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Testing for Unit Roots and Cointegration in

Spatial Cross-Section Data

MICHAEL BEENSTOCK, DAN FELDMAN & DANIEL FELSENSTEIN

(Received March 2011; accepted September 2011)

ABSTRACT Spatial impulses are derived for SAR models containing a spatial unit root. Analytical

solutions are obtained for lateral space where the number of spatial units tends to infinity. Numerical

solutions are obtained for finite regular lattices where edge-effects are shown to influence spatial

impulses, and for irregular lattices. Monte Carlo simulation methods are used to compute critical values

for spatial unit root tests in SAR models estimated from spatial cross-section data for regular and

irregular lattices. We also compute critical SAC values for spatial cointegration tests for cross-section

data that happen to be spatially nonstationary. We show that parameter estimates in spatially

cointegrated models are ‘superconsistent’.

Essais de racines unité et co-intégration dans des données transversales spatiales

RÉSUMÉ On dérive des impulsions spatiales de modèles SAR contenant une racine unité spatiale.

On obtient des solutions analytiques pour l’espace latéral lorsque le nombre d’unités spatiales tend vers

l’infini. On obtient des solutions numériques pour des réseaux réguliers finis, où l’on relève l’influence

d’« edge effects » sur les impulsions spatiales, et pour des réseaux irréguliers. Des méthodes de

simulation Monte Carlo sont utilisées pour calculer des valeurs critiques pour des tests de racine unité

spatiale dans des modèles SAR estimés sur la base de données transversales spatiales pour réseaux

réguliers et irréguliers. Nous calculons également des valeurs critiques de SAC pour essais de co-

intégration spatiale, concernant des données transversales qui s’avèrent être spatialement non

stationnaires. Nous démontrons que les estimations de paramètres dans des modèles spatialement

co-intégrés sont « ultra cohérentes ».

Pruebas de raı́ces unitarias y cointegración en datos espaciales de corte transversal

EXTRACTO Se derivan impulsos espaciales para modelos SAR que contienen una raı́z unitaria

espacial. Se obtienen soluciones analı́ticas para espacio lateral donde el número de unidades espaciales
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tiende al infinito. Se obtienen soluciones numéricas para retı́culos finitos regulares que demuestran que

los efectos de borde influyen sobre los impulsos espaciales, ası́ como para retı́culos irregulares. Se utilizan

métodos de simulación de Monte Carlo para computar valores crı́ticos destinados a las pruebas espaciales

de raı́ces unitarias en modelos SAR, estimados a partir de datos espaciales de corte transversal para

retı́culos regulares e irregulares. También computamos valores SAC crı́ticos destinados a pruebas de

cointegración espacial para datos de corte transversal que no son espacialmente estacionarios. Mostramos

que las estimaciones de parámetros en modelos espacialmente cointegrados son ‘superconsistentes’.

SAR

SAR

" "

KEYWORDS: Spatial unit roots; spatial cointegration; spatial impulse responses

JEL CLASSIFICATION: C23; C22

1. Introduction

Fingleton (1999) demonstrated that if the data generating processes (DGP) for
spatial cross-section data happen to contain spatial unit roots, the estimated
regression coefficients may be spurious.1 He suggested that the concept of
cointegration proposed by Engle & Granger (1987) to test for nonsense and
spurious regression in time series data may be extended to spatial data. Therefore, if
the DGPs of Y and X happen to embody spatial unit roots, the regression
coefficient of Y on X will be genuine rather than nonsense provided Y and X are
spatially cointegrated. If, on the other hand Y and X are not spatially cointegrated,
the regression coefficient is nonsense or spurious. This happens when the residuals
contain a spatial unit root.

Fingleton did not provide a spatial unit root test to determine whether the
DGPs of spatial data contain spatial unit roots and are therefore spatially non-
stationary. Nor did he provide a spatial cointegration test to determine whether
parameter estimates are nonsense or not. Our main purpose is therefore twofold.
First, we develop a test statistic for unit roots in spatial cross-section data. We derive
the distribution of the SAR coefficient under the null hypothesis of a spatial unit
root. We obtain critical values for the spatial counterpart to the well known
Dickey�Fuller statistic. Second, we develop a test statistic for spatial cointegration
in which the data happen to contain spatial unit roots. In doing so we apply to
spatial cross-section data concepts used by Engle & Granger (1987) for nonsta-
tionary time series data. Specifically, spatial cointegration requires that the model
residuals be stationary, and that their spatial autocorrelation coefficient (SAC) be
less than one. Spurious and nonsense regression phenomena arise when this null
hypothesis that SAC�1 cannot be rejected. If, however, the null hypothesis is
rejected the data are spatially cointegrated.
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Lauridsen & Kosfeld have suggested two types of cointegration tests for
nonstationary spatial data. Our approach is similar to Lauridsen & Kosfeld (2004)
who test the null hypothesis that the model residuals contain a spatial unit root. They
calculate the distribution of the Wald test under the null hypothesis that the residuals
contain a spatial unit root.2 In contrast, we calculate the spatial counterpart to the
Dickey�Fuller statistic. Lauridsen & Kosfeld (2006, 2007) also suggested a two stage
Lagrange multiplier (LM) test for spatial unit roots. In the first stage, the LM SAC
statistic is calculated for the residuals. If the LM statistic is not significant the residuals
must be stationary. If the LM statistic is significant,3 the second stage is intended to
determine whether SAC�1 by estimating the model with spatially differenced data.
If SAC�1 the LM statistic for the residuals in the second stage should not be
significant. The difficulty with this proposal is that if the model is cointegrated, the
second stage is misspecified; it should be a spatial error correction model.4

At first, we assume that space is a square rook lattice and that the spatial
connectivity matrix (W ) is sparse with wij�1 for contiguous spatial units and zero
otherwise. We calculate critical values for this case. Subsequently, we vary the
tesselation for oblong spaces, rook�queen lattices, and for specific locations, such as
Columbus, Ohio and NUTS2. We do so because we show that spatial impulse
responses depend on topology; they are stronger in square lattices than in oblong
ones, and they are stronger in queen lattices than in rook ones. It turns out,
however, that the critical values are quite close to unity. Typically, an estimated root
of 0.95 is significantly less than 1.

