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Spatial Vector Autoregressions

MICHAEL BEENSTOCK & DANIEL FELSENSTEIN

(Received August 2006; revised March 2007)

ABSTRACT A spatial vector autoregressive model (SpVAR) is defined as a VAR which includes

spatial as well as temporal lags among a vector of stationary state variables. SpVARs may contain

disturbances that are spatially as well as temporally correlated. Although the structural parameters are

not fully identified in SpVARs, contemporaneous spatial lag coefficients may be identified by weakly

exogenous state variables. Dynamic spatial panel data econometrics is used to estimate SpVARs.

The incidental parameter problem is handled by bias correction rather than more popular alternatives

such as generalized methods of moments (GMM). The interaction between temporal and spatial

stationarity is discussed. The impulse responses for SpVARs are derived, which naturally depend

upon the temporal and spatial dynamics of the model. We provide an empirical illustration using

annual spatial panel data for Israel. The estimated SpVAR is used to calculate impulse responses

between variables, over time, and across space. Finally, weakly exogenous instrumental variables are

used to identify contemporaneous spatial lag coefficients.

Autoregressions du vecteur spatial

RÉSUMÉ Un ‘spatial vector autoregressive model’ (modèle autorégressif de vecteur spatial*
SpVAR) se définit comme VAR, qui inclut des décalages spatiaux et temporaires parmi un vecteur

de variables d’état stationnaire. Les SpVAR peuvent contenir des perturbations qui sont en corrélation

au niveau spatial et temporel. Bien que les paramètres structurels ne soient pas entièrement identifiés

dans les SpVAR, des coefficients contemporains de variable aléatoire décalée peuvent être identifiés par

des variables d’état faiblement exogènes. L’économétrie de données dynamiques spatiales recueillies au

moyen d’un panel est utilisée pour faire une estimation des SpVAR. Le problème du paramètre

annexe est traité par correction erreur systématique plutôt que par des alternatives plus populaires, telles

que le GMM. La relation entre la stationnarité temporelle et spatiale est discutée. Les réponses

impulsionnelles pour les SpVAR en sont dérivées, ce qui dépend naturellement de la dynamique

temporelle et spatiale du modèle. Nous fournissons une illustration empirique à l’aide des données

annuelles spatiales du panel pour Israël. Le SpVAR estimé est utilisé pour le calcul des

réponses impulsionnelles entre les variables, sur une période de temps et à travers l’espace. Enfin,

des variables instrumentales faiblement exogènes sont utilisées pour identifier des coefficients

contemporains de variables aléatoires décalées.
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 Autoregresiones Vectoriales Espaciales

RESUMEN Un modelo autoregresivo vectorial espacial (SpVAR) se define como un VAR que

incluye retardos espaciales además de temporales entre un vector de variables de estado estacionario. Los

SpVARs pueden contener disturbios correlacionadas espacialmente además de temporalmente. Aunque

los parámetros espaciales no están identificados del todo en los SpVARs, se pueden identificar

coeficientes de retardo espacial mediante variables de estado débilmente exógenos. Se utilizan

económetras de datos de panel dinámicos espaciales para estimar SpVARs. El problema del parámetro

incidental se manipula con una corrección de la tendencia en vez de con las alternativas más populares,

tales como GMM. Se habla de la interacción entre la inmovilidad temporal y la espacial. Se derivan las

respuestas de impulso de los SpVARs, que naturalmente dependen de las dinámicas espaciales y

temporales del modelo. Proporcionamos una ilustración empı́rica utilizando datos anuales de panel de

datos espaciales para Israel. Los SpVAR estimadas se utilizan para calcular respuestas de impulso

entre variables, en el tiempo, y por el espacio. Finalmente, se utilizan variables instrumentales

débilmente exógenos para identificar coeficientes de retardo espacial contemporáneos.

KEYWORDS: Spatial econometrics; spatial autocorrelation; vector autoregressions; spatial panel data

JEL CLASSIFICATION: C21; C22; C23; C53

1. Introduction

Regional scientists have shown that spatial dependence in economic data may alter,
and even reverse, the results of standard time series models. For example, Rey &
Montouri (1999) have shown that beta convergence tests depend upon spatial
spillovers in the USA. A similar finding is reported by Badinger et al . (2004) for the
EU. These and other studies establish the importance of integrating spatial and
temporal lags in the econometric analysis of regional data. However, the literatures
on temporal and spatial dynamics have more or less progressed along separate tracks.
In this paper we try to bring the two literatures together.

We begin by recalling some key results in the econometric analysis of time
series data. In particular we discuss the relationship between structural models and
vector autoregressions (VARs) and the identification problem that arises in
structural vector autoregressions (SVARs). In VAR models the dynamics are
naturally temporal. Next, we recall key results in the spatial econometric analysis of
cross-section data, especially regarding the identification of spatial lags and spatial
autocorrelation. In cross-section data the dynamics are naturally spatial. Spatial and
temporal dynamics meet in spatial panel data models, since they incorporate cross-
section and time series dimensions. A very large body of literature (Hsiao, 2003;
Baltagi, 2005) deals with the econometric analysis of temporal dynamics in panel
data. A considerably smaller body of literature (Elhorst, 2003, 2004; Lee, 2004) is
concerned with the econometric analysis of spatial dynamics in temporally static
panel data models. We recall the main results of these quite separate literatures on
panel data. There is, however, virtually no literature at all on spatial panel data
models which embody both spatial and temporal dynamics.1

Our purpose in this paper is therefore to consider how spatial panel data may be
used to estimate models which jointly specify temporal dynamics as in VARs and
spatial dynamics. We refer to such models as spatial vector autoregressions2

(SpVARs). SpVARs differ from VARs in that they incorporate spatial as well as

168 M. Beenstock & D. Felsenstein
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 temporal dynamics, and they differ from spatial models because they incorporate
temporal dynamics. SpVARs contain two types of spatial dynamics. Variables at
time t may depend upon contemporaneous spatial lags as in spatial models for
cross-section data. In addition, variables at time t may depend upon spatial lags at
time t�t (t�0). We refer to the latter as ‘lagged spatial lags’. In the absence of
spatial lags, SpVARs are identical to VARs, and in the absence of temporal lags
SpVARs are identical to spatial panel models.

We ask whether SpVARs identify all the structural parameters to be estimated.
These parameters include the model’s underlying parameters in addition to its
spatial and temporal lag coefficients. Since it is well known that structural VAR
models (SVARs) generally fail to identify all the structural parameters, it is not
surprising that the same applies to SpVARs. We show that the eigenvalues in
SpVARs depend upon spatial and temporal dynamics, therefore stationarity
depends upon both types of dynamics, as noted by Mur & Trivez (2003).3

We distinguish between SpVARs with and without spatial autocorrelation
(SAC) in the residuals. We compare SpVARs in which there are no spatial lags but
the residuals are spatially correlated, with SpVARs in which there are spatial lags
but the residuals are spatially uncorrelated. The former is nested in the latter and a
common factor test may be used to distinguish empirically between them. We also
show that the impulse responses of SpVARs with spatial autocorrelation are a
simple transformation of the impulse responses in which regional shocks are
assumed to be uncorrelated.

We illustrate the methodology with an application to regional data in Israel.
The estimated SpVAR contains four variables in nine regions over 18 years. The
SpVAR is estimated as a homogeneous stationary panel in which regions are
specified to have specific effects, and within-variable shocks are assumed to be
spatially correlated. Panel unit root tests are used to determine the order of
differencing in the SpVAR. Finally, the impulse responses of the estimated SpVAR
are calculated under the assumption that regional shocks are independent, and
under the assumption that they are spatially correlated.

2. Econometric Theory

In what follows regions are labelled as n�1, 2, . . . , N ; time periods are labelled as
t�1, 2, . . . , T ; endogenous variables are labelled as Yk , where k�1, 2, . . . , K ;
exogenous variables are labelled as Xp , where p�1, 2, . . . , P ; and lag orders are
labelled as j�1, 2, . . . , q .

2.1. SVARs and VARs

The main purpose of this section is to recall that structural parameters are under-
identified in VARs.4 Let Yt denote a K�1 vector of variables measured at time t
with elements Ykt . We write the structural VAR model for Y as:

Yt �AYt�
Xq

j�1

BjYt�j�ut; (1)

where A is a K�K matrix of a coefficients with zeros along the leading diagonal,
Bj is a K�K matrix of coefficients and ut is a vector of autocorrelated disturbances:

Spatial Vector Autoregressions 169
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ut �
Xq

j�1

Rjut�j�ot; (2)

where Rj is a K�K matrix of j th order serial correlation coefficients, and ot is a
vector of white noise residuals with variance�covariance matrix V. In the iid case
V�s2IK . Equation (1) constitutes a linear structural model in which akm is the
contemporaneous causal effect of Ym on Yk .

