatial panel data for house prices in
Israel.

Methodology

In this section, we show how spatial weights and SAC coefficients may be estimated from spatial
panel data. Our identification procedure is based on restrictions applied to these weights and
coefficients.

The data generating process
Spatial units are labeled by i = 1, 2, . . . , n and time periods by t = 1, 2, . . . , T. Let yt denote an
n-vector of outcomes in period t for each spatial unit. The panel spatial autoregression model may
be written as

y BWyt t t= + +α ε (1)

where a is an n-vector of common or fixed effects, and B is an n-by-n diagonal matrix of spatial
autoregression coefficients with diagonal elements bi. If these spatial autoregression coefficients
are homogeneous so that bi = b, B is replaced by a scalar b in equation (1). The variance-
covariance matrix S = E(ee′) is assumed to be time invariant (temporal homoscedasticity) and
diagonal (no SAC between ei and ej), but may be spatially heteroscedastic so that the variance of
ei (σi

2) may vary between spatial units. The spatial Wold (1938) representation of equation (1) is

y A

A I BW

t t

N

= +
= − −

( )

( )

α ε
1 (2)

Invertibility requires that the determinant of In – BW be nonzero: that is, the rank of IN – BW
equals n. If, for example, bi = b = 1 and the row elements of W sum to 1, IN – BW is not invertible.
In this case, In – BW is invertible provided at least one of the spatial autoregression coefficients
is less than one. Let V = yy ′ denote the population covariance matrix of the ys. Substituting
equation (2) for y gives
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V A A H= ′ =Σ (3)

Note that if A is symmetric, then A = A′. Because V is symmetric, it contains 1/2n(n + 1)
independent elements. If W is symmetric and Sjwij = 1 (row sum equals unity), W contains
1/2(n – 2)(n – 1) unknown wij elements. There are also n unknown spatial autoregression
coefficients and n unknown variances (diagonal elements of S), resulting in 1/2n(n + 1) + 1
unknown parameters altogether. Therefore, an identification deficit of one exists; the number of
population moments in V is one less than the number of unknown parameters. If W is asymmetric,
the identification deficit increases to 1/2n(n + 1). It increases yet further if e happens to be spatially
autocorrelated.

Even if W is symmetric, BW and therefore A generally are asymmetric. If the spatial
autoregression coefficients are homogeneous, that is, bi = b, A is symmetric if W is symmetric.
Nevertheless, H in equation (3) is symmetric. As mentioned, the identification deficit is smallest
and equal to one when W is symmetric. In this case, a tempting change might be to exogenize one
element of W or B in order to exactly identify all of the parameters. However, testing the validity
of such arbitrary identifying restrictions is impossible.

A special case: heterogeneous mutuality
The identification deficit disappears in a special case in which BW = G happens to be a symmetric
matrix, which implies that W is asymmetric,3 but the direct spillover effect of shocks between
spatial units4 are mutual. In this special case, the direct spillover effects of shocks in unit j on unit
i are assumed to equal the direct effects of shocks in unit i on unit j. This mutuality is
heterogeneous because it varies between spatial units. The leading diagonal of G is zero; hence,
gii = 0. The off-diagonal elements have the property gij = –biwij = gji = –bjwji, which implies that

β
β

i

j

ji

ij

w

w
= (4)

In this case, matrices B, W, and S are exactly identified. H comprises 1/2(n – 1)(n – 2) unknown
elements of G and n diagonal elements of S, which are exactly equal to the 1/2n(n + 1)
independent elements of V.

Using the row sum constraints, identification of the spatial autoregression coefficients
becomes possible because

g wij
j i

N

i ij
j i

N

i
≠ ≠

∑ ∑= =β β (5)

which, in turn, may be used to solve for the spatial weight as follows:

w
g g

g
ij

ij

i

ij

ij
j i

N
= − = −

≠
∑β (6)

This special case is solvable because the solution for V = H conveniently has a hierarchical
mathematical structure.5 First, G and S are solved by equation (3). Then B is solved by equation
(5). Finally, W is solved by equation (6).