We also compute critical values for spatial cointegration. Suppose that our
spatial unit root tests indicate that Y and X have spatial unit roots. For Y and X to be
spatially cointegrated the residuals obtained from a regression of Y on X (or vice-
versa) must be spatially stationary. Under the null hypothesis, these residuals are
assumed to contain a spatial unit root. If the estimated SAC coefficient of
the residuals is less than its critical value, we may reject the hypothesis that Y and X
are not spatially cointegrated. We compute these critical values for different sample
sizes and numbers of covariates.

We show that parameter estimates of spatially cointegrated models are super-
consistent.5 This means that the rate of asymptotic convergence is considerably more
rapid if spatial data are nonstationary than for stationary data. In the latter case the
rate of convergence is 1/N½. In the former case the rate of convergence is 1/Nd

where d�1.
A secondary contribution, related to the first, concerns the way in which spatial

impulses propagate with and without spatial unit roots. What happens in a given
spatial unit depends on what is happening in its neighbours. Since spatial units are
mutual neighbours, shocks originating in a particular spatial unit rebound via its
neighbours.6 Spatial units on the edge of the lattice have fewer neighbours. We
show that because space has edges, shocks originating at the epicentre propagate
more strongly than shocks originating at the periphery. Also, even if there is a spatial
unit root, edge effects create the misleading impression that spatial impulse responses
die away with distance. Such edge effects must be taken into consideration in the
design of spatial unit root tests.

In contrast to Fingleton (1999) and Mur & Trivez (2003), we do not assume
that there is an unconnected spatial unit. Spatial units in the corners of the lattice
have fewer neighbours, but this does not mean that they are unconnected. It only
means that they are less connected.7 Therefore our proposed spatial unit root tests
take topology and edge effects into consideration without the artificial contrivance
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of unconnected spatial units. We note, in this context, that the standard practice of
normalizing spatial weights to sum to unity ignores the fact that spatial units along
the edges and in the corners of the lattice are less connected.

2. Data Generating Processes

In what follows there are N spatial units labelled by j and spatial lags are labelled
with a tilde. The hypothesis of interest is that Y depends on X:

Yj ¼ c þ bXj þ uj (1a)

uj ¼ q~uj þ vj (1b)

where, e.g. ~uj ¼
PN

k 6¼j wjkuk denotes the spatially weighted8 average value of u among
the neighbours of j, r is the SAC coefficient of u. The v’s are iid random variables.

The data generating processes (DGP) for Y and X are assumed to be first-order
SAR models:

Yj ¼ aY
~Yj þ ej (2a)

Xj ¼ aX
~Xj þ ej (2b)

where o and e are iid random variables with correlation r. A variable is defined to be
strongly stationary if all its moments are finite and are independent of the sample
size. It is weakly (covariance) stationary if the first two moments are finite and are
independent of the sample size. In the case of spatial data means, variances and
covariances should be independent of N. Spatial covariances should depend

only upon the relative position of different locations, as determined by their relative orientation

(angle) and respective distances. Since the orientation between two points in two (or more)

dimensions still leaves a great number of different situations (potentially over a 360 degree

rotation), the stricter notion of isotropy is imposed as well. (Anselin, 1988, p. 43)

Since regression does not use higher-order moments we focus on covariance
stationarity.

2.1. The means of Y and X

A variable Z is spatially integrated of order d when its d’th spatial difference
is spatially stationary. Therefore Y�SI(1) and X�SI(1) when aY�aX�1. If
u�SI(1) because r�1, Equation (1) is a nonsense regression, which happens if o
and e are independent, i.e. r�0. If u�SI(0) because rB1, Equation (1) is not
nonsense as pointed out by Fingleton (1999). This happen because r"0, i.e.
because o and e are jointly distributed random variables.

This suggests that the cointegration test statistic for spatial cross-section data
should focus on rejecting the null hypothesis that r�1. The same applies to spatial
unit root tests for aY and aX. In Section 4 we use Monte Carlo simulation to derive
the distributions of aY and aX under the null hypothesis that these parameters are
equal to unity. These distributions provide critical values for rejecting the null
hypothesis that the data contain a spatial unit root. In Section 5 we use Monte
Carlo simulation to compute critical values for spatial cointegration tests when the
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data contain spatial unit roots and when r�1 under the null hypothesis. If the
calculated value of r is less than its critical value, we may reject the hypotheses that
the result is spatially spurious.

Let y denote a column vector of length N with elements Yj. WN is an irregular
but isotropic N�N spatial connectivity matrix in which connectivity may vary
between spatial units. Equation (2a) may be vectorized as:

y ¼ aWNy þ e (3)

If IN�rWN is invertible, the spatial Wold representation of Equation (3) is:

y ¼ ANe (4a)

AN ¼ ðIN � qWNÞ
�1 ¼ IN þ aWN þ a2W 2

N þ ::: (4b)

Invertibility requires that the elements of AN be finite which is satisfied when aWN

is convergent. The spatial variance�covariance matrix generated by Equation (4a) is
expected to be:

RN ¼ Eðyy0Þ ¼ r2
eBN (5a)

BN ¼ ANA0
N (5b)

According to Equation (4a) the first moment is finite and is independent of N since
E(y)�0. Matters are quite different in the case of second moments because
according to Equation (5a), S may depend on N. Since IN�aWN is invertible
det(A) must be finite, which guarantees that det(S) is finite. Therefore, the second
moments are finite. However, the second moments will depend upon N if BN

varies with N. According to Equation (4b) this depends on WN and a.
Normalizing so�1, the variance of Yk with N units is bkk and its covariance

with Yj is bkj. Suppose that the sample increases by 1 from N to M and location M is
remote from k and j. Stationarity requires that bkk and bkj remain unchanged. These
conditions require that shocks in remote spatial units have no repercussions on units
k and j, e.g. aM�kWM�k tends to zero. Therefore stationarity requires that aW be
convergent. Y is isotropic if adding a remote spatial unit makes no difference to the
connectivity between incumbent units. Therefore, when Y is isotropic conver-
gence does not depend on W, it depends on aB1. We do not consider the more
general case in which the data are not isotropic. However, we investigate critical
values for spatial unit roots for different topologies, including irregular topologies in
which the number of neighbours is not the same for all spatial units.