In equation (1) the K(K�1) unknown elements of A are not identified
because Yt and ut are not independent. Nor are the K2 elements of Bj identified
because Yt�j is not weakly exogenous unless Rj �0. The VAR model implied by
equation (1) is obtained by solving equation (1) for Yt :

Yt �
Xq

j�1

PjYt�j�vt; (3)

where

Pj �MBj � (IK �A)�1Bj

vt �Mut:

Provided Rj �0, P is identified in equation (3) and Sv �MVM ’ is the symmetric
variance�covariance matrix of the VAR residuals. When, for example, q�1,
equation (3) contains K2 parameters from P and ½K(1�K) parameters from Sv ,
making a total of 1½K2�½K altogether. The number of unknown structural
parameters include K (K�1) elements of A , K2 elements of B and ½K (1�K)
elements of V, making a total of 2½K2�½K . Therefore, the structural parameters
are under-identified by a factor of K (K�1). If, however, V�s2IK then the
number of unknown structural parameters is reduced to 2K2, and the identification
deficit reduces to ½K(K�1). The identification deficit is always positive and
increases non-linearly with the number of variables participating in the SVAR. In
the degenerate case when K�2 and o is iid there are eight structural parameters to
be identified but the VAR contains seven restrictions, in which case the
identification deficit is 1.

Another point we wish to make is that an SVAR with R�0 nests within it a
static model in which R"0. In the latter, B�0, and, after substituting equation (2)
into (1) equation (1), becomes:

Yt �AYt�R(IK �A)Yt�1�ot: (4)

In the former case equation (1) is:

Yt �AYt�BYt�1�ot: (5)

Whereas in equation (4) the coefficient matrix of Yt �1 is constrained to be related
to the coefficient matrix of Yt , in equation (5) the two matrices are unconstrained.
Therefore, equation (4) is a restricted version of equation (5); it contains a common
factor restriction of (IK �RL ), where L denotes the lag operator. This common
factor restriction may be tested using a Wald test (Hendry, 1995, chap. 7.7).

170 M. Beenstock & D. Felsenstein
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 2.2. Spatial Econometrics: Cross-section Data

Whereas in Subsection 2.1 there was only one region and there were no exogenous
variables (N�1 and P�0), in this subsection there are many regions (N�1) but
since the data are cross-sections there is only one time period (T�1). Yk is an
N�1 vector of observations on variable k and Y �

k �WYk denotes the value of
variable k in the ‘neighbourhood’ of region n . W is an N�N connectivity matrix
with known elements wni with wnn �0.

The structural model for variable k in region n is represented by:

Ykn�
XP

p�1

gkpXpn�
XK

i�1

ukiY
�
in�ekn; (6)

where Xp are exogenous variables. In equation (6) ukk are spatial lag coefficients,
uki are cross-spatial lag coefficients, ek �FWek�ok , where F is a K�N matrix of
spatial autocorrelation coefficients, and ok is an N�1 vector of iid residuals.
Writing equation (6) in matrix notation yields:

Y �G�X�U�W�Y �e (7)

e�F�W�e�o; (8)

where Y is an NK�1 vector of endogenous variables (stacked by n ), X is an
NP�1 vector of exogenous variables, G +�IN �G is an NK�NP block diagonal
matrix with G along the diagonal, where G is a K�P matrix of g coefficients,
U +�IN �U is an NK�NK block diagonal matrix with U along the diagonal,
where U is a K�K symmetric matrix of ? coefficients, W +�IK �W is an NK�
NK block diagonal matrix with W along the diagonal, and F +�IN �F is a
KN�KN block diagonal matrix of spatial autocorrelation coefficients with F
along the diagonal.

Identification of the structural parameters requires that the X variables are not
perfectly spatially collinear (Manski, 1993) and wni B1. If there are no X variables,
the spatial lag coefficients are not identified. Therefore, just as the SVAR
coefficients are under-identified in the absence of exogenous variables, so the
spatial lag coefficients are under-identified in the absence of exogenous variables.

In equation (7) the spatially lagged dependent variables are not independent of
e , hence OLS estimates of equation (6) are biased and inconsistent. The solution to
this problem is to rewrite equation (7) as:

(INK �U�W�)Y �G�X�e (9)

whose parameters may be estimated non-linearly by maximum likelihood (Anselin,
1988), provided, of course, that G and U are identified.

Equation (9) solves for the spatial impulse response profile, which shows the
effect of Xp in region i on Yk in region n (hpkni ):

Y �H(X�e) (10)

H � (INK �U�W�)�1:

In the absence of spatial lags hpkni �0 when i"n . In this case shocks to Xk in
region j do not propagate beyond region j .

Spatial Vector Autoregressions 171
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 In Subsection 2.1 we saw that temporal static models with serially correlated
errors are restricted versions of dynamic models with serially independent errors.
The same applies to spatial models. Spatially static models with spatially
autocorrelated errors are restricted versions of spatially dynamic models with
spatially independent errors. We demonstrate this by setting K�1 for simplicity.
The spatially static model is:

Y �GX�e

e�FWe�o;

which may be written as:

(IN �FW )Y �G(IN �FW )X�o (11)

The spatially dynamic model is:

(IN �UW )Y �GX�o: (12)

Equation (11) contains the common factor restriction I�FW , whereas equation
(12) does not. Therefore equation (12) is a restricted version of equation (11). This
common factor restriction may be tested, as in Subsection 2.1, using a common
factor test (Anselin, 1988, pp. 226�229).

2.3. Spatial Panel Data

Spatial panel data have been discussed by Anselin (1988), chap. 10), Elhorst (2003)
and Lee (2004) in a temporally static context, i.e. models in which there are spatial
dynamics but no temporal dynamics.5 Introducing spatial dynamics into temporally
static panel data models is a complication that does not, however, substantively alter
the theory of panel data econometrics. In terms of equation (6), time subscripts are
appended to the variables in the model so that the dependent variable becomes
Yknt , the independent variables become Xpnt , the spatial lagged dependent variables
become Y �

knt; and the residual error becomes oknt . Estimators that are consistent
when the data are independent are also consistent when they are spatially
dependent; however, the asymptotics are typically slowed down (Lee, 2004).6

By way of introduction we consider the following univariate model (K�1)
with first-order temporal lags (q�1):

Ynt �mn�uY �
nt�bYnt�1�lY �

nt�1�unt (13)

unt �runt�1�du�nt�gu�nt�1�ont (14)

sni�cov(onoi);

where mn denotes a regional-specific effect. The spatial lag coefficient is u and the
temporal lag coefficient is b . Equation (13) also contains a ‘lagged spatial lag’
coefficient (l) since there may be a temporal lag in the spatial lag. Equation (14)
specifies the structure of the error term. The SAC coefficient is denoted by d , the
temporal autocorrelation coefficient (TAC) by r , and the lagged SAC coefficient
by g . Finally, there will be spatial correlation (SC) between the o s if sni "0, i.e. the
residual covariance matrix V is non-diagonal. Whereas SAC arises if shocks are

172 M. Beenstock & D. Felsenstein
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 clustered by space, SC arises if shocks happen to be correlated without any clear
spatial pattern, as in seemingly unrelated regression (SUR). We may distinguish
between four spatially correlated cases:

(i) All the correlation between the residuals is due to SAC. In this case V�s2IN
(is diagonal) and d"0.

(ii) All the correlation between the residuals is due to SUR (SC). In this case
d�0 and V"s2IN .

(iii)The correlation between the residuals is due to both SAC and SUR. In this
case d " 0 and V " s2IN .

(iv) There is no correlation between the residuals. In this case d�0 and
V�s2IN .

The identification of the parameters in equation (13), including the spatial lag
coefficient u , requires that Ynt �1 and Y �

nt�1 be weakly exogenous. If they are not,
these variables are not independent of unt . It is easy to show that these variables are
weakly exogenous when r�g�0. If r"0, unt �1 affects both unt and Ynt �1, in
which case Ynt�1 and unt are not independent. If g"0, u�nt�1 affects both unt and
Y �

nt�1; in which case Y �
nt�1 and unt are not independent. In short, temporal

autocorrelation and/or lagged SAC mean that the parameters of the model cannot
be identified.

