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Abstract 

 

A model is proposed in which building contractors have regional preferences so 

that housing construction in different regions are imperfect substitutes. The model 

hypothesizes spatial and national spillovers in construction. Although the 

government does not engage directly in housing construction, it influences 

regional housing markets by auctioning land to contractors. Contractors are 

hypothesized to use housing-under-construction as a buffer between starts and 

completions. Spatial panel data for Israel are used to test the model and investigate 

the determinants of regional housing construction. Because the spatial panel data 

are nonstationary, we use spatial panel cointegration methods to estimate the 

model. The estimated model is used to calculate impulse responses which 

propagate over time and across space.  
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“Virtually every paper written on housing supply begins with the same sentence: 

While there is an extensive literature on the demand for housing, far less has been 

written about supply.” DiPasquale (1999) 

 

 

1. Introduction 

As noted by DiPasquale and many others, the empirical determination of house 

prices has attracted much more empirical attention than the empirical determination 

of housing construction. This continues to be so even now. This asymmetry is 

puzzling because house prices vary inversely with the stock of housing (Smith 1969, 

DiPasquale and Wheaton 1994, Bar Nathan et al 1998). Therefore a complete 

account of house price behavior requires analysis of both sides of the housing 

market, the demand for housing and its supply.  

The extant research on housing construction has been largely concerned with 

national housing construction (Ball et al 2010). In this paper, we focus on the 

determinants of regional housing construction. Our motivation stems from a variety 

of reasons. First, regional house prices and construction vary considerably and 

systematically. Therefore, national housing parameters might not be relevant to 

specific regions. Second, national aggregation of regional housing markets might be 

inappropriate. Indeed, it is possible to reject a hypothesis nationally due to 

aggregation bias, when the hypothesis is valid regionally. Third, since regional panel 

data are inevitably more informative than their national counterparts, it is easier to 

test hypotheses using regional panel data than national data. Fourth, national models 

of housing supply do a poor job in capturing the unique local and regional factors 

that bear upon supply.  Finally, to our best knowledge there is no published research 

on regional housing construction. 

Attention has recently been drawn to local phenomena such as topography, 

zoning and building regulations in the determination of housing construction (Meen 

and Nygaard 2011 and Saiz 2010). The price elasticity of supply of new housing is 

expected to vary inversely with the degree of inflexibility in zoning and land use 

policy as well as with topographical difficulties that raise the cost of construction. 

Since these parameters are quintessentially local, it makes more sense to estimate 

local or regional models rather than national models, which ignore local 

heterogeneity.        
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 Regional models are not simply national models applied regionally. This is 

because regional housing markets are not independent islands. Construction is 

unlikely to be independent, especially if building contractors operate in more than 

one location. Building contractors may choose to operate in locations where profits 

are higher, or they may have local preferences so that construction in one location is 

not a perfect substitute for construction in another. We therefore distinguish between 

absolute and relative profitability in housing construction. An absolute increase in 

profitability in a location is hypothesized to increase construction locally. However, 

an increase in profitability in another location will reduce relative profitability. If 

construction in different locations are gross substitutes, this will reduce construction 

locally. On the other hand, if they are gross complements the opposite will apply. 

Gross complementarity may be induced, for example, by scale economies in which 

local building costs are affected by construction in other locations,  and by advances 

in building technology, which encourage multi-location operations. In addition, if 

construction is credit constrained, this constraint may be eased when construction 

increases in other locations.  

 We distinguish between neighboring locations and other locations since for 

logistical reasons construction in the former might be related differently to 

construction between more remote locations. In practice we use spatial econometric 

methods to estimate spillover effects between neighboring locations, while the latter 

are specified at the national level. Therefore, our main contribution is to test 

hypotheses about housing construction using dependent regional panel data.  

A second contribution is methodological. Since the data are nonstationary we use 

the methodology of panel cointegration to test hypotheses regarding the 

determination of housing construction. Standard panel cointegration tests (Pedroni 

2004) assume that the panel units are independent, which in the present context 

means that unobserved heterogeneity is regionally independent. There have been a 

number of attempts to introduce dependence into panel cointegration tests. For 

example, Pesaran (2006) has extended panel cointegration to the case in which the 

panel units are dependent because they share an unobserved common factor. We 
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extend Pedroni’s panel cointegration test statistics to the case in which the units in 

the panel are spatially dependent
1
. 

We also show that when the number of panel units is fixed, as it is in our 

empirical investigation, demand and supply schedules are identified without recourse 

to instrumental variables. Potential simultaneous equations bias that would arise in 

stationary data tends to vanish when the data are nonstationary and the model is 

panel-cointegrated. This convenient feature results from the super-consistent 

property of OLS estimates of cointegrating vectors. We are thus able to obtain 

consistent estimates of the supply schedule for housing without taking into 

consideration how the demand for housing is determined. The same principles enable 

the consistent estimation of spatial spillovers without recourse to ML or IV as would 

be required had the data been stationary.          

We use regional panel data for Israel to test the model and to estimate spatial and 

national spillovers in housing construction. In previous work (Beenstock and 

Felsenstein 2010) on regional house prices we found that standard panel 

cointegration methods led to the rejection of the null hypothesis. However, spatial 

panel cointegration methods overturned this result. In the present paper we start by 

estimating a standard, non-spatial housing starts regression. Using spatial panel data 

we then test whether housing construction models are miss-specified if they omit 

spatial spillovers in housing construction. We also highlight the effect of spatial 

factors in the estimates of elasticity of supply for housing.  

   

2. Theory and Methodology 

2.1 The Price Elasticity of Supply of Housing Construction 

The price elasticity of supply of new housing is made up of two key components. 

First, if house prices increase (relative to building costs) contractors have a greater 

incentive to build on land that is already available for housing. Marginal plots that 

were previously empty will be built upon and the housing stock will increase. Also, 

contractors will build more intensively (high rise) if building costs vary directly with 

the number of floors. Furthermore, marginal housing intended for re-designation (for 

offices, shops etc) will be retained as housing since it is more profitable, and offices 

                                                 
1
 Studies in housing supply typically ignore nonstationarity. For an exception see Mayer and 

Somerville (2000a). 
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and shops will be re-designated as housing. The latter does not directly affect 

construction but it affects the supply of housing.  

Whereas the first component takes the designation of land use to be fixed, the 

second component assumes that land use is endogenous. If the price of housing 

increases, land use will be re-designated in favor of housing, which will increase new 

housing construction. This applies to privately owned land and publicly owned land. 

However, the price elasticity might be greater when land is owned privately. If land 

use is entirely regulated the second component will be zero because privately owned 

land cannot be re-designated. Also, planning permission required to build high-rise 

housing will adversely affect the elasticity of supply of new housing construction. 