3. Spatial Impulse Responses

In this section we show that spatial unit roots asymptotically induce spatial impulse
responses that do not die out with distance. If spatial data are stationary, shocks
occurring remotely from j have no effect on j. If, however, spatial data are
nonstationary, such remote shocks affect j as if they occurred in j itself. This result is
established analytically for lateral space, i.e. where space is an infinite line that has
no beginning and end, and spatial units have neighbours on two sides only.

In multilateral space there are more than two neighbours. For example, in
bilateral space (rook lattice) each spatial unit has four sides and neighbours.
Unfortunately, we are unable to obtain analytical solutions for this more relevant
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case. We therefore simulate spatial impulse responses numerically. Because of
computational constraints we are forced to assume that space is finite, which means
that we cannot obtain asymptotic impulse responses as we do in the lateral case. We
think that this may be advantageous because space is inherently finite. We show
that in finite space impulse responses die out with distance even in the presence of a
spatial unit root. This happens because peripheral spatial units are less connected
than core spatial units. Indeed, this core�periphery effect may create the misleading
impression that the data are spatially stationary when the opposite is true.

3.1. Lateral Space

Spatial units are assumed to be located laterally (along an axis representing west and
east or north and south) so that each unit has a neighbour on either side. Units
continue to be labelled by j���, . . ., �. There is an infinite number of spatial
units and unit j�1 is unit j’s neighbour to the left or west and unit j�1 is its
neighbour to the right or east. Spillovers are assumed to be first-order, i.e. they
occur between immediate neighbours. The SAR model in this case is:

Yj ¼ aðYjþ1 þ Yj�1Þ þ uj (6)

where a denotes the spatial spillover coefficient and u is an iid random variable with
variance equal to r2

u. Equation (6) is a second-order stochastic spatial difference
equation.

Let S denote a spatial lag operator such that SiYj�Yj�i where i may be positive
(west of j) or negative (east of j). Multiplying Equation (6) by S and rewriting the
result in terms of the spatial lag operator gives:

1 � a�1S þ S2ð ÞYj ¼ �a�1uj�1 (7)

The auxiliary equation of Equation (7) is:

k2 � a�1k þ 1 ¼ 0 (8)

If 0BaB½, the roots of Equation (8), denoted by l1 and l2, are real and positive
and are reciprocally related because l1�1/l2. The roots will be complex if 4a2�1
which arises when a�½. When a�½ both roots are equal to unity. When
0BaB½ one root is positive and less than one (l1) while the other (l2) is positive
and greater than one, since the roots come in reciprocal pairs. Because
1 � k1Sð Þ 1 � k2Sð Þ ¼ 1 � a�1S þ S2ð Þ, the general solution9 to Equation (6) is:

Yj ¼ �
a�1uj�1

1 � k1Sð Þ 1 � k2Sð Þ
þ A1k

i
1 þ A2k

i
2 (9)

where A1 and A2 are arbitrary constants of integration and i denotes distance from j.
To obtain a particular solution it is necessary to determine A1 and A2 using data on
Y for two spatial units. Since in what follows we have no interest in the particular
solution we ignore it by setting these arbitrary constants to zero. Using partial
fractions10 we note that:

1

1 � k1Sð Þ 1 � k2Sð Þ
¼ 1

k1 � k2

k1

1 � k1S
� k2

1 � k2S

" #
(10)
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We also note that11:

1

1 � k1S
¼

X1
i¼0

ki
1S

i (11)

If l1B1, Equation (11) is convergent because ki
1 tends to zero with i. Since the

roots come in reciprocal pairs, applying Equation (11) to l2 would induce a
divergent process since ki

2 tends to infinity with i because l2�1 if l1B1. This
would imply unreasonably that despite the fact that aB½ Y is explosive and
divergent. The solution to this problem is to note that 1 � k2Sð Þ�1

has two
polynomial inversions, one that is the counterpart of Equation (11) and another
which is:

1

1 � k2S
¼ � k2Sð Þ�1

1 � k2Sð Þ�1
¼ � k1S

�1

1 � k1S
�1

¼ �
X1
i¼1

ki
1S

�i (12)

Equation (12) is the ‘forward’ inversion whereas Equation (11) is a ‘backward’
inversion. Substituting k2 ¼ k�1

1 into the forward inversion generates Equation (12)
which is convergent because it depends on ki

1. Equation (11) operates ‘westwards’
since i]0 and Equation (12) operates ‘eastwards’ since iB0.

Substituting Equations (10), (11) and (12) into Equation (9) gives:

Yj ¼
a�1

k�1
1 � k1

X1
i¼1

ki
1uj�i þ

X1
i¼0

ki
1ujþi

" #
(13)

Equation (13) is the spatial Wold representation of Equation (6) since it expresses Yj

in terms of the stochastic shocks in all units to the east and west of unit j as well as in
unit j itself. Equation (13) is also the spatial impulse response function. If l1B1,
Equation (13) states that closer units to j have a greater effect on j than more remote
units. The spatial impulse responses are symmetric, as expected, since uj�i has the
same effect on Yj as uj�i:

@Yj

@uj�i

¼
@Yj

@ujþi

¼ a�1ki
1

k�1
1 � k1

(14)

Equation (14) also shows that the impulses tend to zero as the distance between
spatial units (i) tends to infinity. This means that shocks that occurred infinitely far
from unit j have no effect on Yj. In addition, Equation (14) shows, as expected, that
the largest impulse is for shocks that occur in region j itself (i�0).