The structural multivariate counterpart of equation (13) is:

Yknt �mkn�
XK

i�1

(akiYint�bkjYint�1�ukiY
�
int�lkiY

�
int�1)�oknt (15)

where the ms are region-specific effects, the as are within-region contemporaneous
causal effects between the Ys with akk �0, the us are spatial lag coefficients, the bs
are temporal lag coefficients, and the ls are lagged spatial lag coefficients. For
simplicity, we assume that the residuals are neither spatially nor temporally
autocorrelated and are homoscedastic. When l�u�0, equation (15) reverts to an
SVAR. When b�l�0 it reverts to a spatial panel model. When both spatial and
temporal dynamics are present, equation (15) is a structural spatial VAR (SpSVAR).

We denote by A , B , U and L the K�K coefficient matrices in equation (15)
for the as, bs, us and ls, respectively. We may express equation (15) in terms of
matrices as follows:

Yt �m�A�Yt�B�Yt�1�U�Y �
t �L�Y �

t�1�ot; (16)

where Y is an NK�1 vector of observations stacked by n , m is an NK�1 vector
of regional-specific effects, A +�IN �A , B +�IN �B , U +�IN �U, and L +�
IN �L are NK�NK block diagonal matrices. In equation (16) Yt �1 and Y �

t�1 are
weakly exogenous because o is not temporally autocorrelated, but Yt and Y �

t are
not independent of ot .

In Subsection 2.1 we saw that VARs under-identify the structural parameters.
What happens in SpVARs? To answer this question we solve equation (16) for Yt :

Yt �P0�P1Yt�1�P2Y
�
t �P3Y

�
t�1�vt (16a)

M � (INK �A�)�1

Spatial Vector Autoregressions 173
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 P0�Mm P1�MB� P2�MU� P3�ML� v�Mo:

There are K(K�1) unknown A coefficients, K2 unknown coefficients for each of
B , U, and L, and there are NK unknown variances for So , making a total of
K(4K�1)�K�4K2 unknown structural parameters in equation (16). In equation
(16a) there are 3K2 data restrictions from the Ps and Sv provides ½K(K�1)
further restrictions. Therefore, the SpVAR under-identifies the structural para-
meters and the identification deficit is ½K (K�1). Nevertheless, equation (16a)
reveals some information. If P2 is statistically significant then this points to the
presence of spatial dynamics. If P1 is statistically significant then this points to the
presence of temporal dynamics. Finally, if P3 is statistically significant then this
points to the presence of temporal-spatial dynamics.

2.4. The Incidental Parameter Problem

Badinger et al . (2004) have suggested that dynamic panel data econometrics
developed for spatially uncorrelated data may be applied to spatially correlated data
if the data are first spatially filtered. This two-stage procedure assumes that spatial
dependencies in the data are nuisance parameters, which are entirely independent
of the underlying ‘spaceless’ model to be estimated. If this is not the case, their two-
stage procedure may filter away important components in the underlying model.7

Just as it is inadvisable to use seasonally filtered data in dynamic time series models
(Hendry, 1995), we think it is inadvisable to use spatially filtered data in dynamic
spatial panel data models. Instead, we take the view that spatial lags and spatial
autocorrelation should be estimated jointly with temporal lags and temporal
autocorrelation in dynamic panel data models.

If spatial-specific effects are specified in equation (16a) the ‘incidental parameter
problem’ arises in temporal dynamic panels, giving rise to bias in the estimates of
P1. The econometric implications of estimating fixed effects in dynamic panels,
such as in equation (16), have attracted much attention in the literature. The basic
problem is that least squares dummy variable (LSDV) estimates of the Bs are biased
downwards when T is finite, with the bias being O (T�1). Hsiao (1986) shows that
when q�1 the asymptotic bias is equal to:

b��

1 � b

T � 1

�
1 �

1 � bT

T (1 � b)

�
�

1 �
2b

(1 � b)(T � 1)

�
1 �

1 � bT

T (1 � b)

�� ; (17)

where p lim(/b̂)�b�b . The bias tends to zero as T tends to infinity. If the panel is
short (T is small) this bias may not be negligible. In Figure 1 we use equation (17)
to plot the relationship between p lim(/b̂) and b for various values of T . As
expected, the plotted schedules approach the 45 degree line from below as T
increases. In our empirical example T�16. Equation (17) implies in this case that
the asymptotic bias is �0.0991 when b�0.5, in which case p lim(/b̂)�0.4009. If
b�0 the asymptotic bias is �0.06, in which case p lim(/b̂)��0.06. Also, the bias
varies directly with b . For example, when b��0.5 the bias is �0.031, which is
a third of its counterpart when b�0.5.

The most popular solution to the incidental parameter problem (Arellano &
Bond, 1991; Blundell & Bond, 1998) is based on instrumental variable estimation

174 M. Beenstock & D. Felsenstein
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by GMM, where sufficiently lagged values of Dyj and yj are used to instrument
yjt�i in equation (15) (see, for example, Badinger et al ., 2004). Apart from the
‘weak instrument’ problem, there is a further problem since q in equation (15) is
unknown. If q�1, as is typically assumed, matters are easier. But q is unknown, as
is the autocorrelation structure of the residuals in equation (15). We are therefore
sceptical of the wisdom of applying GMM to the estimation of equation (15).

Kiviet (1995) and Hahn & Kuersteiner (2002) have suggested bias correction as
an alternative to maximum likelihood (ML) and GMM. Since ML and GMM
require the specification of instrumental variables whereas bias correction does not,
bias correction is a practical and attractive alternative to GMM and ML.8 In Section
4 we suggest using equation (17) to bias correct LSDV estimates of b .

2.5. Impulse Responses

Just as VARs are used to simulate the dynamic effects of exogenous shocks upon
the state variables, so SpVARs may be used to simulate the spatial-temporal
dynamic effects of exogenous shocks. Impulse response analysis in SpVARs is
inevitably more complex than in VARs and spatial models because shocks
propagate across space as well as over time. We begin by considering the case of
a single-state variable (K�1 and P�0) in which the shocks are not spatially
autocorrelated, for which the SpVAR is:

Ynt �bYnt�1�u
XN

i"n

wniYit�l
XN

i"n

wniYit�1�ont: (18)

The spatial lags are expressed once more by the scalars u and l . If these parameters
are zero, equation (18) reverts to an autoregressive process.

Writing equation (18) in matrix form gives:

Yt �bINYt�1�uWYt�lWYt�1�ot; (19)

where Y is N�1. Equation (19) may be written using the temporal lag operator
(L) as:
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Figure 1. The inconsistency of the panel autoregressive coefficient.
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 (A�BL)Yt � ot (20)

A� IN �uW

B��(bIN �lW ):

The impulse response profiles are obtained by deriving the Wold representation of
equation (20), i.e. by expressing Yt in terms of current and lagged values of o . This
is obtained by dividing both sides of equation (19) by C�A�BL , in which case
the solution for Yt is:

Yt �C�1ot�
XN

i�1

air
t
i ; (21)

where the eigenvalues are denoted by r and the as are arbitrary constants
determined by initial conditions. Provided the data are stationary jrijB1; in which
case the summation term tends to zero with time. The N eigenvalues are the
solution to:

jC�1� rIN j�0: (22)

Since A and B depend upon u and l it is inevitable that the eigenvalues of the
SpVAR depend upon the spatial lag coefficients. This also means that the
stationarity conditions for VARs are different from their counterparts in SpVARs.

More generally, the number of eigenvalues is equal to NKq . Therefore, in a
typical SpVAR this number will be large. By definition, N�1 in VARs so that the
number of eigenvalues in an SpVAR is N times larger than in its VAR counterpart.
In the empirical example below K�4, N�9 and q�1 so that there are 36
eigenvalues.