However, planning permission and zoning are unlikely to be completely independent 

of house prices. Expensive housing makes for political unpopularity. Therefore, the 

second component is unlikely to be zero
2
.       

2.2 Models of Housing Construction 

Two theoretical models have informed the empirical analysis of housing construction. 

The first relates construction to changes in house prices and the second to the level of 

house prices. The former treats housing as an asset to be supplied to the market if 

there is disequilibrium, expressed in changes in house prices (Blackley 1999, Hwang 

and Quigley 2006). The latter treats the production of new housing as any other 

product, which forms the basis of the “stock-flow” model originally proposed
3
 by 

Smith (1969). This model is essentially a dynamic capital asset pricing model since 

the price of housing is determined in the market for housing as an asset, while the 

flow of this asset is determined by construction, which depends upon the level of 

house prices.  

The basic version of the stock-flow model consists of two equations. The first 

is an inverted demand function in which house prices are hypothesized to vary 

directly with demand factors such as population and income, and to vary inversely 

with supply (the housing stock), which is quasi-fixed. The second equation 

determines housing construction, which responds to house prices. Subsequently, the 

housing stock adjusts over time to its long run level (Topel and Rosen 1988). The 

                                                 
2
  As discussed below, government  tends to sell land for housing construction when house prices are 

high.  
3
 This model dates back to Witte (1963) and has been applied in many countries including by Smith 

(1969) for Canada, Kearl (1979) for the United States, and Bar Nathan et al (1998) for Israel. It also 

features in numerous macroeconomic texts such as Dornbusch and Fischer (1990), Sachs and Larrain 

(1993) and Mankiw (2003). 
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construction industry smooths-out investment over time, and house building is a 

lengthy process protracted by institutional constraints due to planning delays. 

Investors are encouraged to smooth construction in developed sites with permits 

(Mayer and Somerville 2000b). In the stock-flow model new housing competes with 

the existing housing stock. Since the latter is much greater than the former the market 

power of constructors is greatly limited. It is for this reason that the in the stock-flow 

model it is assumed that constructors operate within a competitive environment. 

2.3 Regional Housing Policy 

The market for land in Israel may be unique in that 94 percent of national land is in 

public ownership, and is administered by the Israel Land Authority (ILA). The  role of 

the ILA cannot be understated. It auctions land to private builders, who sell housing to 

the public, which hold long-term leaseholds with the ILA. These leaseholds are 

nominally for 49 years, but in practice are automatically renewed. These 

arrangements give the government long-term control over land ownership.  

In Israel housing construction is entirely undertaken by private contractors. 

The government does not build houses directly. Nevertheless, housing construction is 

a major component of the government's regional policy. The government initiates 

housing construction in specific regions by offering for tender building rights on land 

vested in the ILA. It fixes a minimum price determined in large part by the location of 

the land, and The Ministry of Housing & Construction (MOH) encourages contractors 

to compete for its tenders by defraying a fraction of the development costs. In this 

way the government subsidizes construction in regions where it wishes to initiate 

construction for housing.  

 Given everything else, there will be more construction in regions where MOH 

initiates more building (denoted by G). However, such building might crowd-out 

private building (denoted by P). Contractors who in any case intended to build in the 

region might simply build MOH projects instead of private projects. On the other 

hand, if they are credit-constrained, the financial perks in MOH contracts might 

enable contractors to build private housing that otherwise would not have been 

possible. Therefore if MOH initiates 100 housing units, total construction will 

increase by less than 100 if there is crowding-out and it will increase by more than 

100 if there is crowding-in. 



 7 

 Unfortunately there are no systematic data
4
 on the subsidies embodied in 

MOH contracts. We assume that these subsidies vary directly with MOH-initiated 

housing construction. Specifically, let Z = G/B denote the share of MOH-initiated 

housing in total construction (B) in the region, where B = G + P. If lnB = Z it may 

be shown that the coefficient of crowding-in is: 

)1(
1

1)1(





Z

Z
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
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which varies inversely with MOH’s share in construction (Z). If (1 - Z) < 1 MOH-

initiated housing (G) crowd-out private construction, otherwise it crowds-in. 

Alternatively, crowding-in occurs if the share of private construction (1-Z) exceeds 

1/.   

2.4 The Econometric Model 

We use spatial panel data to estimate the following basic model for housing 

construction (B): 

)2(
~~

ln)/ln()
~

/
~

ln()/ln(ln ititititttititititiit uZZBCPCPCPB  

 

where i = 1,2,..,N labels spatial units, t = 1,2,..,T labels time periods, P denotes house 

prices, C denotes building costs, and tildes denote spatial lags, e.g.: 





N

ij

iiji BwB
~

                                    (3) 

where wij denote exogenous spatial weights row-summed to unity and wii = 0. Pt and 

Ct refer to house prices and building costs at the national level. The main hypotheses 

are that regional housing construction varies directly with profitability in the region, 

hence  > 0, and it varies directly with MOH regional incentives, hence  > 0. 

Equation (2) includes three spatial effects. First, if profitability increases among the 

neighbors of region i contractors will engage in spatial substitution, hence  < 0. See 

Meen and Nygaard (2011) for an example of such a spatial lag estimated from cross-

section data. Secondly, if regional incentives received by the neighbors of region i 

induce spatial substitution in construction  will be negative. However, if construction 

in region i and its neighbors are complementary  may be positive. Third, if there are 

                                                 
4
 The subsidy for each MOH tender is known, but these subsidies have not been aggregated into an 

index. 
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positive spatial spillovers in construction  will be positive. Therefore, the spatial 

substitution effect is  and the spatial complementarity effect is . 

 The presence of  in equation (2) implies that the unconditional elasticity 

differs from the elasticity conditional on construction in other locations. Since each 

location is its neighbors’ neighbor construction in one location affects construction in 

its vicinity, which feeds-back onto construction in the original location. For example, 

 denotes the conditional price elasticity of local construction because it is conditional 

on 
iB

~
.  Its unconditional counterpart is obtained by setting 

ii BB
~

  to obtain the 

unconditional elasticity /(1-). Therefore, if 0 <  < 1 the unconditional elasticity 

exceeds its conditional counterpart.      

 Apart from these spatial effects equation (2) includes a national effect (). If 

local and neighboring profitability are given, an increase in national profitability 

might affect local construction in two ways. First, substitution in construction may 

take place beyond neighboring regions, which would make  negative. Secondly, an 

increase in national profitability has a positive effect on national construction. If 

national and local construction are complements then  may be positive. If national 

profitability increases, local construction may increase despite the fact that local 

profitability is unchanged.  