Finally, l1 varies directly with a. For example, when a�0.1, l1�0.1015 in
which case the impulse response from immediate neighbours (i�1) according to
Equation (14) is equal to 0.103 and the local impulse response (i�0) is 1.0207.
Notice that the local impulse exceeds 1 because there is a spatial echo; shocks in
unit j propagate back onto it via other spatial units. When a�0.2, l1 increases as
expected to 0.2087 and the impulse response from immediate neighbours increases
as expected to 0.225, and the own impulse increases to 1.091 because the spatial
echo varies directly with a. When a�0.498 these impulse responses jump to 10.24
and 11.19, respectively. As a approaches ½, l1 approaches 1 and the impulse
responses approach infinity. When a�½ both roots equal 1, the impulse responses
explode and no longer depend on distance.12
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According to Equation (13), E(Yj)�0 because the expected value of the u’s are
all zero13 by definition. Therefore, the first moment is independent of j. The
variance of Y from Equation (13) is equal to:

varðYÞ ¼
a�2 1 þ k2

1

� �
1 � k2

1

� �
k�1

1 � k1

� �2
r2

u (15)

which is finite since 05l1B1 and it does not depend on j. Therefore if 0BaB½
the first and second moments of Yj are finite and independent of j. Matters are
different when a�½. Since l1�1, the denominator of Equation (15) is zero and
the variance of Y is therefore infinite.

3.2. Bilateral Space

When space is lateral and the number of neighbours (n) is two, we saw that the
SAR coefficient inducing a spatial unit root is a+�½�1/n. When space is
multilateral and spatial units have more than two neighbours the critical value for a
that gives rise to a spatial unit root is a+�1/n. If space is a rook lattice each spatial
unit has four neighbours in which case a+�¼, and if it is a queen lattice a+�1/8.

The bilateral counterpart to Equation (6) may be written familiarly as the SAR
model:

Y ¼ aWY þ u (16)

where W is a sparse N�N matrix with elements wjk�1 if j and k are neighbours
and wjk�0 otherwise, and Y and u are vectors of length N. In Section 3.1 N is
infinite and space has no edge. However, in the present section N is assumed to be
finite, in which case space has an edge. In any case, spatial datasets typically have
edges because they refer to specific geopolitical entities. Fingleton (1999)
normalized the row-sum weights (w) to unity, and normalized a�1. This means
that at the corners of the lattice where there are two neighbours wjk�½ instead of
¼, and at the edge of the lattice where there are three neighbours wjk�1/3; instead
of ¼, which overstates the true weight. We therefore prefer to normalize wjk�1 in
which case the sum of weights is four and a+�¼ because this does not artificially
inflate spatial spillover at the corners of the lattice and along its edges. Another
difference is that unlike Fingleton we do not assume the existence of an
‘unconnected spatial unit’; in our lattice all units are mutually connected.

The Wold representation of Equation (16) is:

Y ¼ Au

A ¼ I � aWð Þ�1¼ IN þ
X1
i¼1

aiW i
(17)

where W iu denotes u among i’th order neighbours. If a is normalized to 1 and the
restriction of row-sum�1 is applied to W, the matrix I�aW is not invertible
regardless of N. If instead a�1/n and the row-sum restriction is not applied, I�aW
is invertible if N is finite. In fact, det(I�aW) is O(1/N) so that as space becomes
infinitely large edge effects are asymptotically unimportant.
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The spatial impulse responses are:

dYj

duj

¼ ajj (18)

dYj

dui

¼ aji (19)

We expect ajj to vary directly with the number of spatial units because this gives rise
to more scope for spatial spillover, and we expect aji to vary inversely with the
distance between j and i. If, however, there is a spatial unit root, the impulses aji will
not tend to zero as the distance between j and i tends to infinity. We use Matlab to
calculate A for square lattices containing N spatial units in which n�4 and a+�¼.
To investigate asymptotics we ideally wish to let N tend to infinity, but this is not
computationally feasible. We therefore make N as large as practically possible
(approximately 1,000) given computing constraints.

Because N is finite A is inevitably affected by edge effects. Spatial units on the
edge are less exposed to spatial spillover because they have only three neighbours
instead of four. Spatial units in the four corners of the lattice only have two
neighbours. We expect ajj and aji to be greater the closer j is to the epicentre j + of the
lattice because there is more scope for spatial interaction in the centre than
at the periphery. We do not expect aji to be symmetrical unless j�j + because only at
the epicentre is the distance to the edge of the square lattice the same in all four
directions.

In Figure 1 we plot impulse responses for aj+i when N�961. Since the lattice
is square it is 31�31, and the distance from its epicentre to the edge is therefore
15. The impulse responses are measured along the vertical and Euclidean distance

Figure 1. Spatial impulses.
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from j+ is measured along the horizontal. The 15th value of i is on the edge of the
lattice and the 30th value is at the corner of the lattice, hence the dog-leg at spatial
lag 15. Figure 1 shows, as expected, that aji varies directly with a, and varies
inversely with k. The impulse responses die away more slowly for larger a. It might
have been expected that when a�a+�¼ the impulse responses should lie on a
straight line and fail to die away. We expect this to happen as N tends to infinity, as
in the case of lateral space. It does not happen in Figure 1 because N is finite and
space has an edge. Nevertheless, Figure 1 clearly shows that when a�¼ there is a
qualitative difference and the impulses linger longer in space than when a�0.2.