The first step is facilitated by using V–1 = (In – G)S-1(IN – G). If, for illustrative purposes,
n = 3, then
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The six independent elements of V–1 solve for the six unknown parameters: g12, g13, g23, �1, �2, and
�3. The six independent elements in equation (7) are nonlinear quadratic equations in the
unknown parameters. The elements of V–1 involve products of the variances and covariances of
the data. Therefore, the determinant of V–1 involves products of the fourth moments of the data.
Subsequently, the variances of the estimates of G and S involve the eighth moments of the data.
Consequently, the eighth moments of the data are assumed to be finite. If the data are normally
distributed, then their eighth moment equals 105�8.

Consistent estimates of B, W, and S
In this section, we discuss how the population parameters (B, W, and S) can be estimated for the
special case from sample panel data of T observations on n spatial units. In contrast to nonspatial
panel data, n is naturally fixed in spatial panel data because it usually comprises all the spatial
units in a country or region. The sample size varies with T. Given n, the sample covariance matrix
estimated from T observations, V̂T , equals the estimate of ASA′, which requires that T > n.
Because the probability limit of a product is equal to the product of the individual probability
limits, equation (3) implies

p V p A p p AT T T Tlim lim lim limˆ ˆ ˆ ˆ( ) = ( ) ( ) ( )′Σ (8)

Therefore, if

p V VTlim ˆ( ) = (9)

then p lim(ÂT) = A and p Tlim Σ̂ Σ( ) = . The main parameters of interest are B and W, which
according to equation (2) are related to A nonlinearly. According to the Slutzky theorem,6 the
probability limit of a nonlinear function of x equals the nonlinear function of the probability limit
of x. Therefore, because p lim(ÂT) = A, the Slutzky theorem states that p B BTlim ˆ( ) = and
p lim(ŴT) = W. In short, consistency requires that equation (9) be valid.7

If the panel data are independent, equation (9) is obviously valid. However, they are
dependent for two reasons. First, the units in the panel are spatially dependent. Second, the data
may be temporally dependent. For example, yit might be temporally autocorrelated within and
perhaps between spatial units.8 Because n is fixed, the former dependence is not important for
consistency of V̂. However, the latter dependence is obviously important. The conditions for
consistency9 due to the latter are as follows:

(1) the panel data are temporally stationary; that is, the unconditional sample moments are
independent of t; and

(2) the panel data are ergodic; that is, events that are separated far enough in time are asymp-
totically independent.
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In the next section, we evaluate these conditions using panel unit root tests. If the data happen to
be temporally autocorrelated, then the long-term covariance matrix (VLT) rather than V should be
used because consistent estimates of B and W refer to long-term covariances, which are asymp-
totic, rather than to sample covariances. If the data are not autocorrelated, then VLT = V.

In conventional spatial autoregressive models in which W is imposed, the spatial autoregres-
sion coefficients cannot be estimated by ordinary least squares because Wyt in equation (1) is
endogenous; it is not independent of et. Instead, the spatial autoregressive model coefficients have
to be estimated by the methods of maximum likelihood or instrumental variables. This endoge-
neity problem does not arise10 with our proposed estimator because equation (3) is not affected
by the endogeneity of Wyt. This convenient property results from equation (2) being the spatially
reduced form of the spatial autoregression model. Therefore, the population moments of V
exactly identify B, W, and S in the special case. Estimation error is induced in the usual way
because, in practice, these parameters are estimated from sample moments. Analytical solutions
for the variances of the estimates of W and B are not available because these estimates are
nonlinear functions of the sample moments. However, they may be obtained numerically by panel
bootstrapping V̂T . As mentioned, the eighth moments of the data are assumed to be finite;
otherwise, the variances of the estimates of B and W do not exist.

Empirical application

This section illustrates the methodology. We use spatial panel data for the logarithm of regional
house prices (measured in constant prices; see Fig. 1) in Israel observed annually between 1975
and 2006 for the nine regions mapped in Fig. 2. We report estimates of the spatial connectivity
matrix (W) and the spatial autoregressive model coefficients (B) for the special case given in the
section “A special case: heterogeneous mutuality.”