 In the "standard" specification of equation (2) there no spatial or national 

spillovers in which case , ,  and  are assumed to be zero, and each region is an 

island unto itself. In this case the parameters of interest are  and , and the 

conditional and unconditional elasticities are identical. In section 4 we begin by 

reporting results for the standard specification and test it against alternatives with 

spatial and national spillovers.  

2.5 Cointegration in Nonstationary Spatial Panel Data  

We use the IPS (Im, Pesaran and Shin 2003) statistic to determine whether the panel 

data are nonstationary. We prefer this test because it allows for heterogeneity in the 

roots of each panel unit. Since (see below) all the variables that feature in equation (2) 

are nonstationary but are stationary in first differences, equation (2) is panel 

cointegrated if the residuals (u) are stationary. If the residuals are not stationary, the 

parameter estimates obtained from equation (2) may be spurious (Phillips and Moon 

1999, Baltagi 2008, p 287). If equation (2) is cointegrated the parameter estimates are 

super-consistent (Stock 1987). In the present context where N is fixed and the the data 
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are difference stationary with drift, this means that the parameter estimates are T
3/2

 

consistent instead of the usual root - T consistency, as would be the case if the data 

were stationary.   

Conditions for identification when the data are nonstationary are different to 

when they are stationary. In the latter case weak exogeneity requires that the 

covariates in equation (1) be independent of u. For example, identification of  

requires that house prices are independent of u. If there is reverse causality from 

housing construction to house prices  is not identified, and OLS estimates are most 

probably under-estimated. The same applies to estimates of  since the spatial lagged 

dependent variable is positively correlated with u OLS estimates of  are generally 

over-estimated (Anselin 1988). Therefore, if the data are stationary instrumental 

variables would be required to estimate these parameters. 

We show in an appendix that matters are different if the data are nonstationary 

because random variables that are integrated to order d are asymptotically 

independent of random variables that are integrated to an order less than d. In 

equation (1) d = 1 for the covariates but d = 0 for u if equation (1) is cointegrated. 

Therefore, the covariates in equation (1) are asymptotically independent of u in which 

case the parameter estimates are consistent; indeed they are super-consistent. This 

means that when the data are nonstationary identification does not require 

instrumental variables for consistency. The appendix also shows that the coefficients 

of spatial lagged dependent variables, such as , are consistently estimated by OLS 

when the data are nonstationary. This too follows from super-consistency which 

vitiates the feedback from neighbors on each other.  

 If equation (2) is cointegrated the residuals are generally autocorrelated and 

mean-reverting, and the roots of the autocorrelation model are less than one by 

definition. The residuals may also be spatially autocorrelated in which case uit is 

correlated with itu~ . Spatial autocorrelation reduces efficiency but does not induce bias 

or inconsistency in the parameters estimates. However, more efficient estimates of the 

parameters may by obtained by estimating equation (2) by SUR (seemingly unrelated 

regression). We use the group augmented Dickey Fuller statistic (GADF), the group 

Phillips-Perron statistic (GPP), and the group-rho statistic suggested by Pedroni 

(2004) to test whether the estimated residuals are nonstationary. Note that GADF is 

the counterpart of the IPS statistic for testing hypotheses about panel cointegration. 
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We also use the panel error correction P cointegration test statistic (PEC) due to 

Westerlund (2007), where P is the t-statistic on the estimate of  in the panel error 

correction model: 

 )4(
~

lnlnˆln 11 ititititiit vSSuB      

These test statistics have been transformed into the standard normal variable z: 
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
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where Sk labels the particular statistic (such as IPS and GADF) and E(S) and sd(S) are 

the expected value and standard deviation of S obtained by Monte Carlo simulation 

under the assumption that the panel units are independent. 

 The null hypotheses tested by IPS and GADF etc are that the panel data and 

panel residuals are nonstationary, i.e. d =1 where d denotes the order of differencing 

that makes the data or residuals stationary. An alternative approach, originally 

suggested by Kwiatkowski, Phillips, Schmidt and Shin (1992) (KPSS) and Shin 

(1994) is to test the null hypothesis that the data and residuals are stationary, i.e. d = 

0.Note that rejection of the former (non-stationarity) does not necessarily imply 

acceptance of the latter (just as failing to prove guilt does not prove innocence). Hadri 

(2000) has extended the KPSS statistic to test the null hypothesis that the panel data 

are stationary. However, there is no counterpart to Shin (1994) for testing the null 

hypothesis of panel cointegration. Like IPS, Hadri assumes that the panel units are 

independent.    

As mentioned the critical values of the IPS and GADF or group-rho statistics 

are derived under the assumption that the panel units are independent. Baltagi et al 

(2007) report that panel unit root tests, such as IPS, which ignore spatial 

autocorrelation are reasonably sized provided that the spatial autocorrelation 

coefficient is sufficiently small (less than 0.4). However, they did not calculate critical 

values for unit root tests in spatially dependent panel data, nor did they investigate 

critical values for spatial panel cointegration tests such as GADF. To investigate the 

sensitivity of the IPS and GADF statistics to spatial dependence we report the results 

of a Monte Carlo simulation exercise in which spatial dependence is induced by a 

spatial lag. In Table 1 we report critical values for -bar (the average value of i) for 

the following data generating process (DGP): 

)6(
~

1 ititiitiiit YYY   
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where i induces spatial dependence in the Dickey-Fuller regression. Equation (6) is a 

first order ARSAR (autoregressive spatial autoregressive) model. When i = 0 this is 

equivalent to the IPS statistic expressed in terms of -bar. When  = 0 it is equivalent 

to the BFF test statistic (Beenstock, Feldman and Felsenstein, 2012) for a spatial unit 

root. For example if N = T = 25 the critical value of -bar is 0.661 at p = 0.05. If ̂ -

bar exceeds this critical value, the null hypothesis of nonstationarity cannot be 

rejected. If the panel data are spatially dependent the critical value of -bar decreases 

slightly in Table 2 with . Table 1 shows, as expected, that the critical value of -bar 

varies directly with T and N.  