As indicated in Equation (18) the diagonal of A measures the direct and indirect
effect of a shock in j on itself. We refer to these as ‘local impulses’, which are
plotted in Figure 2 for different values of a according to the distance of j from the
epicentre of the lattice. The local impulses exceed unity because when a shock
occurs in j it affects j’s neighbours which feedback onto j. This echo or boomerang
effect naturally varies directly with a. Figure 2 also shows that when aBa+ the
edge effect does not affect local impulses because the echo does not extend very far.
Hence the local impulse does not depend upon distance from the epicentre, except
at the edge of the lattice.

When a�a+, however, matters are quite different. Figure 2 shows that in this
case the local impulses vary inversely with distance from the epicentre. This
happens because the echo resounds far, so that close to the epicentre there is much
more echo than at the edges. Had there been no edge, the effect at the epicentre
would have been infinity because the echo resounds forever, and the effect
elsewhere would have been infinite too. Indeed, when N is infinity there is no
meaning to the epicentre because the lattice has no borders.

Figure 2. Local impulses.
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3.3. Variances in Bilateral Space

When space is lateral there is an analytical expression for the variance of Y, as seen
in Equation (15). When space is bilateral Equation (17) implies that the variance�
covariance matrix of Y is equal to:

R ¼ r2
uAA0 (20)

We follow Fingleton (1999) and calculate14 the average variance of Y as N
increases.15 The results are plotted in Figure 3, which shows that as a increases
towards a+�¼, the variance of Y varies directly with N. Figure 3 clearly establishes
that the variance depends upon N as a increases towards a+. Indeed,
the variance increases nonlinearly with N. This happens for two reasons. First, as
N increases oN increases the variance through a natural scale effect. Secondly, as N
increases there is more scope for spatial interaction. The latter increases the variance
among the incumbent N�1 units.16 However, when aBa+, the variance does not
depend upon N, as should be the case if the data are stationary. Stationarity requires
that the variance should not depend on the sample size.

3.4. Irregular Lattices

In regular lattices the number of neighbours is the same for all spatial units except
along the edges and in the corners. In irregular lattices the number of neighbours
varies between spatial units even if they are located in the core of the lattice. It is
conceptually unclear how to define spatial unit roots in irregular lattices. One
intuitive conjecture is that if wji�1 for contiguous units, a should be normalized to
equal the reciprocal of the average number of neighbours. This conjecture is based
on the principle that a+�1/n in regular lattices. For example, in NUTS2 the
number of contiguous neighbours ranges between 1 and 11 with a mean of 4.714.
Setting a+�0.212 turns out to be incorrect because the mean of a in the Monte
Carlo simulations is 0.186 and none of the 10,000 estimates exceeds 0.212.
Therefore this conjecture is incorrect.

Figure 3. Relationship between variance and sample size.
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An obvious solution to this problem is to set a+�1 and to restrict W to be
row-sum�1. In this case the number of neighbours does not matter from a
technical point of view. This solution assumes unreasonably that spatial connect-
edness is independent of the number of neighbours, so that the NUTS2 unit with
one neighbour is just as spatially connected as the unit with 11 neighbours. This
solution also ignores edge effects, as noted.

Nonstationarity implies that spatial impulses do not die out asymptotically with
distance. We have shown that in regular lattices with wij�1 for contiguous units,
spatial impulses die out because of edge effects even when a spatial unit root is
present. Figure 1 showed that impulses die out more slowly when there is a unit
root. However, as N tends to infinity spatial impulses cease to die out. The same
applies in irregular lattices. If W0 is an irregular (sparse) spatial weight matrix for N0

units and a+ denotes the spatial unit root, edge effects guarantee that IN�a
+W0 is

invertible and spatial impulses die out. If a+ is correctly defined these impulses
should cease to die out as N tends to infinity.

Let W1 be an irregular weights matrix when N1�N0. Because N has increased,
some or all of the edge units in W0 will lose their edge status. Suppose that W1 is
irregular in the same way that W0 was irregular (otherwise it is difficult to make
asymptotic arguments). Impulses induced by a+W1 should die away more slowly
than those induced by a+W0, and so on for W2 etc. If aBa+ these impulses will die
out too rapidly. Therefore, a+ is selected to ensure that impulses do not die out at
all as N tends to infinity.

Just as we saw in Figure 1 that a+ induced a qualitative change in the persistence
of spatial impulses, and in Figure 2 it induced explosive tendencies in own impulses,
so we suggest that a+ may be calculated for each irregular lattice. For example, in the
case of NUTS2 where the number of neighbours ranges between 1 and 11 we find,
by simulation, that a+�0.167. For aB0.167 spatial impulses do not persist and own
impulses are damped. However, if a�0.167 spatial impulses become persistent and
own impulses cease to be damped. For Columbus, Ohio we find by simulation that
a+�0.17.

3.5. Spatial Superconsistency

If in Equation (1) Y and X are stationary and independent, the OLS estimate of b

b̂
� �

is obviously root N-consistent. If they are dependent, consistency additionally

requires that Y and X be ergodic so that the data are asymptotically independent.
This means that the effect of stochastic shocks in spatial unit z(oz) on Yj tends to
zero sufficiently strongly with the distance between j and z.

If Y and X are nonstationary SI(1) but they are cointegrated, the OLS estimate
of b is ‘superconsistent’. This means that the rate of asymptotic convergence of b̂ to
b is faster than root N. In fact it is Nv-consistent where v�1. If the data are
stationary v�½.