Figure 1. The logarithm of 1991 regional house prices in Israel.
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The data
The panel unit root test statistic (named IPS because of its formulation by Im, Pesaran, and Shin
(2003)) is -1.74, and its common factor counterpart (CIPS, so named by Pesaran (2007)) is
-1.90. Therefore, the data are nonstationary.11 However, the data are stationary in first differences
because the IPS and CIPS are -6.03 and -4.22, respectively.

The correlation matrices for levels (d = 0) and first differences (d = 1) of the logarithm of real
house prices are given in Table 1. Not surprisingly, the correlations are larger in levels (d = 0) than
in first differences (d = 1). However, even in this latter case, the correlations are large and
positive, and range between 0.22 and 0.95. Because the data are stationary in first differences, the
correlation matrix in Table 1 is a consistent estimate for the case when d = 1.

Table 1 presents the correlation matrix rather than the covariance matrix because correlations
are easier to interpret. The long-term covariance matrix (d = 1) differs from its (unreported)
counterpart in Table 1 if the change in the logarithm of house prices is autocorrelated within and

Figure 2. Geographic regions of Israel.
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between spatial units. We estimated a first-order panel vector autoregression (VAR) model in
which the change in the logarithm of house prices in each region is hypothesized to depend on
its own lag and on the lags of other regions. The P-value of the estimated model is 0.541, which
indicates that the 81 VAR parameters are not significantly different from zero. We also estimated
simple autoregressive (AR[1]) models for each region. Seven of the nine AR parameters are not
statistically significant; Haifa and Dan have P-values of 0.015 and 0.022, respectively. A joint test
of these nine AR coefficients shows that they are not statistically significant from zero. Therefore,
we conclude that the logarithms of house prices are indistinguishable from a random walk. This
means (conveniently) that the long-term covariance matrix (for d = 1) is equal to its counterpart
in Table 1.

We also calculate the eighth sample moments to ensure that they are finite. These eighth
moments are equal to 105�8. Since the data are in logarithms, their standard deviation is a
fraction, hence, 0 < � < 1. Since the eighth moments involve raising the standard deviation to the
power of eight, these moments are likely to be small. The eighth moments are considerably
smaller than 105�8 in all regions except the North, where the eighth moment is 5.32 ¥ 10–7 and
105�8 = 4.28 ¥ 10–7. Therefore, we are satisfied that the eighth moments are finite.

Basic results
This section summarizes results for the special case estimates of W and the spatial autoregression
coefficients using equation (3) for the covariance matrix of the log-differences of regional house
prices. We use differences rather than levels because the levels are nonstationary. Therefore,
estimates of G = BW are consistent because the covariance matrix is consistent. As noted in the
methodology section, the solution to the special case has a three-step recursive structure that
greatly simplifies the computational burden. We have no reason to believe that our proposed
methodology for the special case would not be feasible if n happens to be larger than nine.

Table 1 Correlation Matrix for Regional House Prices

d South Dan Tel Aviv Sharon Center Haifa North Jerusalem

Krayot 0 0.959 0.978 0.967 0.977 0.953 0.733 0.770 0.956
1 0.711 0.888 0.797 0.865 0.755 0.824 0.225 0.748

South 0 0.954 0.943 0.953 0.959 0.709 0.918 0.028
1 0.797 0.751 0.800 0.806 0.703 0.670 0.698

Dan 0 0.991 0.994 0.972 0.638 0.793 0.971
1 0.950 0.947 0.891 0.817 0.391 0.907

Tel Aviv 0 0.987 0.961 0.648 0.774 0.980
1 0.914 0.886 0.715 0.413 0.940

Sharon 0 0.971 0.662 0.779 0.975
1 0.855 0.910 0.395 0.888

Center 0 0.667 0.765 0.948
1 0.638 0.549 0.802

Haifa 0 0.469 0.708
1 0.322 0.730

North 0 0.737
1 0.326
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However, if n is relatively large, T must be correspondingly larger because the moment estimator
requires that T > n. This means that the moment estimator is most probably not feasible if n is
large.