To illustrate, we set N�2, K�q�1 and w12�w21�1, in which case the
structural model is:

Y1t �uY2t�bY1t�1�lY2t�1�o1t (23)

Y2t �uY1t�bY2t�1�lY1t�1�o2t: (24)

The characteristic equation is:

ar2�br� c�0 (25)

a�1�u2

b��2(b�ul)

c�b2�l2:

Equation (25) has two eigenvalues r1 and r2 given by:

r1�
(1 � u)(b� l)

1 � u2
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r2�
(1 � u)(b� l)

1 � u2
:

Stationarity requires these roots to be less than unity in absolute value. It is obvious
that stationarity does not simply depend upon b as it does in the absence of spatial
effects. Indeed, the absolute value of b may be less than unity, but Y may
nonetheless be non-stationary. The following results are easily established:

(i) If b�1 there are no values of u and l that induce stationarity. Therefore, if a
variable is temporally non-stationary it remains so when spatial dynamics are
present.

(ii) If u�0 the eigenvalues are r�b9l . Therefore, if l�1 the variable must be
non-stationary regardless of b .

(iii)If b�0 the eigenvalues are r�l(u91)/(1�u2), in which case the variable
may be non-stationary.

(iv) If u�1 and l�0 there is a single eigenvalue with r�1½b . In this special
case the variable is stationary when bB2/3.

Assuming stationarity, the general solution for Y1t is:

Y1t �
o1t � po1t�1 � (uo2t � l)o2t�1

(1 � r1L)(1 � r2L)
�A1r

t
1�A2r

t
2; (26)

where the A s are determined by initial conditions. Since the roots lie within the unit
circle these terms tend to zero over time. Inverting the lag polynomials by partial
fractions in equation (26) gives the relationship between Y1t and current and lagged o s:

Y1t �
1

r1 � r2

X�
t�0

[r1�t
1 (o1t�t�bo1t�t�1)� r1�t

2 (uo2t�t�lo2t�t�1)]�C1r
t
1

�C2r
t
2; (27)

where the Cs are arbitrary constants determined by initial conditions. According to
equation (27), current and lagged shocks in region 2 reverberate onto region 1. If,
however, there are no spatial dynamics (u�l�0) equation (27) simplifies to:

Y1t �
X�
t�0

bio1t�t�C1b
t: (28)

2.6. Spatial Weights

We experiment with alternative spatial weights. However, the main results we
present use:

wknit �
1

dni

Zit

Znt � Zit

; (29)

where dni denotes the distance between regions N and i , and Z is a variable that
captures scale effects. For example, if Z is represented by population, equation (29)
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 states that the importance of region i to region N varies directly with the
population in region i relative to region N . Spatial weights are therefore larger for
bigger neighbours, and smaller for smaller neighbours. This spatial weighting
scheme is asymmetric unless Zn �Zi (i.e. the regions are of equal size). Other
asymmetric weighting schemes include, for example, commuting weights, which
reflect rates of commuting between regions N and i . Spatial weights are assumed to
be the same across variables (do not depend on K ), but may vary over time.

If the spatial lag coefficients are estimated by ML and the W matrix
is symmetric, the estimated variance�covariance matrix of the parameters is
symmetric. This result does not extend, however, to the case where W is
asymmetric.9 If, however, the spatial lag coefficients are estimated by IV rather than
ML it does not matter that W is asymmetric.

2.7. Panel Unit Roots

In this section we discuss the econometrics of SpVAR estimation using regional
panel data. The variables of interest in the SpVAR have to be stationary. Trending
variables such as gross regional product (GRP) or GRP per capita cannot be
stationary since their means and variances must increase over time. However,
trendless variables will be non-stationary if their variance increases over time. This
happens if their data-generating process (DGP) happens to be a driftless random
walk, which necessarily contains a unit root. Panel unit root tests10 have been
reviewed by Maddala & Kim (1999). In a regional science context, the issue of
spurious regressions produced by non-stationary data containing spatial unit roots
has been addressed by Fingleton (1999) and Mur & Trivez (2003). We prefer the
widely used panel unit root test proposed by Im et al . (2003) because it allows for
heterogeneity across the regions in the panel.11 Suppose, as seems likely, that GRP
per capita and other regional variables of interest are non-stationary, but Im et al .’s
panel unit root test shows that their first differences happen to be stationary. In this
case the SpVAR must be estimated in first differences, and not levels.

Panel unit root tests typically assume that the panels are independent.12 Baltagi
et al . (2005) have investigated the power of panel unit root tests, such as Im et al .’s,
when the residuals happen to be spatially autocorrelated. If the spatial autocorrela-
tion coefficient is large (0.8) there is considerable size distortion in Im et al .’s as well
as other unit root tests. However, if the spatial autocorrelation coefficient is small
(0.4) there is little or no size distortion.13

2.8. Fixed vs Random Effects in Spatial Panels

The choice between fixed and random effects in spatial panel data models is not
trivial. Several issues have been raised in the literature. First, if the data happen to be
a random sample of the population, unconditional inference about the population
necessitates estimation with random effects. If, however, the objective is limited to
making conditional inferences about the sample, then fixed effects should be
specified. Since researchers are usually interested in making unconditional
inferences about the population the default option should be random effects.
This line of reasoning14 implies that if the sample happened to be the population,
specific effects should be fixed because each panel member represents itself and has
not been sampled randomly.
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 In household panels the sample is small relative to the population. However, in
spatial panels the data set typically covers the entire population of spatial units. For
example, the Penn World Tables cover all the countries in the world and NUTS2
covers all the regions in the EU. Our data cover all the regions of Israel. Since none
of the regions are sampled randomly, estimation should be with fixed effects. ‘For
example, an intercountry comparison may well include the full set of countries for
which it is reasonable to assume that the model is constant’ (Greene, 2003, p. 293).
Matters would be different if the spatial units in the data set were a random sample
of the spatial units in the population, such as a sample of cities or counties.

A second issue raised in the literature concerns dependence between random
effects and the covariates in the model. Such dependence, if it exists, typically
induces bias in the parameter estimates of the model. Mundlak (1978) has argued in
this case that the fixed effects estimator is observationally equivalent to the random
effects estimator. Indeed, this is the line adopted by Wooldridge (2002), who
suggests specifying fixed effects if the covariates and random effects happen to be
dependent. This argument would only be relevant if the spatial panel data set were a
sample rather than the population.

A third issue is practical. If the number of units in the panel is large, estimating
fixed effects consumes degrees of freedom and reduces the variation in the data.
Also, LSDV does not allow the estimation of parameters that vary in the cross-
section but which do not vary over time. These problems do not arise when
random effects are specified. In spatial data the number of spatial units tends to be
relatively small, so that this issue is not of major importance. In our case the number
of spatial units is nine.

3. Data

3.1. Data Sources and Definitions

For our empirical application of SpVAR we use annual panel data for nine regions
in Israel (see Figure 2) for the period 1987�2004. The vector comprises four
variables: real earnings, population, real house prices and the stock of housing. The
latter is measured in 1000s of square metres. Hence, T�18, N�9, and K�4.
Since these observations are too few to estimate individual models for each region,
we pool the time series and cross-section data for purposes of estimation. We note
that the panel unit root tests proposed by Im et al . (2003) report critical values for
T�10, in which case we feel that it is meaningful to use 18 years of data.
Calculations by Im et al . show that when T�18 and N�9 the size of the unit root
test is about 0.05 and its power is about 0.2. This means that the probability of
incorrectly rejecting the null hypothesis when it is true is about 5%, and the
probability of correctly rejecting it when it is false is about 20%. The latter would
have been 26% with T�25 and 75% with T�50. In our opinion what matters is
the length of the observation period and not merely the number of data points.
Eighteen monthly or even quarterly data points would not have been adequate
because the observation period would have been only a year and half in the former
case and four and half years in the latter. These periods would have been too short
for observing convergence phenomena, whereas 18 years is, in our opinion, a
sufficiently long period for these purposes.

At this stage we do not present a formal economic model, which relates these
four variables. Such a model might predict that house prices vary directly with the
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demand for housing services in the region, which in turn varies directly with
income and population, and they vary inversely with the supply of housing services
as measured by the stock of housing.15 It might also predict that the regional
distribution of the population depends upon house prices and earnings; people
prefer to live in regions where earnings are higher and housing cheaper. It might
further predict regional spillover effects. For example, if house prices happen to
become more expensive in neighbouring regions house buyers will prefer to move
into the region where it is cheaper, so that house prices increase there. Therefore,
there is sufficient reason to believe that the SpVAR will not be vacuous. However,
we stress that we do not use the SpVAR to test structural hypotheses about regional
housing and labour markets. Our main motivation is to apply SpVAR, and to
illustrate the methodology presented in Section 2.