 

Table 1 Critical Values for Spatial Panel Unit Roots (-bar) 

                                 = 0                         = 0.04                            = 0.2        

                 p 1% 5% 10% 1% 5% 10% 1% 5% 10% 

N=25 T=10 
0.32784 0.37372 0.39774 0.080784 0.25047 0.30946 0.038446 0.20142 0.25643 

T=25 0.62973 0.66106 0.67869 0.62378 0.6583 0.67584 0.61848 0.65185 0.6696 

T=50 0.80901 0.82487 0.8328 0.80444 0.82129 0.82995 0.89654 0.9219 0.93263 

N=100 T=10 
0.4032 0.42749 0.440415 0.282691 0.35152 0.380629 0.238864 0.301863 0.329147 

T=25 0.67981 0.69633 0.70417 0.67849 0.69338 0.70134 
0.688289 0.704241 0.712053 

T=50 0.83531 0.84227 0.84625 0.83116 0.83931 0.84327 
0.950061 0.958088 0.961954 

N=225 T=10 
0.430558 0.447017 0.455387 0.334974 0.386037 0.405381 0.293023 0.335325 0.354018 

T=25 
0.723823 0.731716 0.735764 0.707116 0.717957 0.722995 0.706853 0.717675 0.723132 

T=50 
0.850728 0.855552 0.858108 0.844629 0.849745 0.852316 0.962538 0.967279 0.969512 

Source: Beenstock and Felsenstein (2013). Based on 10,000 Monte Carlo trials 

assuming i = 1 and i equals its tabulated value.  

 

Table 1 suggests that if N and T are relatively small the IPS test statistic under-rejects 

the null hypothesis. Therefore, the results in Table 1 are conservative as far as IPS is 

concerned.    

We have used Monte Carlo simulation to calculate the critical values for 

Pedroni’s group-rho statistic for various values of T and N when there are two 

variables in the model, i.e. the dependent variable (Y) and the independent variable 

(X) are generated by ARSAR processes such as equation (6). Since the ’s for Y and 

X are drawn independently these two variables cannot be related, but they might be 

spuriously related. The residuals from panel regressions of Yit on Xit must be 

nonstationary in which case i for these residuals is 1.  Results are reported in Table 
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2. If the data are not spatially correlated ( = 0) the critical value of the group-rho 

statistic is 0.5867 (N = 25, T = 15, p = 0.05). If the estimated value of group-rho 

( 
N

i iN
̂1 ) is smaller than 0.5867 we may reject the null hypothesis that Y and X are 

not cointegrated. The critical value of group-rho increases to 0.6824 when  = 0.2. It 

is therefore easier to refute the null hypothesis (no cointegration) when the data are 

spatially dependent. 

               Table 2 Critical Values for Group Rho Statistic 

                    = 0                    = 0.04                        = 0.2       

P 1% 5% 10% 1% 5% 10% 1% 5% 10% 

N=25 T=10 
0.3625 0.4101 0.4354 0.3653 0.4148 0.4398 0.4124 0.4661 0.4950 

T=15 
0.5527 0.5867 0.6055 0.5557 0.5902 0.6091 0.6340 0.6824 0.7099 

T=20 
0.6516 0.6817 0.6964 0.6568 0.6863 0.7010 0.7655 0.8142 0.8415 

N=100 T=10 
0.4481 0.4706 0.4827 0.4522 0.4734 0.4858 0.5341 0.5600 0.5743 

T=15 
0.6151 0.6321 0.6409 0.6199 0.6365 0.6454 0.7654 0.7953 0.8100 

T=20 
0.7025 0.7168 0.7236 0.7078 0.7230 0.7299 0.9260 0.9521 0.9680 

N=225 T=10 
0.4743 0.4898 0.4979 0.4777 0.4924 0.5003 0.5710 0.5899 0.6001 

T=15 
0.6345 0.6455 0.6509 0.6389 0.6504 0.6558 0.8123 0.8331 0.9999 

T=20 
0.7183 0.7281 0.7327 0.7256 0.7343 0.7395 0.9764 0.9946 0.9999 

Source: Beenstock and Felsenstein (2013). Based on 10,000 Monte Carlo trials. 

 

3. The Data 
 

3.1 House Prices 

Since the early 1970s Israel's Central Bureau of Statistics (CBS) has published house 

price indices for nine regions (see Figure 1). These indices are constructed from 

transactions data, which are also used by CBS to construct a hedonic price index for 

the country as a whole. The spatial panel data (1987-2010) are plotted in Figure 2. 

They show, as expected, that housing is systematically more expensive in the core 

than in the periphery and that the regional ranking of house prices has remained quite 

stable over time. During the 1990s immigration from the former USSR increased 

Israel's population by about 20 percent causing real house prices to double. House 

prices peaked in 1999-2000 after which they fell by about 30 percent. The resurgence 

in house prices since 2007 largely resulted from the Bank of Israel's decision to cut 

interest rates following the Subprime Crisis. Since we have explored these data before 

(Beenstock and Felsenstein 2010) we focus on housing construction.  
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3.2 Housing Construction 

CBS publishes data on housing starts (S) and completions (C) by units and square 

meters. It also publishes data on housing under construction (U). In what follows we 

use housing starts measured in square meters. We have used these data to construct 

housing starts for the nine regions for which house prices are available. These data are 

plotted in Figure 3, which shows that with the possible exception of the Krayot area 

(near Haifa) construction has had a positive trend in all regions. Krayot has 

systematically had the least number of housing starts, whereas Tel Aviv tended to 

have the most. The “spaghetti” effect in Figure 3 results from the fact that, in contrast 

to house prices, the regional league table in housing construction has varied over time.  

Figure 4 plots MOH-initiated housing starts in the nine regions, which fall into 

two distinct groups. The first comprises North, South, Center and Jerusalem where 

most of MOH starts have been concentrated (especially South). In the second group 

there has been relatively little MOH activity. This largely reflects the fact that public 

(ILA) land reserves in these regions are low. On the whole the government has been 

responsive to market forces; it has sold more land when house prices are more 

expensive. For example, following the wave of mass immigration from the former 

USSR in the early 1990s, the government released land for housing. This explains the 

spike in 1992 in Figure 4 (especially in the South). 

3.3. Construction Costs 

Unfortunately data on building costs (C) are only available nationally. This may not 

matter for materials whose prices are likely to be similar across the country 

(especially a small country), but it may matter for labor costs. Gyourko and Saiz 

(2006) report that construction costs vary widely in the United States. However, in a 

small country, such as Israel, this issue is likely to be less important. We assume, 

force majeur, that regional building costs have a national component, a fixed region 

specific component (ci) and a random component (sit), i.e. Cit = ci + Ct + sit in which 

case ci is absorbed into the specific effect in equation (2), sit is absorbed into the 

residual, and Ct replaces Cit in equation (2). If the data were stationary the latter 

would induce attenuation bias in the parameter estimates of equation (2). However, 

this problem is mitigated if the data are nonstationary due to super-consistency
5
.  