The estimated W matrix for the special case is reported in Table 2 for when V is the
covariance matrix for first differences (d = 1) of the data. The elements of the estimated W matrix
range between -0.16 and 0.56, and the estimated W is asymmetric. Although some cases have
near symmetry, for example, between South and Krayot, the elements of W are symmetric for
most cases. Take, for instance, the weight linking Jerusalem with Tel Aviv: it is 0.40 and the
weight linking Tel Aviv with Jerusalem is 0.56. Therefore, Jerusalem is more connected to Tel
Aviv than Tel Aviv is to Jerusalem. Notice that these asymmetric weights are positively corre-
lated. Note also that some elements are negative.12 We see no reason why spatial weights must be
positive, because spatial units may have “good” neighbors and “bad” neighbors.13 However, no
pair has wij with the opposite sign to wji, although no inherent reason exists why this should not
arise.

Neither here nor elsewhere do we try to interpret the relative orders of magnitude of the
estimated elements of W because our main purpose is to demonstrate the methodology. Accord-
ing to Table 2, the strongest spatial connectivity occurs between Jerusalem and Tel Aviv, between
Haifa and Krayot, and between North and South. These connections suggest that imposing W a
priori in terms of, for example, distance and contiguity would be quite inappropriate and
misleading.

Table 3 reports the spatial autoregression coefficients and the variances of e for each of the
nine regions. The spatial autoregression coefficients range between 0.55 and 1.03. Because
spatial weights are row summed to 1, spatial autoregression coefficients must be less than one for
stationarity and the invertibility of I – BW. As mentioned in the “Data” section, invertibility does
not require that all the spatial autoregression coefficients be less than one. Nevertheless, the panel
unit root tests clearly indicate that the data are stationary in log first differences. The standard

Table 2 Spatial Connectivity Matrix (d = 1)

Krayot South Dan Tel Aviv Sharon Center Haifa North Jerusalem

Krayot -0.058 0.279 0.037 0.249 0.111 0.365 0.123 -0.096
South -0.059 0.127 -0.056 0.158 0.294 0.175 0.362 -0.002
Dan 0.214 0.097 0.295 0.119 0.176 0.120 -0.093 0.074
Tel Aviv 0.026 -0.039 0.273 0.125 0.199 -0.046 0.058 0.404
Sharon 0.177 0.111 0.110 0.126 0.125 0.146 0.026 0.179
Center 0.095 0.249 0.196 0.241 0.150 -0.099 0.130 0.038
Haifa 0.343 0.163 0.147 -0.061 0.193 -0.109 0.188 0.166
North 0.148 0.470 -0.159 0.108 0.048 0.198 0.210 -0.032
Jerusalem -0.094 -0.002 0.095 0.561 0.248 0.044 0.173 -0.024

Table 3 Estimates of Spatial Autoregressive Model Coefficients and �(e)

Krayot South Dan Tel Aviv Sharon Center Haifa North Jerusalem

Coefficient 0.726 0.721 0.949 1.027 1.023 0.848 0.772 0.554 0.739
�(e) 0.072 0.075 0.027 0.043 0.056 0.077 0.117 0.159 0.057

Geographical Analysis

8



errors range between 0.03 and 0.16, which when expressed as percentages correspond to 2.74%
and 17.23%, respectively. The spatial autoregression model fits best in Dan and worst in the
North. Substantial heterogeneity exists in the spatial autoregression coefficients, and some of
these exceed one. Unit spatial autoregression coefficients induce spatial unit roots within spatial
units.14 However, the majority of the spatial autoregression coefficients being less than one
ensures that the data as a whole are stationary.