Figure 2. Geographic regions of Israel.
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 Real earnings in region N at time t (Wnt) have been constructed by us from the
Household Income Surveys (HIS) of the Central Bureau of Statistics (CBS) and are
deflated by the national consumer price index (CPI). The population in region N at
the beginning of time t (POPnt) is published by CBS. CBS also publishes indices of
house prices for the nine regions, which are based on transactions data and which
we deflate by the CPI. Finally, we have constructed the stock of housing in region
N at the beginning of time t (Hnt ), which is measured in (gross) square metres. We
use data on housing completions in the nine regions measured in square metres,
published by CBS. The change in the stock of housing is defined as completions
minus our estimates of demolitions. The level of the housing stock is inferred from
data in the 1995 census.

3.2. Panel Unit Root Tests

The data are plotted in Figure 3. Not surprisingly, all four variables have grown
over time, hence they cannot be stationary. It should be noted that the 1990s
witnessed mass immigration from the former USSR, which had major macro-
economic implications, especially for labour and housing markets (Beenstock &
Fisher, 1997). The population grew in all regions, but particularly in the south
where housing was cheaper. In Table 1 we report panel unit root tests (t-bar) due
to Im et al . (2003), which is the average of the first-order augmented Dickey�
Fuller statistics for variable j in the nine regions. When d�0 the absolute value of
t-bar is below its critical value in the case of earnings and the housing stock, so
these variables are clearly non-stationary. Surprisingly, however, Table 1 suggests
that population and house prices are stationary in levels. When d�1, absolute t-bar
is greater than its critical value for all variables, hence all four variables are difference
stationary. Although Table 1 suggests that earnings and the housing stock are I (1)
while population and house prices are I (0), we specify SpVAR in log first
differences.

Spatial dependence in the data may distort the empirical size of the IPS test, as
noted in Subsection 2.7. However, the data plotted in Figure 3 are clearly trending,
so the conclusion that d�1 is not controversial despite potential size distortions in
Table 1.

4. Results

Our main objective is to estimate equation (16a). However, since Y �
t and vt are

correlated we cannot estimate equation (16a) directly. The ‘reduced form’ of
equation (16a) is:

Yt �G0�G1Yt�1�G2Y
�
t�1�ut; (30)

where G0�(INK �P2W
+)�1P0, G1�(INK �P2W

+)�1P1, G2�(INK �
P2W

+)�1P3, u�(INK �P2W
+)�1v and W +�IK �W . Provided ot is temporally

independent, Yt �1 and Y �
t�1 will be independent of ut in equation (30), i.e. they are

weakly exogenous instruments for Y �
t : We begin by estimating equation (30). Then

we use the predicted values of Yt to serve as instrumental variables for Y �
t in

equation (16a), i.e. we estimate equation (16a) using Ŷ �
kt �WŶkt instead of Y �

kt:
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Figure 3. Regional panel data: Israel 1987�2004.
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4.1. Estimating the SpVAR’s Reduced Form

Since T�18 the SpVAR is limited to first-order spatial and temporal lags. There
are insufficient degrees of freedom to justify higher order lags. In any case the panel
Darbin Watson (DW) statistics and other tests do not suggest that higher order
temporal lags are required. There are also insufficient degrees of freedom to
estimate heterogeneous models in which the parameters vary by region and/or by
time period since N�9 and T�18. Therefore, the SpVAR is homogeneous. For
example, in equation (15) Ant �A . Due to the paucity of degrees of freedom we
do not test for poolability.

Because the SpVAR includes 36 separate relationships (nine regional relation-
ships for each of the four variables), we simplify by estimating each variable as a
separate bloc consisting of nine regional panel relationships. For example, the
earnings bloc specifies first-order temporal and lagged spatial lags for earnings, but it
also specifies first-order temporal and lagged spatial lags for each of the other three
variables. This implies, for example, that current earnings in Jerusalem may be
affected by lagged house prices in Tel Aviv as well as in the neighbourhood of
Jerusalem. Each of the four blocs is estimated separately, which implies that spatial
correlation exists within variables but not between variables. For example, earnings
shocks in Jerusalem may be correlated with earnings shocks in Tel Aviv, but they
are assumed to be uncorrelated with population shocks in Tel Aviv. As mentioned
in Subsection 2.3, to have specified spatial correlation between variables would
have greatly increased the burden of estimation.

Each region in the bloc is specified to have a specific effect and the regional
shocks within the bloc are assumed to be contemporaneously correlated (spatially
correlated). The method of estimation in each of the four blocs is therefore SUR,
which provides estimates of the spatial correlation coefficients for the bloc. Finally,
the regional-specific effects are assumed to be fixed for the bloc and are estimated
by LSDV.

As mentioned in Subsection 2.6, we experimented with various spatial
weighting schemes. However, for reasons of space we only report in Table 2 the
results obtained using equation (15), i.e. the spatial weights are asymmetric
reflecting distances and relative population sizes.

We estimate an unrestricted first-order SpVAR as reported in Table 2. In the
unrestricted SpVAR the panel DW statistics do not indicate the presence of first-
order temporal serial correlation in the residuals. In the unrestricted model several
parameters are not statistically significant. We applied the ‘general-to-specific’
methodology (Hendry, 1995) to estimate a restricted model, which is also reported
in Table 2. Restrictions are acceptable when the multivariate SBC (Schwarz

Table 1. Panel unit root tests (t-bar)

Ln(Yj) d�0 d�1 d�2

Earnings �1.205 �3.503 �5.079

Population �2.707 �2.531 �6.603

House prices �3.030 �2.537 �5.321

Housing stock �0.092 �2.227 �3.410

Notes : Auxiliary regression: Dd lnYknt �akn � lknDd � 1lnYknt � 1 � dknDd lnYknt � 1 �oknt . The critical values of

t-bar with N�9 and T�18 are �2.28 at p�0.01 and �2.17 at p�0.05.
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Table 2. Parameter estimates of the SpVAR’s reduced form

Earnings Population House prices Housing stock

Unrestricted model Restricted model Unrestricted model Restricted model Unrestricted model Restricted model Unrestricted model Restricted model

Temporal lag

Earnings �0.357 �0.332 0.038 0.037 0.104 0.102 0.006** �
Population �0.311+ � 0.112** � 0.678 0.672 0.059 0.060

House prices �0.148 �0.104 0.0004** � �0.006** � 0.016 0.018

Housing stock 0.970 1.019 �0.078** � 0.0003 � 0.396 0.389

Lagged spatial lag

Earnings 0.131** � 0.018** � 0.233 0.235 0.0003** �
Population �0.314** �0.497 0.037** � �0.593* �0.605* �0.064 �0.068

House prices 0.205** 0.196** 0.104 0.103 0.493 0.403 0.003** �
Housing stock 1.836 2.174 �0.359 �0.458 �0.790 �0.810 0.172 0.170

R2 adjusted 0.146 0.148 0.297 0.312 0.091 0.107 0.464 0.474

Panel DW 2.235 2.176 2.116 1.866 1.843 1.861 1.641 1.639

SAC (d ) 0.794 0.836 0.853 0.952

Lagged SAC g 0.118** �0.040** �0.007** �0.060**

TAC (r ) �0.147* �0.034** 0.009** 0.044**

Det V 0.0049 0.0003 0.0001 0.0014

F -statistic 0.847 0.393 0.000 0.019

Notes : All variables are first differences in logarithms. Bloc estimation by SUR with fixed effects and residual covariance matrix V. The number of observations (NT) per bloc is 144. The

estimation period including lags is 1987� 2004. All parameter estimates have p -values B0.05. Asterisked parameters have p -values between 0.05 and 0.1. Double asterisked parameters

have p-values �0.1. SAC and TAC, respectively, denote the spatial and temporal autocorrelation coefficients for the residuals. The F -statistic is a Wald test of the restricted model

within blocs. SBC (the Schwarz Bayesian Criterion for testing the restricted model within and between blocs) has the following values: SBC unrestricted��814.88; SBC restricted�
�818.97.
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 Bayesian Criterion) is minimized and the residuals remain serially independent.
Both of these conditions are fulfilled for the restricted model reported in Table 2.