                                                 
5
 If Y and X are difference stationary and Z is stationary, omitting Z from a regression of Y on X 

cannot asymptotically affect the regression coefficient.   
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 The price of land should also be a component of C. In common with most 

countries there are no systematic data on land prices in Israel. If relative land prices 

remained unchanged the unobserved effect of land prices would be picked-up by the 

fixed effect in equation (2) and estimates of the supply elasticities in equation (2) 

would be consistent. If relative land prices varied directly with house prices these 

elasticities would be under-estimated. However, if relative land prices happened to be 

stationary these estimates would be consistent since an omitted variable that is 

stationary is asymptotically independent of house prices, which are nonstationary.  

 Although there are no data on land prices for the nine regions in the study, the 

auction prices of the winning tenders for ILA residential building rights are published. 

We have used these data to construct regional land price indices for six regions during 

1996-2012, which are plotted in Figure 5. These data suggest that relative regional 

land prices have remained reasonably stable over time. In fact these data are 

cointegrated suggesting that they share a common stochastic trend
6
. Therefore, the 

absence of systematic data on land prices might not, in practice, be serious since 

changes in realative land prices are stationary. 

3.4 Panel Unit Root Tests   

Panel unit root tests for logarithms of these variables are reported in Table 3. 

According to IPS one may reject the null hypothesis that the log level of construction 

(housing starts measured in square meters) is nonstationary since z-IPS (-2.4) is 

smaller than its critical value of -1.96. This is surprising since Figure 1.1 shows that 

the mean level of construction has, on the whole, been growing over time. By contrast 

Hadri's LM test clearly rejects the hypothesis that these data are stationary, since z-

LMH (3.67) exceeds 1.96. Ideally these tests should be mutually consistent. However, 

in the case of construction they are in apparent conflict. The same apparent conflict 

arises, not surprisingly, in the case of housing completions. Since the log first 

differences of housing starts and completions are stationary according to LMH and 

IPS, we consider these housing construction data to be difference stationary. This 

conflict is less pronounced in the case of MOH construction since z-LMH is 

marginally smaller than its critical value. However, we also assume that MOH 

construction is difference stationary, which means that lnZ ~ I(1). 

Table 3 Panel Unit Root Tests: 1987-2010  

                                                 
6
 The Dickey Fuller statistic for the regression residuals of the logarithms of land prices between each 

other is -4.14, suggesting that the data in Figure 5 are cointegrated.   
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 z – IPS  z – LMH 

 d = 0 d = 1 d = 0 d = 1 

House prices    -1.53 -3.96 9.76 1.65 

Housing starts -2.40 -8.41 3.67 -0.86 

Completions -2.61 -7.78 4.42 1.17 

Starts (MOH) -3.43 -5.92 1.92 0.18 

Housing under 

construction 

-1.7 -5.61 3.07 -0.48 

Notes: z-IPS is the z statistic based on Im et al (2003), and z- LMH is based on Hadri 

(2000). Two augmentations or lag truncations are specified. Data in logarithms 

(except housing under construction), and d denotes the order of differencing. 

 

No such conflict arises in the case of house prices since according to the IPS 

statistic we cannot reject the null hypothesis that d = 1 and according to the LMH 

statistic we can reject the null hypothesis that d = 0. Since both IPS and LMH concur 

that house prices are stationary in first differences, we assume that they are difference 

stationary.  

     Table 3 also includes housing under active construction (U, also measured in 

1000s of square meters). The relationship between this variable and starts (S) and 

completions (F) is: 

)7(111   tttt FSUU    

Since S and F are by definition cointegrated I(1) variables, equation (7) implies that 

U ~ I(0) in which case U ~ I(1), as indicated in Table 3 by the LMH test statistic, but 

not (marginally) by the IPS statistic. 

 The test statistics in Table 3 ignore spatial dependence in the data. The nearest 

case in Table 1 (N = T = 25) suggests that these test statistics are unlikely to be 

distorted by spatial dependence, although the IPS statistic is slightly too permissive in 

that it incorrectly rejects the null hypothesis that d = 1. .     

 

 

4. Results 

4.1 Regional Housing Starts 

We begin by estimating equation (2) under the assumption that each region is an 

island unto itself. Hence, in equation (2) we impose the restrictions  =  =  =  = 0. 

This specification (standard model) assumes that each region in the panel behaves as 

it might have done had regional dependence been ignored. The first three restrictions 

assume that spatial spillovers don’t matter, while the latter assumes that local 
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construction is independent of national construction. Subsequently, we relax the latter 

restriction and estimate . We refer to this as the “national spillover model”. 

Thereafter, we relax the spatial restrictions, but retain the restriction  = 0 (the spatial 

spillover model). Finally, all restrictions are relaxed (the general spillover model). 

There are several possible outcomes. First, the standard model is supported by 

the data, and spatial and national spillovers are empirically unimportant. Second, the 

standard model is supported by the data but spillover models (national and/or spatial) 

are empirically superior. Third, the standard model is not supported by the data but 

the models with spillover are supported by the data. Finally, none of the models are 

supported by the data. We show that the general spillover model is supported by the 

data, whereas the standard model and the national spillover model are not supported 

by the data.       

We estimate equation (2) with regional fixed effects by SUR. The latter allows 

the residuals (uit) to be correlated, but not necessarily spatially correlated. Since the 

data are nonstationary the parameter estimates have non-standard distributions, in 

which case t – statistics do not indicate statistical significance unless the covariates 

happen to be strictly exogenous, which is not the case here. We therefore test for 

statistical significance by dropping variables from the model. If this induces 

cointegration failure we conclude that the variable or variables concerned are 

statistically significant. We use group cointegration test statistics (Pedroni 2004) 

designed for panel data, which allow for heterogeneity in the autoregressive behavior 

of the residuals (uit).  

 We use a spatial weighting matrix that takes account of both relative size and 

distance. Hence: 

ijji

i

ij
dPOPPOP

POP
w

1



   

where POP denotes the sample-mean population in the data, and dij is the Euclidean 

distance between i and j. The spatial weights are asymmetric (wij ≠ wji) according to 

relative population sizes, so that a big region affects a small neighbor by more than 

does a small region affect a big neighbor. Apart from this, the effect of more distant 

neighbors is smaller.      