To show this let b̂ ¼ b þ b where:

b ¼

1
N

PN
j¼1

Xjuj

1
N

PN
j¼1

X2
j

(21)
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The denominator of Equation (21) is the variance of X, which according to Figure
3 is a power function of N, where the power (s) clearly exceeds 1. Therefore the
denominator of b is Op(N

s); its asymptotic order in probability is s. The numerator
of b is the covariance between X and u. Because Equation (1) is cointegrated, u is
stationary by definition. The covariance between X which is nonstationary and u
which is stationary is a random variable with asymptotic order (q) that must be less
than s. Therefore the asymptotic order of b is q�s��v. If s�1½ as suggested17 by
Figure 3 and q�0 then v�1½. This means that b tends to zero at a rate of 1/Nv,
in which case b̂ is Nv-consistent.18

Superconsistency implies that we learn more about b from a sample of N
observations when spatial data are nonstationary and cointegrated than when they
are stationary. Indeed, even if X is not exogenous and plim(Xu) is not zero, b still
tends to zero with Nv. Therefore superconsistency has the further advantage of
eliminating simultaneous equations bias that would arise if the data were stationary,

and plim b̂
� �

�b. This, of course, is an asymptotic argument that might not be

valid in finite samples. Finally, since the asymptotic order of the variance of Y is s,
the asymptotic order of the variance of the residuals is 0 (because they are
stationary). Since R2�1�var(u)/vary(Y), plim(R2)�1 because the ratio between
the variances tends to zero19 at the rate of 1/s.

4. Spatial Unit Root Tests

We set a�a+�¼ in Equation (17) and generate 10,000 artificial datasets for Y by
drawing the u’s using pseudo random numbers from a standard normal distribution
for given N. We use these synthetic datasets to estimate by maximum likelihood20

10,000 SAR models. The distribution of the 10,000 estimates of the SAR coefficient
is plotted in Figure 4 for the case when N�400 spatial units in a square lattice.

Figure 4. The distribution of SAR coefficient when a�¼.
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Not surprisingly the mean estimate of the SAR coefficient is almost 0.25
(0.2498) and the mode is around 0.25 (0.2520). However, some estimates exceed
0.25. The distribution is clearly skewed to the left.21 According to Figure 4, when
N�400 there is a 95% chance of getting a SAR coefficient that is greater than
SAR+�0.243. Therefore, the critical value for the SAR coefficient is 0.243 at
p�0.05.

In Table 1 we report SAR+ for different values of N and p. If the estimated
SAR coefficient is greater than SAR+ the spatial cross-section data contain a spatial
unit root. For example, when N�100 and p�0.05, SAR+ is 0.225. If SAR is
greater than SAR+ we cannot reject the null hypothesis of a spatial unit root.
Therefore, if the SAR estimate is, for example, 0.2 we may reject the hypothesis of
a spatial unit root. SAR+ naturally varies inversely with p and it varies directly with
N, or the sample size.

The computations reported in Table 1 are inherently random because they
depend on the seed used to generate the pseudo random numbers, which is chosen
randomly. To obtain some impression of the degree of randomness we reseeded the
case for N�100, 500 times and reduced22 the number of Monte Carlo trials from
10,000 to 5,000 (see Table 2). For example, when p�0.05 one standard deviation
of the critical value of SAR+ is about ½% and SAR+ is bounded between 0.224 and
0.226. Therefore, the critical values reported in Table 1 are reliable.

We also investigated the sensitivity of the computations reported in Table 1 to
the number of Monte Carlo trials, which in Table 1 is 10,000. Here too N�100.
Table 3 shows, as expected, that the critical values are not sensitive to the number
of trials when p is relatively large. Indeed, in this case even 1,000 trials would have
been sufficient. However, matters are quite different when p is relatively small, e.g.
p�0.01. In this case the critical value of SAR+ varies directly with the number of
trials. Clearly, to dig into the tail of the distribution requires increasing the number
of trials.

In Section 3 we saw that spatial impulses are affected by topology especially
when there is a spatial unit root. This suggests that spatial unit root tests might vary
by topology. In Table 4 we therefore report critical values for different topologies
when the number of spatial units is 400. We also report critical values for irregular
topologies in Columbus, Ohio and the European Union23 (NUTS2). Case 1 in
Table 4 is identical to the case in Table 1. We normalize the spatial unit root to
unity for ease of comparison. For example, in case 1 each unit has four neighbours,
therefore the normalized critical value is 4�0.243�0.972 at p�0.05. Changing
the lattice from a square to an oblong reduces the critical value slightly to 0.944
from 0.972. Since in an oblong the average distance between spatial units is greater
than in the case of a square, there is correspondingly less spatial interaction.
This makes it more difficult to estimate the SAR coefficient, and as a result, its
critical value is less.

Table 1. Spatial unit root test statistics for square rook lattice: SAR+

N

P 25 100 400

0.01 0.071 0.209 0.24

0.05 0.139 0.225 0.243

0.1 0.161 0.231 0.244
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In case 3 each unit has eight neighbours instead of four, which increases the
scope for spatial interaction. However, despite the fact that there is more spatial
interaction in case 3 than in case 1 it is harder to reject the null hypothesis of a
spatial unit root (the critical value in case 3 is 0.96 whereas in case 1 it is 0.972).
The reason for this is that edge effects are stronger in case 3 than in case 1. In case 3,
corner and edge units have three and five neighbours, respectively, instead of eight
neighbours, whereas in case 1 they have two and three neighbours, respectively,
instead of four.

Cases 4 and 5 differ to the previous cases in that they do not refer to artificial
topologies in which the lattices are regular. Case 4 refers to Anselin’s (1988) spatial
connectivity matrix for Columbus, Ohio, and case 5 refers to NUTS2. Using the
methodology described in Section 3.4 for determining unit roots when W is
irregular, through simulation we find that the unit root for Columbus is 0.17 and
for NUTS2 it is 0.167. If, for example, in the case of Columbus, a�0.168 the
spatial impulses are damped. However, when a�0.17 these impulses become
explosive. The critical values have been normalized to unity for purposes of
comparison. Because the critical value is higher for NUTS2 than for Columbus, it
is easier to reject the null hypothesis in the case of NUTS2 than in the case of
Columbus. The critical values at p�0.01 are 0.964 for NUTS2 and 0.853 for
Columbus. This shows that the MC distribution for the SAR coefficients is tighter
for NUTS2 than it is for Columbus.