Recall that all the variables that feature in the SpVAR are first differences of
logarithms. In the case of the first difference in the logarithm of earnings all
temporal lags, with the exception of population, are statistically significant in the
unrestricted model. The autoregressive coefficient for earnings is negative
(�0.357). As discussed in Subsection 2.3, this coefficient is biased downwards.
Using equation (17) to bias correct this estimate implies that the true estimate is
about �0.31. Additionally, earnings vary directly with lagged housing stock and
inversely with the lagged house prices. None of the lagged spatial lags are
significant, with the exception of housing stock which is positively related to
current earnings. The restricted model tells very much the same story, the only
exception being the (negative and significant) effect of spatially lagged population.
This implies that population growth in neighbouring regions reduces current wage
growth. The opposite applies to the rate of growth in the housing stock in
neighbouring regions.

In the restricted model for the rate of population growth there is a small
temporal lag on the rate of growth of earnings, but no autoregressive effect.
Equation (17) suggests that when the estimated autoregressive coefficient is zero,
the bias-corrected coefficient is approximately 0.06. Two lagged spatial lag
coefficients are statistically significant, implying a spillover effect to population
growth from the growth in house prices in neighbouring regions. The opposite
applies to the rate of growth in the housing stock in neighbouring regions.

The current growth in real house prices varies directly with the lagged rates of
growth in earnings and population, but as in the case of population growth, there is
no autoregressive effect, hence the bias-corrected coefficient is 0.06. All four lagged
spatial lag coefficients are statistically significant. The growth in house prices varies
directly with lagged house price growth in neighbouring regions, and inversely
with the growth in the housing stock in these regions. There is also a lagged
spillover effect from earnings growth in neighbouring regions. Finally, the rate of
growth of the housing stock varies directly with its own lag. Equation (17) suggests
that the bias-corrected autoregressive coefficient is about 0.48. There is also a
positive spillover effect from lagged housing growth in neighbouring regions.

We make no systematic attempt at interpreting the coefficients of the SpVAR’s
reduced form in terms of economic theory. Our view is that VAR modelling does
not constitute a sound methodological basis for hypothesis testing, especially when
the data happen to be non-stationary as here. The main reason for this is that
economic theory refers to relationships between levels of variables whereas VARs
typically refer to changes in their levels. Establishing empirically that Y and X
happen to be related in first differences does not necessarily mean that they are
related in levels (Hendry, 1995). We think that hypothesis testing with non-
stationary panel data such as ours should be carried out using panel co-integration
(Kao, 1999). Nevertheless, VAR modelling requires no methodological justifica-
tion and should be viewed as a statistical tool for understanding the dynamic
structure between variables, especially when economic theory is often vague about
the nature of these dynamics (Sims, 1980). This applies a fortiori in the case of
SpVARs when economic theory is vague about spatial dynamics as well as temporal
dynamics.
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 4.2. Spatial Correlation

Table 2 indicates that the residuals are spatially correlated. Indeed, the SAC
coefficient ranges between 0.794 and 0.952. Since Table 2 refers to the reduced
form these SAC coefficients are not a major concern; they do not affect the
consistency of the reduced-form parameter estimates. More important is the fact
that the lagged SAC coefficients and the temporal autocorrelation coefficients are
not significantly different from zero, for otherwise the variables in the model could
not serve as weakly exogenous instrumental variables for estimating equation (16a)
and identifying the contemporaneous spatial lag coefficients. Finally, Table 2
reports the determinant of the residual variance�covariance matrix estimated by
SUR (det V). If the residuals between regions are independent det V�1. The
greater the regional dependence between residuals the closer to zero will be det V.
The estimates of det V are clearly less than unity, and quite close to zero, suggesting
a high degree of correlation between the residuals of different regions for all four
variables in the model.

In Table 3 we report the spatial correlation coefficients estimated by SUR.
These are the SC coefficients referred to in Subsection 2.3. For example, the
correlation between earnings shocks in Tel Aviv and Jerusalem is 0.4689, while the
correlation between population shocks in these two regions is 0.0592. Table 3
reveals that almost every element in the spatial correlation matrix is statistically
significant. Most of the spatial correlations are less than 0.5 in absolute value.
However, a few exceed 0.8 and the largest in absolute value is 0.9057 (between
house price shocks in Jerusalem and Dan). We make no attempt at interpreting
these coefficients. Recall that these spatial correlations have been estimated by SUR
within blocs but not between them. Therefore the spatial correlations between
variables are zero by construction. This means, for example, that earnings shocks in
Jerusalem are uncorrelated with population shocks in Tel Aviv.

4.3. Impulse Responses

We illustrate the properties of the reduced-form SpVAR by reporting impulse
response simulations. In a temporal VAR the impulse responses refer to the
dynamic effects of shocks to a certain variable upon itself as well as the other
variables that feature in the model. In an SpVAR the impulse responses refer to
the effects of shocks that occur in a specific region to a certain variable upon the
following:

(i) The shocked variable in the region in which the shock occurred.
(ii) Other variables in the region in which the shock occurred.
(iii)The shocked variable in other regions.
(iv) Other variables in other regions.

The impulse responses in SpVARs therefore include the temporal dynamic effects
as in a regular VAR as well as the ricochet effect between regions and across
variables that is induced by the spatial specification of the model. The latter include
the spatial lag structure of the restricted model as given in Table 2 as well as its
spatial autocorrelation structure as given in Table 3. For these purely illustrative
purposes we use the autoregressive coefficients as reported in Table 2 rather than
their bias-corrected counterparts.
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We begin by temporarily shocking earnings in Jerusalem and investigating the
effects of this shock upon the four dimensions mentioned in the previous
paragraph. At first we assume that regional shocks are uncorrelated (i.e. we ignore
the spatial autocorrelation structure of the model as given in Table 3). This means
that the earnings shock in Jerusalem is entirely idiosyncratic. It also means that the
impulse responses stem entirely from the spatial and temporal lag structures featured
in Table 2. Subsequently, we assume that regional shocks are spatially correlated
(i.e. we calculate the impulse responses using the parameters in Tables 2 and 3).

Table 3. Spatial correlations (SCs): SUR estimates

Jerusalem Tel Aviv Haifa Krayot Dan Centre South Sharon

Tel Aviv

Earnings 0.4689

Population 0.0592

Housing 0.4681

Prices 0.8367

Haifa

Earnings 0.5258 0.4885

Population 0.6395 0.3769

Housing 0.4465 0.1443

Prices 0.5760 0.7259

Krayot

Earnings 0.3261 �0.0986 0.3123

Population 0.3571 0.7532 0.6699

Housing 0.3628 �0.0947 0.7005

Prices 0.1686 0.1560 0.4088

Dan

Earnings 0.4624 0.6346 0.2150 �0.1596

Population 0.4381 0.7662 0.6846 0.6268

Housing 0.1188 0.2435 0.0275 �0.0042

Prices 0.9057 0.8092 0.7621 0.3445

Centre

Earnings 0.6940 0.7720 0.4029 �0.0672 0.7591

Population 0.3192 0.4450 0.6501 0.6314 0.3945

Housing 0.5693 0.5025 0.5410 0.6675 0.4096

Prices 0.4371 0.3631 0.2653 0.1329 0.4384

South

Earnings 0.3180 0.6475 0.5510 0.1060 0.3680 0.5494

Population 0.2908 0.2860 0.2584 0.5066 0.2959 0.2491

Housing �0.3851 �0.2398 �0.4762 �0.2845 �0.4985 �0.4704

Prices 0.3490 0.1425 0.2024 0.1480 0.4834 0.4808

Sharon

Earnings 0.1975 0.0748 0.2110 0.1117 0.0491 0.2969 0.6222

Population 0.3651 0.6995 0.7510 0.7970 0.7944 0.4116 0.3496

Housing �0.1399 0.1156 0.2709 0.4803 0.3213 0.5398 �0.2150

Prices 0.6307 0.5167 0.6013 0.4715 0.7682 0.5781 0.3371

North

Earnings 0.4529 0.2913 0.3333 0.1053 0.2991 0.4946 0.2078 0.2438

Population 0.6555 0.4359 0.8813 0.7927 0.6439 0.5445 0.5638 0.7686

Housing 0.6104 0.5999 0.4791 0.4058 �0.0860 0.5896 �0.2150 0.0463

Prices 0.1364 �0.0331 0.3159 0.5648 0.1499 �0.1297 0.1607 0.1653
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 This means that earnings shocks in Jerusalem are not entirely idiosyncratic, in
which case an earnings shock in Jerusalem is accompanied by earnings shocks
elsewhere through the model’s spatial autocorrelation structure.