Letting the data “speak for themselves” seems to lead to quite different estimates of W than
distance alone might suggest. Indeed, some of the spatial weights are negative, which cannot arise
in conventional models. Therefore, these empirical estimates of W are very different from
conventional definitions of spatial connectivity. Although the spatial weights are asymmetric,
spatial impulse responses or spillover effects are symmetric by definition in the special case. The

spatial spillover effect of unit j on unit i is defined as g
y

wij
i

j
i ij=

∂
∂

=
ε

β . The assumption of

heterogeneous mutuality means that gji = gij. For example, the spillover effect from Tel Aviv on
Jerusalem is 0.74 ¥ 0.56 = 0.41, which equals the spillover effect from Jerusalem to Tel Aviv. The
spatial spillover effect will be negative if wij is negative because the spatial autoregressive model
coefficient is positive. For example, in the case of the spatial spillover from the Dan region on the
North, and vice versa, the spatial spillover is -0.15.

Bootstrapping
Had the population covariance matrix (V) been known, its 1/2n(n – 1) elements would solve the
unknown population parameters in the special case (BW and S). The population variances of
BW may be calculated in the normal way using S. The sample covariance matrix is finite
because T is given (36 in our case). However, because n is fixed at nine in our case, the sample
covers all spatial units in Israel. Therefore, we have nT = 324 data points to estimate 90
parameters (72 elements of W, and 9 elements each of B and S), which leaves sufficient
degrees of freedom. We use the panel bootstrap15 to compute the standard errors of the esti-
mated components of W and the spatial autoregression coefficients for the case when d = 1.
This procedure draws samples from the residuals of the estimated spatial autoregression model
(e). Because these residuals are spatially uncorrelated, we do not have to take direct account
of spatial dependence in the bootstrap; this dependency is taken into consideration by the
spatial autoregression model itself. Therefore, the spatial dependence in the sample data is
appropriately incorporated into the bootstrapping exercise. We used 1,000 replications.16

Because the bootstrapped means differ slightly from the estimates reported in Tables 2 and 3,
we report in Tables 4 and 5 the means as well as the standard deviations of the bootstrapped
parameters.

Table 4 indicates that the elements of W are estimated imprecisely. Indeed, most of the
elements of W are not statistically significant. We highlight in bold the eight elements of W that
have means at least twice as large as their corresponding standard deviations. Notice that none of
the negative spatial weights is statistically significant. By contrast, all the spatial autoregression
coefficients reported in Table 5 are statistically significant.

Conclusion

We propose a nonparametric moment estimator, designed for spatial panel data, to estimate the
spatial connectivity matrix W in heterogeneous spatial autoregression models. Normally, W is
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imposed rather than estimated by an investigator. Our proposal joins recent suggestions
to estimate W rather than to impose it. However, our proposal differs. The basic insight is that
the variance-covariance matrix of the panel data contains information about latent spatial
dependence.

If W is symmetric, then an identification deficit of one exists because the data have insuffi-
cient moment conditions to identify all the parameters in a spatial autoregression model.
However, in a special case of mutual heterogeneity, the parameters are exactly identified.
Therefore, we present results for the special case. Solving the parameters from the moment
conditions involves finding solutions to a relatively large number of simultaneous equations that
happen to be nonlinear polynomials. Thanks to the hierarchical structure of the special case;
however, no difficulty exists in obtaining solutions.

We used panel data for regional house prices in Israel in nine regions to illustrate the
methodology. The special case involves inversion of an n-by-n matrix and the solution to
1/2n(1 + n) nonlinear second-degree polynomials. Of course, matrix inversion is feasible for n

Table 4 Bootstrapped Means and Standard Deviations of W

Krayot South Dan Tel Aviv Sharon Center Haifa North Jerusalem

Krayot -0.098 0.267 0.019 0.264 0.119 0.378 0.118 -0.069
0.188 0.138 0.120 0.157 0.193 0.173 0.168 0.161

South -0.102 0.140 -0.057 0.149 0.361 0.148 0.369 -0.007
0.193 0.143 0.128 0.180 0.162 0.179 0.131 0.204

Dan 0.212 0.107 0.332 0.106 0.133 0.152 -0.109 0.068
0.114 0.105 0.124 0.110 0.102 0.082 0.072 0.118

Tel Aviv 0.009 -0.045 0.308 0.119 0.186 -0.048 0.053 0.416
0.089 0.089 0.106 0.096 0.101 0.067 0.054 0.091