 

Table 4 Estimates of Equation (2): Housing Starts (logarithms) 



 17 

Model       GADF GPP PEC 

1 0.247  1.488    -3.00 -3.61 -5.65 

2 0.428 -0.031 1.321    -3.14 -3.56 -3.06 

3 0.355  1.245 -0.257 0.651 -0.391 -3.45 -3.94 -4.52 

4 0.312 0.495 1.098 -0.594 0.584 -0.433 -3.46 -3.87 -3.94 

5 0.305 0.470 0.967 -0.548 0.515  -3.43 -3.82 -3.83 

6 0.258 0.668  -0.716 0.730  -3.576 -4.010 -5.37 

7 0.315   0.877 -0.265  -3.45 -4.03  

Notes: Estimation by SUR with regional fixed effects. GADF: group (1
st
 order) ADF 

panel cointegration z-statistic. GPP: group (1
st
 order) Phillips-Perron panel 

cointegration z-statistic. Their one-sided critical value is -1.65 at p = 0.05. PEC: Panel 

error correction statistic (P in Westerlund 2007).  

 

Results for housing starts are reported in Table 4. Model 1 refers to the standard 

model with no spatial or national spillovers. The estimated price elasticity of supply is 

0.247 and the estimate of  implies that MOH initiated construction increases total 

construction, and that crowding-in occurs according to equation (1) where the share of 

MOH starts is less than 33 percent. Model 1 is cointegrated according to all three 

panel cointegration test statistics. Recall that t-statistics are not reported because, as 

explained, the parameter estimates have non-standard distributions.  

 Model 2 refer to the national spillover model. The local price elasticity 

increases from 0.247 in model 1 to 0.428 and the national price elasticity is slightly 

negative. Although there is a slight improvement in the GADF statistic, the GPP and 

PEC cointegration test statistics deteriorate, suggesting that model 1 is preferable to 

model 2. Model 3 refers to the spatial spillover model. The local price elasticity is 

0.355 and the spatial price elasticity is – 0.257. This spatial elasticity implies that 

housing construction in neighboring regions and local construction are close but 

imperfect substitutes. Indeed, what matters is largely the relative price between local 

house prices and house prices in neighboring regions. The same phenomenon applies 

to MOH building incentives; the local effect is positive (1.245) but the spatial effect is 

negative (-0.391). Therefore, incentives granted to neighboring regions induce 

contractors to transfer their business from the locality to its neighbors. Model 3 

includes a spatial lagged dependent variable (0.651) implying positive spillover from 

neighboring construction to local construction. It also implies that the unconditional 
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elasticities are 2.86 times larger than their conditional counterparts. The GADF and 

GPP statistics of model 3 improve on their counterparts in model 1. Recall that 

marginal improvements in z become progressively harder as z approaches -4. 

However, the PEC statistic is weaker. 

Model 4 specifies all the variables in equation (2) and serves as an unrestricted 

specification of the general spillover model. The local price elasticity of supply in 

model 1 is 0.312, the national price elasticity is 0.495, and the spatial price elasticity 

is -0.594. The latter shows that spatial substitution in construction is strong, while the 

former shows that national and local construction are complements. The sum of these 

elasticities (0.213) is similar to the local elasticity in model 1. The estimate of  

(1.098) means that MOH construction crowds-in private construction provided the 

MOH share in starts is less than 9 percent. The spatial lag coefficient () is slightly 

larger than a half, so that the unconditional elesticities are slightly less than twice as 

large as their conditional counterparts. Finally because  is negative, MOH 

construction has a negative spatial spillover effect.  The cointegration test statistics 

(GADF and GPP) greatly exceed their critical values, but are similar to their 

counterparts in model 3. Since the only difference between models 3 and 4 relates to 

national profitability (), this suggests that  is not statistically significant.  

Table 4 reports a number of restricted models, which indicate that the group 

panel cointegration test statistics are insensitive to the various restrictions tested. 

Model 6 omits building incentives granted by the Ministry of Housing; the 

cointegration test statistics hardly change, suggesting that these incentives do not 

significantly affect construction. Finally, Model 7 differs from other spatial models in 

that  is positive and  is negative; local construction varies directly with prices 

nearby, but there is negative spillover between local and nearby construction.  

Since all the models in Table 4 are panel cointegrated, we are somewhat 

spoiled for choice. But some are more cointegrated than others, especially models 3 – 

7, which are spatial. Although we cannot rule out the standard model in favor of 

models with spatial spillover, the latter models are more statistically significant 

because they have smaller p-values.   

The panel cointegration test statistics reported in Table 4 have been calculated 

under the assumption that the panel data are independent. The nearest case to N = 9 
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and T = 23 in Table 2 (N = 25 T = 20) indicates that the tests in Table 4 are likely to 

be conservative, i.e. the null hypothesis in equation (2) is rejected too frequently.   

Figure 6 plots the estimated residuals of model 4 in Table 4. This spaghetti 

graph indicates that the residuals, on the whole, mean-revert to zero. However, the 

residuals for Haifa are an exception, as indicated by the (1
st
 order) ADF and PP 

statistics reported in Table 5. Table 5 also shows that there is widespread regional 

heterogeneity in these mean-reverting tendencies; it is strongest in Sharon and the 

South and it is weakest in Haifa and the North. Table 5 further shows widespread 

heterogeneity in regional fixed effects. The largest fixed effect is, not surprisingly, in 

the North where the population is largest, and it is smallest in Krayot where the 

population is smallest. 

Table 5 Regional Heterogeneity (Model 4) 

 Fixed Effect ADF PP 

Jerusalem 0.027 -2.95 -3.234 

Haifa -0.728 -1.061 -1.700 

Tel-Aviv -0.648 -2.007 -2.560 

Dan -0.262 -2.561 -2.840 

Center 0.972 -1.524 -2.553 

South 0.369 -3.081 -2.615 

Sharon 0.329 -3.171 -2.673 

North 1.349 -1.112 -1.799 

Krayot -1.410 -1.961 -3.100 

 

   

4.3 Housing Completions 

We "spatialize" the multiple cointegration model between starts and completions 

suggested by Bar Nathan et al (1998), which ensures that starts are eventually 

completed. The basic hypothesis is that completions (F) vary directly with building 

under construction (U) and starts (S). Contractors use buildings under construction as 

a buffer which lengthens when business is bad and shortens when business is good. 