Table 2. Confidence intervals for Table 1 (N�100)

Mean Variance Std. Min Max Mode

Mean 0.2456 1.68E-08 1.30E-04 0.2452 0.246 0.2456

Mode 0.249 1.81E-08 1.35E-04 0.2489 0.252 0.2489

1% 0.2086 4.32E-06 0.0021 0.204 0.215 0.209

5% 0.2249 2.88E-07 5.37E-04 0.224 0.226 0.225

10% 0.2308 1.10E-06 1.00E-03 0.228 0.233 0.231

Table 3. Sensitivity of Table 1 to the number of trials (N�100)

Trials

500 1,000 5,000 10,000 15,000

Mean 0.2454 0.2454 0.2456 0.2452 0.2456

Mode 0.25 0.248 0.249 0.244 0.249

1% 0.193 0.208 0.2059 0.209 0.211

5% 0.22 0.225 0.224 0.225 0.225

10% 0.228 0.23 0.231 0.2309 0.2319

Truncated 32.2 30.3 32.04 32.74 31.2667

Table 4. Critical values for spatial unit roots for different tesselations (p�0.05)

Case Critical value: SAR+

1. Square (20�20) rook lattice 0.972

2. Oblong (10�40) rook lattice 0.944

3. Square (20�20) queen lattice 0.960

4. Columbus, Ohio 0.953

5. NUTS2 0.988
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Table 4 shows that critical values are not sensitive to topography. It is tempting
to say that if estimated SAR coefficients are less than 0.9, one may be reasonably
confident in rejecting the hypothesis of a spatial unit root regardless of
topography.24

5. Spatial Cointegration Tests

Fingleton (1999) observed that if the DGPs for Y and X contain spatial unit roots,
estimates of b in Equation (1) may be ‘nonsense’. If b�0 in Equation (1) and
Y�SI(1) then it must be the case that u�SI(1) so that r�1 in Equation (2). If,
however, Y and X are spatially cointegrated, u must be stationary in which caserB1.

We generate 10,000 artificial datasets for Y and X with a�¼. The random
numbers used to generate Y and X are independent, hence we expect b�0 in each
draw. We use these datasets to generate 10,000 OLS estimates of b. The
distribution of these estimates is plotted in Figure 5 for N�400. The distribution
in Figure 5 is25 approximately normal, but the mean is a non-zero random variable.
In Figure 5 the mean is 0.006 and the mode is �0.0088. There are positive as well
as negative estimates of b. The residuals from these nonsense regressions are used to
estimate26 10,000 estimates of SAC (r), which are plotted in Figure 6.

The mode in Figure 6 is 0.2527 and the mean is 0.2482. However, there are
estimates that are below and above 0.25. When p�0.05, Figure 6 implies that
SAC+�0.241. If SACBSAC+ the OLS estimate of b is not nonsense, in which
event Y and X are spatially cointegrated. If, on the other hand, SAC�SAC+ we
cannot reject the hypothesis that the residuals contain a unit root, in which event
the estimate of b is ‘nonsense’ and Y and X are not spatially cointegrated.27

Table 5 records the critical value of SAC+ in the bivariate case (k�2). Note
that SAC+ in Table 5 is typically smaller than SAR+ in Table 1. This discrepancy
reflects the loss in degrees of freedom since SAC+ is based on estimated residuals
rather than true residuals. As expected, SAC+ varies directly with N and p.

Figure 5. The distribution of the spatial nonsense regression coefficient.
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Table 6 records critical values for SAC+ for different values of k when p�0.05.
As expected, SAC+ varies inversely with k, especially the smaller N is, because there
are fewer degrees of freedom.

6. Conclusion

This paper makes two contributions. We investigate spatial impulse responses for
the SAR model in the presence and absence of spatial unit roots. We show that
asymptotically space has an ‘infinite spatial memory’ when there is a spatial unit
root such that infinitely remote shocks impact on spatial units as if distance did not
matter. By contrast, in finite space, which has a natural edge, spatial memory ceases
to be infinite and spatial impulses dissipate. However, there is a qualitative
difference in the presence of unit roots; spatial impulses tend to linger. In contrast
to time series, spatial impulses ‘echo’ and ‘boomerang’ because each unit is its
neighbour’s neighbour. This induces forward and backward linkages between
spatial units. Here too, we show that there is a qualitative difference between SAR
processes with and without unit roots.

Figure 6. The distribution of the SAC coefficient for spatial nonsense regressions.

Table 5. Spatial cointegration test statistics: SAC+ (k�2)

N

p 25 100 400

0.01 0.0450 0.198 0.239

0.05 0.107 0.215 0.243

0.1 0.1400 0.224 0.245
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Our second and main contribution is to report critical values for SAR
coefficients when under the null hypothesis there is a unit root in spatial cross-
section data. Our Monte Carlo computations follow procedures previously used by
Dickey and Fuller who computed critical values for temporal unit roots.

Critical values for spatial unit roots tend to be larger than their time series
counterparts. Indeed, they are very close to unity. This qualitative difference is
explained by the fact that because there is more scope for interaction in spatial data
than in time series data, it is easier to reject the null hypothesis of a spatial unit root
than a temporal unit root. Indeed, this intuition is brought out in the critical values
calculated for different symmetric topologies. For example, the critical value is
smaller for oblong topologies than square topologies because there is more scope
for interaction in squares than in oblongs that have the same number of spatial
units.

If the DGPs for spatial cross-section data happen to be spatially nonstationary,
the nonsense regression phenomenon arises in spatial cross-section data as pointed
out by Fingleton (1999). We report critical values for spatial cointegration in spatial
cross-section data. These critical values are designed to distinguish between
genuine and nonsense regressions. Here too we follow procedures already
developed for time series data. Specifically, we derive critical SAC values since
we follow Engle & Granger in using residual-based cointegration test statistics.