Sharon 0.191 0.103 0.101 0.118 0.155 0.130 0.014 0.188
0.105 0.124 0.104 0.095 0.111 0.113 0.076 0.103

Center 0.110 0.305 0.152 0.224 0.182 -0.075 0.075 0.026
0.177 0.129 0.118 0.120 0.128 0.189 0.144 0.177

Haifa 0.353 0.150 0.182 -0.068 0.177 -0.097 0.172 0.130
0.123 0.172 0.083 0.092 0.149 0.210 0.142 0.150

North 0.195 0.515 -0.191 0.101 0.028 0.120 0.251 -0.019
0.321 0.210 0.124 0.106 0.146 0.245 0.209 0.185

Jerusalem -0.076 -0.010 0.096 0.576 0.252 0.033 0.135 -0.005
0.159 0.198 0.161 0.131 0.130 0.203 0.161 0.125

Note: Special case, d = 1. Italicized numbers indicate standard errors. Bold items exceed two
standard errors.

Table 5 Bootstrapped Means and Standard Deviations of B

Krayot South Dan Tel Aviv Sharon Center Haifa North Jerusalem

0.763 0.727 0.957 1.022 1.001 0.847 0.778 0.540 0.740
0.138 0.087 0.069 0.081 0.096 0.099 0.133 0.124 0.103

Note: See Table 4.
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considerably greater than nine. Our experience with MATLAB indicates that the solution to
nonlinear polynomials with n considerably greater than nine also is feasible.

Notes

1 This approach is driven by a gravity-type notion of how proximity affects interaction using differing
metrics for distance decay such as inverse distance raised to a power (Getis and Aldstadt 2004) and
bandwidth distance decline (Fotheringham, Brunsdon, and Charlton 2002).

2 Aldstadt and Getis (2006) use an algorithm that searches for spatial clustering in the vicinity of selected
seeds and constructs a data-driven empirical representation of W. Mur and Paelinck (2011) group
correlation coefficients using an optimization algorithm so that correlated observations are also related
spatially. Griffith (1996) suggests spatial filtering. The principal eigenvector of W provides a measure of
the relative positioning of each spatial unit and expresses the general degree of connectivity between
spatial units. Several studies present tests of the conditions under which spatial filters are statistically
significant (Getis and Griffith 2002; Dray, Legendre, and Peres-Neto 2006; Tiefelsdorf and Griffith
2007).

3 This is the case to which Anselin (1988) refers in the opening quotation.
4 The direct spillover effect of unit j on unit i is defined as gij = ∂yi/∂ej.
5 The spatial autoregression model is not recursive because no unconnected spatial units are present.

However, the solutions for B and W are recursive because they are derived from the solution for G.
6 The Slutzky theorem states that p lim[f(x)] = f[p lim(x)]. Also p lim(A�) = p lim(A)′.
7 Because the Slutzky theorem implies p V Vlim ˆ − −( ) =1 1, equation (7) implies p G Glim ˆ( ) = , and

p lim Σ̂ Σ( ) = .
8 In equation (1), eit might be correlated with eit-1 and ekt-1.
9 See, for example, Spanos (1986) and Davidson and MacKinnon (1993).

10 The estimates of B and W depend upon the data. This is true of any estimate. However, this does not
mean that the estimates are affected by simultaneous equations bias.

11 These unit root tests ignore spatial dependence. However, provided the SAC coefficient is not too large,
the size of these tests is not seriously affected. See Baltagi, Bresson, and Pirotte (2007).

12 Meen (1996) and Bhattacharjee and Jensen-Butler (2006) also report negative elements in W.
13 In epidemiological models, contagion may be negative and positive (Aron 1983). Neighbors may be

contagious as well as immunizing.
14 Unit root tests for spatial autoregressive model coefficients are discussed by Beenstock, Feldman, and

Felsenstein (2012).
15 Bootstrapping is simpler here than in Bhattacharjee and Jensen-Butler (2006) because, apart from W,

they estimate other structural model parameters. However, they do not use the panel bootstrap.
16 See Andrews and Buchinsky (2000) regarding the desirable number of bootstrap replications.
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