This means that contractors slow down completion rates when business is slack and 

accelerate them when business is favorable. Since regional completion rates may have 

a spatial dimension our basic specification for completions is: 

)7(
~~~

ititititititit wSUFSUF      

Since all the variables in equation (7) are I(1), panel cointegration requires that w ~ 

I(0). If completion rates increase when construction is more profitable, Pit/Cit may be 
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specified in equation (7). However, this effect may already be captured by starts. 

Notice that there is no intercept term in equation (7) because F must equal zero when 

S = U = 0.   

Table 6 The Completions Model 

Model      GADF GPP PEC 

1 0.432 0.169 0.504 -0.074 -0.226 -4.79 -5.16 -9.28 

2 0.432 0.168    -4.73 -5.12 -10.9 

3 0.401 0.276
a
      -4.59 -4.99  

Notes: See notes to Table 4. Note a: private housing starts. 

 

Model 1 in Table 6 is an unrestricted model with spatial spillovers. It states that 

contractors complete annually 43 percent of outstanding buildings under construction, 

and that current completions vary directly with starts. For every 10 square meters of 

starts there is an additional 1.7 square meters of completions. The spatial lag 

coefficient is 0.504, implying that completions increase with completions in 

neighboring regions. There are negative spatial spillovers from buildings under 

construction and starts, implying that contractors substitute completions between 

regions. The cointegration test statistics are highly significant. Indeed, their p-values 

are even smaller than their counterparts in Table 4. 

Model 2 shows that dropping the spatial variables makes no difference to the 

cointegration test statistics. Therefore, these spatial variables are not statistically 

significant. By contrast, in Table 4 dropping spatial variables raised the p-values of 

the cointegration tests. We also carried out some further tests. For example, in model 

2 completions vary directly with local house prices, suggesting that contractors 

accelerate completions when building is more profitable. However, the cointegration 

test statistics do not change. Model 3 is identical to model 2 except it used private 

housing starts rather than total housing starts. The effect of private housing starts on 

completions is greater than total starts, however, there is a slight deterioration in the 

panel cointegration test statistics.  

Table 7 The Distribution of Completions 

Year 0 1 2 3 4 5 

Completions 16.8 35.9 20.4 11.6 6.6 4.0 

Completion 

Rate 

16.8 52.7 73.1 84.7 91.3 95.3 
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The completion lag implied by model 2 is represented in Table 7. It follows a cohort 

of 100 additional starts occurring in year 0. What matters is not the completion of 

these particular houses, but the completion of housing as a whole when contractors 

use housing under construction as a buffer. It is for this reason that there is an 

immediate effect on completions in year 0; these starts induce contractors to complete 

housing already under construction more rapidly. Completions peak in year1 by 

which the completions rate is 52.7 percent. Subsequently, the completion rate 

increases towards 100 percent. The mean lag is 2.7 years.     

4.4 Model Properties 

To illustrate the properties of the multiple cointegration housing construction model 

we use model 4 for housing starts from Table 4 and model 2 for housing completions 

from Table 6. There are spatial spillovers in the former but not in the latter. The 

choice is made for reasons of parsimony and the p-values of the panel cointegration 

tests. Notice that the starts model is in logarithms but the completions model is not. 

Therefore the model is nonlinear. The model is completed by using equation (6) to 

relate building under construction to starts and completions. 

 We set up a base-run by carrying out a full dynamic simulation (FDS) of the 

model over 1988 – 2010 in which the state variables, such as house prices and MOH 

starts, assume their values as in the data. Because the model contains levels of 

variables and their logarithms the model is nonlinear and its solutions are base 

dependent. We calculate impulse responses by perturbing the state variables and by 

comparing the perturbed FDS to the base run. In doing so, we distinguish between 

local, spatial and national perturbations. Due to the presence of spatial effects in the 

housing starts model, the impulse responses propagate over space as well as time. 

 The model is dynamic because of the lag between starts and completions. 

Since the equations for starts and completions refer to their nonstationary 

components, and do not embody short-term dynamics, the model refers to trend, or 

equilibrium behavior. A complete dynamic account would have to include error 

correction models for starts and completions. In the absence of error correction, the 

simulated impulse responses therefore refer to equilibrium responses, and their 

dynamics are entirely induced by the lag between completions and starts.   
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Table 8 Model Simulations: Housing Starts  

(% change in square meters) 

 Tel 

Aviv 

Jeru-

salem 

Haifa Center Dan Sharon Krayot North South 

A 0.35 0.30 0.45 0.19 0.29 0.67 0.41 8.94 0.28 

B 2.27 -0.83 -0.66 -0.83 -1.5 -1.05 -0.68 -0.98 -0.73 

C -4.35 -3.08 -3.50 -2.74 -4.37 -3.84 -3.93 -3.77 -2.84 

A: MOH housing starts increased in North by 200,000 square meters. 

B: House prices in Tel Aviv increased by 10 percent 

C: Building costs increased by 10 percent  

 

In the first simulation we increase MOH housing starts temporarily in the North in 

1995 by 200,000 square meters. This is an example of a local perturbation for the 

North. However, from the point of view of neighboring regions this is a spatial 

perturbation. In the interest of space, we focus on the response of housing starts 

(Table 8) and housing stocks (Table 9). The former lasts for one period only because 

the shock lasts for one period, and because the cointegrating vector for starts contains 

no dynamics. The latter, as mentioned, is dynamic because of the relationship 

between starts and completions. Table 9 reports the response of housing stocks up to 7 

years after the shock. 

The direct effect on housing starts in the North is 185,327 square meters 

(8.94%). Housing starts increase by less than 200,000 square meters because MOH 

starts crowd out private starts (simulation A). The rate of crowding out in the North in 

1995 was 7.3 percent; a square meter of MOH starts crowds out 0.073 square meters 

of private starts. Through spatial lag effects housing starts increase in other regions. 

There are two types of spatial lag effect. First, there are spatial spillovers from 

housing starts. Second, there are spatial spillovers from MOH starts. The former 

spatial spillovers propagate across the regions of Israel through the spatial lagged 

dependent variable. Spatial spillovers for housing starts are all positive and range 

from 0.19 percent to 0.66 percent.   

Because the perturbation is assumed to be temporary, housing starts eventually 

revert to their baseline solution. However, housing stocks are permanently raised, 

especially in the North. It takes about 4 years for the completion – starts process to 

dissipate after which housing stocks settle down to their new equilibrium. By 

implication, completions and housing-under-construction revert to their base-run 

solutions. By year 7 after the shock, the housing stock in the North increases by 0.43 
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percent, but most of this increase has already occurred within 3 years. Housing stocks 

gradually increase in other regions because of the spatial spillovers in starts. 

 

Table 9 Model Simulations: Housing Stock 

(% change: square meters) 

 Lag Tel 

Aviv 

Jeru-

salem 

Haifa Center Dan Sharon Krayot North South 

 

 

A 

1 0.002 .005 .004 .004 .002 .011 .003 0.16 .004 

3 0.007 .012 .009 .010 .006 .025 .007 0.37 .010 

5 0.008 .013 .011 .012 .007 .029 .008 0.42 .012 

7 0.009 .014 .011 .012 .007 .030 .008 0.43 .012 

 

 