To compute the impulse responses we first carry out a dynamic simulation of
the entire SpVAR starting in 1990 and terminating in 2004, which takes as its initial
conditions the values of the variables as of 1989. This provides base-run values in
levels for all the variables during 1990�2004. Because the SpVAR is estimated
in the first differences of logarithms we shock earnings in Jerusalem by 0.02 (2%) in
1990 followed by an antithetic shock of �0.02 in 1991, so that the level of the
variables in the model is preserved in the long run. We compute new dynamic
solutions for all the variables in levels during 1990�2004. The impulse responses
are defined as the differences between these new solutions and their base run values.
We expect the impulse responses to die out over time. Since the model is log-linear
the impulse responses are not base dependent (i.e. they are independent of when
they occur). In these simulations the connectivity matrices Wt are assumed to
remain unchanged.16

Figure 4 plots the impulses generated by a 2% earnings shock occurring in the
region of Jerusalem in 1990 for all four variables in the model in three of the nine
regions. (To have included all nine regions would have been too confusing.)
The upper left panel in Figure 4 plots the impulse for earnings in the three
regions. Note that in all panels the local impulses are measured on the left vertical
and the external impulses are measured on the right vertical, which has a smaller
scale. Initially the level of earnings in Jerusalem necessarily increases by 0.02 (2%),
but in 1991 it falls by nearly 1% relative to the base run. This overshooting
happens because the temporal autoregressive coefficient for earnings is negative
(Table 2). The impulses die down quite rapidly. The spatial lag structure implies
that the increase in earnings in Jerusalem in 1990 spills over into other areas in
1991. The spatial lag coefficient is 0.131 in Table 2, and hence we expect these
spillover effects to be positive. However, we do not expect them to be identical
across regions since the spatial weighting matrix is not uniform. Jerusalem has a
greater impact on the south than it does on the Dan region. This is why from
1993 onwards, the earnings impulse in the south is more positive than it is in the
Dan region. Subsequently these impulses oscillate but eventually die out, as
expected.

These regional spillovers cannot, of course, arise in a standard VAR. They are
the distinctive contribution of SpVARs. Shocks that occur in one region spill over
to other regions provided that the spatial lag coefficient is non-zero. The
differential force of these spillovers depends on the spatial weighting matrix. The
force will be stronger in regions in which Jerusalem is relatively more important.
Recall that we have defined these spatial weights asymmetrically using equation
(15). Therefore the force will be stronger in regions closer to Jerusalem and in
which the population is smaller than Jerusalem’s.

The other three panels in Figure 4 plot the impulses for the three other variables
in the three regions. The impulses for Jerusalem are standard because they would
arise in a standard VAR. For example, the top right panel shows that following the
earnings shock in Jerusalem in 1990, house prices rise in Jerusalem in 1991,
reflecting the positive (0.104) temporal lag, reported in Table 2, of earnings on
house prices. Subsequently these impulses die out as expected. The novel feature in
this panel is the spatial spillover of earnings shocks in Jerusalem onto house prices
in other regions. These spillovers are positive because the spatial lag for earnings on
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Figure 4. Impulse responses: 2% earnings shock in Jerusalem.
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 house prices is positive (0.233) in Table 2. The spillover is greater in the south than
in the Dan region because the spatial weight for the south is larger. Subsequently,
the impulses on both regions die out as expected.

The remaining (lower left and right) panels in Figure 4 plot the impulses for
population and housing stock. They show that earnings shocks in Jerusalem spill
over onto population and the housing stock in other regions. In general the impulses
in Figure 4 die out quite rapidly, within about 4 years for population and slightly
longer for housing stock. In the short run, however, they are non-zero within and
between regions. Note that had we shocked earnings in say Tel Aviv instead of
Jerusalem we would not have got the same impulses reported in Figure 4, because
the spatial spillovers are not independent of where the shocks occur. The spillover
from Tel Aviv to the south is not the same as the spillover from Jerusalem to the
south. Indeed, because of the use of asymmetric spatial weights, the spillover from
Jerusalem to Tel Aviv is not the same as the spillover from Tel Aviv to Jerusalem. In
short, direction matters, as does the geographical distribution of shocks.

In Figure 5 we plot the impulses for a 2% population shock in Tel Aviv. The
upper right panel plots the population impulses for Tel Aviv, Dan region and the
Krayot. Note that according to Table 2 the spatial lag for population is positive
(0.037), in which case we expect population shocks in Tel Aviv to spill over
positively onto population in other regions. This expectation is confirmed. The
spatial lag coefficient on population for earnings is negative (�0.314), so that the
increase in the population in Tel Aviv in 1990 should spill over negatively onto
earnings elsewhere in 1991 (but positively in Tel Aviv). This upper left panel shows
that this is what happens in 1991. The same applies to both house prices in the
lower left panel and housing stock in the lower right panel. In both cases, the
impulses for the Dan region and the Krayot are negative, because the population
spatial lags are negative (�0.593 and �0.064, respectively).

In the interest of space we do not report impulses for shocks to house prices and
the housing stock. Here, too, there are spatial spillovers. The nature of these
spillovers may be inferred from Table 2. For example, in the case of house prices
the spatial spillover onto house prices elsewhere is positive (0.493), and the spatial
spillover onto population elsewhere is also positive but smaller (0.104).

4.4. Impulses with Spatially Correlated Shocks

Recall that the impulses in Figures 3 and 4 refer to uncorrelated shocks and ignore
the spatial correlation structure in Table 3. In this section we calculate impulses in
which the shocks are assumed to be regionally correlated according to Table 3. The
basic theory has already been discussed in Subsection 2.2. It may be shown that the
correlated impulses are a simple matrix transformation of their uncorrelated
counterparts. Let ot �Aot�et be the spatial autocorrelation model in which o is a
column vector of regional shocks, e is a vector of idiosyncratic shocks, and A is a
lower triangular matrix of spatial correlation coefficients. In our SpVAR, A is given
by Table 3. We may solve for the o s in terms of the e s as: ot �(I �A)�1et . Figures 2
and 3 are calculated assuming A�0, in which case ot �et . Therefore to transform
uncorrelated impulses into correlated impulses we simply have to multiply the
former by (I �A)�1. This means that the correlated impulses are a weighted average
of their uncorrelated counterparts.

Table 3 implies that when there is a positive shock to earnings in Jerusalem of
2% there is a positive shock to earnings in Tel Aviv of 0.9378% (� 2�0.4689)
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Figure 5. Impulse responses: 2% population shock in Tel Aviv.
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 and a positive shock in Haifa of 1.0516%, etc. For example, the correlated impulses
for an earnings shock in Jerusalem on earnings in the south are just a weighted
average of the uncorrelated impulses in the nine regions. We compare the impulses
generated in 1991 from a 2% shock inserted a year earlier in both Jerusalem and Tel
Aviv. The Jerusalem simulation addresses an earnings shock and the Tel Aviv
simulation relates to a population shock (see Table 4). We limit ourselves to
reporting the correlated and uncorrelated impulses on the same three regions
represented in Figures 3 and 4.

Table 4 shows that allowing for spatial correlation can make a difference to the
magnitudes of the impulses. For example, in the case of a 2% earnings shock in
Jerusalem, the correlated impulse effect on house prices in all other regions is
consistently larger than in the uncorrelated case. The same can be seen for the
impact of a 2% population shock in Tel Aviv. The uncorrelated impulse response
with respect to housing supply and house price in other regions is consistently
smaller than in the correlated case. In some instances spatial correlation can even
reverse the sign of the impulse. This can be seen with respect to the correlated
impulse response on both house prices and housing supply in the Krayot region.
These results come as no surprise, however. The spatial autocorrelation structure
may obviously reinforce or offset the impulses obtained when the shocks are
assumed to be spatially uncorrelated.

4.5. Estimating the Contemporaneous Spatial Lag Coefficients

Finally, we turn to the estimation of equation (16a), which includes contempora-
neous spatial lag (SAR) coefficients for the state variables. The spatial lag variables
(/Y �) are instrumented using their predicted values from the restricted model in
Table 2. As mentioned, these predicted values are weakly exogenous because the
residuals in Table 2 are neither temporally autocorrelated nor is there lagged spatial
autocorrelation. Results are reported in Table 5.