Just as a variety of cointegration tests have been developed for time series data,
we do not wish to suggest that residual-based test statistics are uniquely suited for
testing spatial cointegration. We see no reason why Johansen-type tests and error
correction tests for cointegration cannot be developed for spatial cross-section data.
Johansen’s reduced rank regression methodology could be applied to spatially
filtered data, and spatial error correction models could form a basis for testing spatial
cointegration. However, we hope the present paper has made a useful start by
considering residual-based spatial cointegration tests.

Notes

1. Strictly speaking, Fingleton referred to ‘nonsense’ regression rather than ‘spurious’ regression. The latter,

discovered by Yule (1897), arises when Y and X are independent random walks with drift. Drift causes the

means of Y and X to increase over time, which induces spurious correlation. Nonsense regression, also

discovered by Yule (1926), arises when Y and X are driftless random walks, and is induced by the fact that the

variances of Y and X increase over time. The spatial DGPs studied by Fingleton have zero spatial drift, hence

the correct adjective is nonsense rather than spurious. By contrast, the DGP in Mur & Trivez (2003) has spatial

drift, so that the adjective spurious is appropriate in their case.

2. Strictly speaking, they calculate critical values for cointegration tests when there are two variables in the

model.

3. The LM statistic is only valid for stationary residuals. Shin (1994) has suggested an LM statistic to test the null

hypothesis of stationary time series residuals. We do not pursue this idea here.

Table 6. Spatial cointegration test statistics: SAC+ (p�0.05)

N

k 25 100 400

2 0.107 0.215 0.243

3 0.073 0.205 0.240

4 0.034 0.197 0.238
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4. If the model is y�bx�u and u is stationary, the spatial ECM in the second stage should be

Dy�dDx�lWu�e where l is the spatial error correction coefficient, D�I�W is the spatial difference

operator and e is iid. Lauridsen & Kosfeld (2006) ignore l. Their test implicitly assumes that Dx and u are

independent.

5. Parameter estimates obtained from stationary data are root N-consistent. Stock (1987) showed that if time

series models are cointegrated, OLS parameters estimated from difference stationary data are N3/2-consistent.

6. This ‘spatial echo’ or ‘boomerang effect’ has no counterpart in time series data since the present may affect the

future, but the future cannot affect the present. Space is multi-directional whereas time only moves forward.

7. This is another way in which space differs from time. Time has a natural beginning whereas space does not.

Also time goes on forever whereas space is inherently finite. Indeed, spatial dynamics are conceptually

different from temporal dynamics.

8. The weights sum to unity.

9. See on this, e.g., Sargent (1979, ch. 9).

10. Ibid., p. 179.

11. Ibid., p. 176.

12. In time series the impulse responses do not explode and tend to 1 because Yt�1 cannot feedback onto Yt

whereas in lateral space Yj�1 and Yj feedback onto each other, i.e. time series data are uni-directional, whereas

spatial data are multi-directional.

13. Strictly speaking E(Yj) is constant since we are ignoring the particular solution.

14. Unlike Fingleton we do not fix Yj+ at the epicentre, we use 10,000 Monte Carlo simulations instead of

1,000, and we do not arbitrarily inflate spatial weights at the corners and edges of the lattice.

15. We calculate N�2trace(S).

16. The scale effect increases the variance linearly, as it does in time series. The scope effect makes the variance a

nonlinear function of N. This constitutes a further difference between spatial and temporal nonstationarity.

17. In time series asymptotic orders may be calculated analytically. In spatial data analytical solutions are not

available because spatial dependence is multi-directional. Therefore, asymptotic orders have to be calculated

numerically as in Figure 3. In time series the asymptotic order of the numerator is zero. The covariance

between X and u is asymptotically zero because u is stationary while X is nonstationary. We conjecture here

that the speed (q) at which cov(Xu) tends to zero is similar to its time series counterpart.

18. In time series data v�1. In spatial data v�1 because of multi-directionality.

19. This result is well known for time series.

20. Lauridsen & Kosfeld (2006) note that this is, ‘. . . in principle doable although hardly practical in simulation

studies’ (p. 367). We use the ML procedure in Matlab’s Econometric Toolbox, but allow the SAR coefficient

to range between �2 and 2 instead of the default of �1 to 1.

21. Since the null hypothesis is a�0.25, it is no surprise that some estimates exceed 0.25. This also happens in

time series, see Hendry (1995, p. 104). Indeed, the general shape of Figure 4 is similar to its time series

counterpart, but it is less diffuse.

22. The computer time increases exponentially and multiplicatively with the number of trails, the number of

seedings and N.

23. We thank Bernard Fingleton for supplying these data.

24. Critical values for spatial unit roots are larger than their time series counterparts. For example, if there are 100

observations the critical value for r at p�0.05 is 0.863 according to Dickey and Fuller. Therefore it is easier

to reject unit roots in spatial data than in time series data. We conjecture that this is because space is multi-

directional whereas time only moves forward.

25. The distribution in Figure 5 is qualitatively similar to its time series counterpart (see Hendry, 1995, p. 124).

26. In Equation (2) r is normalized to ¼ instead of 1.

27. Lauridsen & Kosfeld (2004) calculate critical values for the Wald statistic under the null hypothesis that the

residuals are nonstationary. They assume in Equations (1) and (2) that g�b�1, X�U(0,1), r�1, and

v�N(0,1). Based on 1,000 trials they calculate (rook case, p�0.05) x2(1)�4.83 for N�25. The Wald

statistic must exceed this critical value to reject the null hypothesis of no cointegration. Surprisingly, their

critical values increase with N. One would think that with more data it would be easier to reject the null

hypothesis. Since ours is not a Wald test, it is difficult to compare our results with theirs.
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