Table 4. Comparing impulses in 1991 with and without spatial correlation: (a) 2% earnings

shock in Jerusalem, (b) 2% population shock in Tel Aviv

Earnings Population Prices Housing

(a)

Jerusalem �0.00664 0.00073 0.00421 0.00000

�0.00664 0.00073 0.00203 0.00000

Dan �0.00307 0.00043 0.00370 0.00000

0.00000 0.00000 0.00021 0.00000

South �0.00211 0.00023 0.00328 0.00000

0.00000 0.00000 0.00071 0.00000

(b)

Tel Aviv �0.00994 0.00000 0.01968 0.00155

�0.00993 0.00000 0.01345 0.00119

Dan 0.00630 0.00000 �0.00801 �0.00053

0.00000 0.00000 �0.00272 �0.00031

Krayot �0.00098 0.00000 0.00083 0.00004

0.00000 0.00000 �0.00078 �0.00008

Notes : The upper number refers to the spatially correlated case and the lower number refers to the spatially

uncorrelated case. Impulses have been multiplied by 100.
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The contemporaneous SAR or spatial lag coefficient is statistically significant
for three of the four variables, the exception being population growth. In the case
of the housing stock the SAR coefficient is �0.397 and for earnings it is 0.7834.
Note that despite the specification of spatial lags, the SAC coefficients are
statistically significant. This means that SAC does not result from dynamic spatial
misspecification. Note also that the determinant of the residual correlation matrix
(det V) is close to zero for all four variables even after allowing SAC. This means
that the residual correlation matrix is not simply due to SAC and that residuals are
correlated between regions because shocks happen to be correlated for reasons
unrelated to SAC. With the exception of earnings, the lagged SAC and temporal
autocorrelation coefficients are not statistically significant. Many temporal lag
coefficients are not significantly different from zero,17 with the exception of the
housing stock. Finally, an F-test shows that the fixed effect coefficients are not
statistically significant for earnings and house prices, but they are very significant for
population and the housing stock.

5. Conclusions

Curiously, whereas spatial econometricians have shown a growing interest in time
series data, time series econometricians have shown little or no interest in spatial
data. Our paper joins a small but expanding literature on the integration of time
series and spatial data. VAR models do not have a spatial dimension. In this paper

Table 5. Parameter estimates of the SpVAR

1. Earnings 2. Population 3. House prices 4. Housing stock

Coefficient Standard

error

Coefficient Standard

error

Coefficient Standard

error

Coefficient Standard

error

Temporal lag

Earnings 0.0348 0.0114

Population 0.0889 0.0204

House

prices

0.0258 0.0060

Housing

stock

0.4830 0.0995 0.5265 0.0760

Lagged spatial lag

Earnings

Population �0.4955 0.2325 �0.1038 0.0250

House

prices

0.1012 0.0301 0.5163 0.0557

Housing

stock

�0.4638 0.1420 0.2408 0.0431

Spatial lag 0.7833 0.0530 0.0229 0.1566 0.5844 0.0600 �0.3973 0.1280

R2 adjusted 0.1677 0.3081 0.1170 0.4761

Panel DW 2.2608 1.8710 1.7962 1.6661

Det V 0.001325 0.00004 0.00011 0.002

SAC (d) 0.7974 0.0026 0.8364 0.0023 0.8491 0.0015 0.9705 0.0140

Lagged

SAC g

0.1883 0.0659 0.0401 0.0734 �0.0118 0.0661 �0.1094 0.0830

TAC (r ) �0.2458 0.0827 �0.0347 0.0874 0.0215 0.0778 0.0699 0.0844

Note : See notes to Table 2.
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 we consider how space may be introduced into the VAR framework. Conversely,
spatial models have traditionally been devoid of time. This is obviously true for
cross-section data, but it also applies to spatial panel data where the focus has been
upon such phenomena as spatial lags and spatial autocorrelation, without any
temporal dimension, such as temporal lags and temporal autocorrelation.

A rare exception is Badinger et al . (2004), who suggested a two-stage procedure
in which they filter away the spatial dimension of the data in the first stage and then
apply dynamic panel econometric techniques to these spatially filtered data in the
second stage. This procedure treats the spatial relationships in the data as nuisance
parameters, which can be ‘concentrated out’ in the first stage. Our view is that
spatial relationships are not nuisance parameters and that spatial and temporal
dynamics should be estimated jointly.

In this paper we have tried to integrate time series econometrics with spatial
econometrics by estimating spatial and temporal dynamics jointly. Moreover, we
use vectors of variables rather than single variables. We refer to this kind of
modelling of spatial panel data as SpVARs, or spatial vector autoregressions.
SpVARs contain such features as temporal lags, spatial lags, lagged spatial lags,
spatially autocorrelated errors and spatially correlated error that are not
autocorrelated. The latter are estimated by SUR and measure the correlation
between shocks in different regions. Spatial autocorrelation imposes restrictions
on the spatial correlation matrix. Whereas in cross-section data only spatial
autocorrelation can be identified, in spatial panel data both types of correlation
may be estimated.

We have illustrated these issues by estimating an SpVAR using annual data for
Israel over the period 1987�2004 for nine regions and four variables. We show that
in addition to temporal lags there is evidence of lagged spatial lags as well as spatially
correlated errors.18 We use the estimated SpVAR to simulate impulse responses
which propagate within and between regions and within and between variables.
These impulse responses show that innovations propagate over time and across
space. For example, an innovation in a single region not only propagates over the
variables in that region but also between regions and over time. In turn these
reverberations feed back onto the source region. As expected for stationary spatial
panel data, these shocks eventually die out after about 4 years.

We distinguish between correlated and uncorrelated shocks. In the former case,
innovations in one region are correlated with innovations elsewhere according to
the spatial correlation matrix estimated in the SpVAR. Such correlated shocks
inevitably induce more regional turbulence than their uncorrelated counterparts.

Without formulating a formal economic model, we have statistically tested the
temporal and spatial dynamics relating to those leading variables that contribute to
disparities between regions: earnings, house prices, housing demand (represented
by population distribution) and housing supply (regional housing stock). We
estimate SpVAR models with first-order temporal and spatial lags. Spatial effects are
estimated using asymmetric spatial weights based on distances and population sizes.
For inter-regional impulse effects, these give more weight to closer and larger,
more populated regions.

Finally we use the estimated SpVAR to estimate contemporaneous spatial lag
coefficients by the method of instrumental variables, having first established that the
latter are weakly exogenous. This model incorporates temporal lags, contempora-
neous spatial lags, and lagged spatial lags.
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 Notes

1. For an early pioneering discussion of the problem in a univariate context see Pfeifer & Deutsch (1980).

2. Not SVAR since these mnemonics refer to structural VARs.

3. Stationarity here is defined temporally rather than spatially, as in Fingleton (1999).

4. See, for example, Enders (1994).

5. Elhorst (2004) considers the estimation of static panel models in which there is both spatial and temporal

autocorrelation in the residuals.

6. As might have been expected according to the statistical theory for dependent observations (e.g. Gleser &

Moore, 1983).

7. Yu et al . (2006) have recently suggested that the non-spatial parameters be concentrated out of the likelihood

function, and that the spatial parameters be estimated from the concentrated likelihood function. This

proposal, like that of Badinger et al ., is equally problematic.

8. Hahn & Kuerstiener (2002) show that a simpler bias correction than equation (17) is not outperformed by

GMM in finite samples.

9. See Anselin (1988, p. 79, fn. 14).

10. A more general panel unit root test would allow for spatial autocorrelation (Mur & Trivez, 2003). However,

since such a test has yet to be developed we rely on conventional panel unit root tests.

11. This test was used, for example, by Mäki-Arvela (2003). Drennan et al . (2004) also tested for unit roots in

spatial data. The issue of non-stationarity is sometimes ignored, however, in the regional science literature (e.g.

Badinger et al ., 2004).

12. However, Moon & Perron (2004) and Pesaran (2005) allow for some cross-section dependence.

13. For example, when N�50 and T�25 the empirical size for IPS is 5.6% at the 5% level when W is

contiguous. The distortion varies inversely with N and T .

14. See, for example, Hsiao (1986, p. 43), Maddala (2001, p. 576), Baltagi (2005, p. 14) and Cameron & Trivedi

(2005, p. 717).

15. See Bar Nathan et al . (1998).

16. This is a simplifying approximation because, according to equation (29), Wt depends on Zt .

17. There is only one autoregressive coefficient in Table 5 (for the housing stock). Its bias-corrected counterpart is

0.64. The other bias-corrected autoregressive coefficients are 0.06, since their biased counterparts are zero.

18. Spatial lags are not estimated separately here. They are implicitly estimated in the lagged spatial lag coefficients.

See equation (15).
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