B 

1 0.019 -.014 -.006 -.019 -.003 -.017 -.004 -.018 -.012 

3 0.046 -.032 -.014 -.045 -.029 -.039 -.011 -.040 -.026 

5 0.055 -.038 -.017 -.052 -.035 -.046 -.013 -.046 -.031 

7 0.057 -.038 -.018 -.052 -.036 -.047 -.014 -.046 -.032 

 

 

C 

1 -.037 -.052 -.031 -.062 -.035 -.061 -.025 -.062 -.045 

3 -.088 -.120 -.074 -.147 -.085 -.144 -.062 -.155 -.104 

5 -.105 -.139 -.089 -.171 -.105 -.167 -.076 -.179 -.122 

7 -.108 -.141 -.093 -.171 -.106 -.171 -.080 -.180 -.125 

 

Next (simulation B), we simulate a temporary increase of house price (10% in 

1995) in the Tel Aviv region, which raises housing starts by 2.27 percent in Tel Aviv. 

This increase comes at the expense of housing starts elsewhere. This happens because 

there is spatial substitution in housing construction; there is less incentive to build 

outside Tel Aviv. However, this effect is mitigated by the spatial lag in housing starts. 

The decreases in housing starts elsewhere range from 0.68 percent to 1.5 percent. Not 

surprisingly, these decreases are strongest in the vicinity of Tel Aviv, especially Dan 

and Sharon. The spatial spillovers are large relative to their counterparts in the 

previous simulation (A). As in simulation A, it takes about 5 years for housing starts 

to find their way into the housing stock.           

 Finally (simulation C), we simulate a temporary increase in national 

construction costs in 1995. National construction costs affect starts in three ways. 

First, since local construction costs depend on national construction costs, local 

profitability in construction decreases, which adversely affects local construction in 

all regions. Second, if construction profitability decreases in neighboring regions, this 

increases local construction through the spatial lag coefficient. Third, construction 

profitability decreases nationally, which adversely affects local construction since 

local and national construction are complementary. The fist and third effects are 
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negative and the second effect is positive. However, the combined effect is negative 

as may be clearly seen in the simulation. 

 The adverse effects of construction costs on housing starts range from 2.74 

percent in the Center and 4.34 percent in Tel Aviv. This heterogeneity stems from the 

spatial lag structure of the model, and because the spatial weights are asymmetric and 

vary. The spatial weights take account of relative size and distance. Therefore, the 

spatial effect of e.g. Tel Aviv on Jerusalem does not equal the effect of Jerusalem on 

Tel Aviv, and the effect of Jerusalem on Haifa differs from the effect of Jerusalem on 

Tel Aviv. As in simulations A and B it takes about 5 years for the housing stocks to 

adjust. 

 

5. Conclusion 

Using recent methodological advances in the econometric analysis of nonstationary 

spatial panel data and spatial panel data for Israel we have investigated the 

determinants of regional housing construction. Our main result is that the econometric 

specification of regional housing construction is not simply the standard national 

model applied regionally. This standard model assumes that each region is an island 

unto itself. Indeed, the standard model is not supported by the data whereas the 

opposite applies when this model is generalized to include spillovers that are spatial 

and national.  

 We show that although housing starts vary directly with profitability as 

measured by house prices relative to building costs, they vary inversely with 

profitability in neighboring regions, i.e. there is substantial spatial substitution in 

housing construction. The local price elasticity of supply is about 0.3, whereas the 

spatial elasticity is about -0.6 This substitution effect suggests that contractors have 

local building preferences since they regard neighboring regions as close substitutes 

but not more distant regions.  

Whereas neighboring regions are substitutes, we find that local and national 

construction are complements. If national profitability increases, this raises local 

construction, as well as national construction. The local elasticity of supply with 

respect national house prices is about 0.5. The overall conditional price elasticity of 

supply is about 0.25, but its unconditional counterpart is about 0.5, i.e. a general 

increase in house prices of 10 percent raises construction across the country as a 
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whole by about 5 percent. This elasticity is somewhat larger than the one estimated by 

Bar Nathan et al (1998) at 0.31.  

This elasticity is small. Using results from Beenstock and Felsenstein (2010) 

for regional house prices, population growth (2.2 percent per year) and income growth 

increased house prices by about 3 percent per year. Since 1967 the secular rate of 

growth in real house prices in Israel has been about 2 percent per year. Therefore the 

price elasticity of supply has reduced the rate of growth of house prices by about 1 

percent per year (equal to 0.5 x 2 percent). Alternatively, because the price elasticity 

of supply is small, housing supply has failed to keep up with demand, which is why 

real house prices have been increasing. However, they have increased by 1 percent 

less per year than would otherwise have been the case.    

Apart from the spatial substitution effect mentioned above, a further spatial 

effect is captured by the spatial lagged dependent variable in the model for housing 

starts. The estimated spatial lag coefficient implies that the local elasticity of 

construction with respect to construction in neighboring regions is about 0.6, 

suggesting that local construction and neighboring construction are complementary. 

We reconcile this complementarity and the substitution effect as follows. Contractors 

may regard neighboring regions as substitutes, but there are favorable synergies in 

regional construction. The cost of building in a region varies inversely with 

construction in its neighbors due, for example, to cost sharing in the use of capital 

equipment as well as perhaps in the use of labor. These spatial effects emphasize the 

difference between spatial and national modeling of housing supply. A regional model 

is not simply a national model applied regionally. 

In Israel the Ministry of Housing and Construction does not directly engage in 

housing construction. Instead, it auctions off land for house building at preferential 

terms. We show that such building tends to crowd-in housing construction. The 

financial perks that accompany these auctions help constructors engage in other 

housing construction, suggesting that constructors are capital constrained. Therefore, 

housing construction initiated by MOH does not tend to crowd-out other housing 

construction. However, there is a spatial effect insofar as auctions in neighboring 

regions reduce local construction. Contractors will build less in a locality if MOH is 

initiating housing construction among its neighbors. This result is consistent with our 

finding that local and neighboring construction are substitutes. 
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We show that the lag between completions and starts varies inversely with the 

number of starts. This is consistent with the hypothesis that contractors use building 

under-construction as a buffer to smooth construction. They slow down the 

completion rate when business is quiet and increase it when business picks-up. Unlike 

in the case of housing starts, we find little in the way of spatial spillovers in housing 

completions. However, there may be a spatial lag in housing under-construction so 

that local completions vary directly with housing under-construction in neighboring 

regions. This effect is consistent with our previous finding that local and neighboring 

starts are complementary.           

We use the model to simulate impulse responses across space and over time. 

Region specific shocks propagate at three levels. They propagate over time within 

regions. They propagate between regions. Finally, they propagate between regions 

over time. We report impulse responses for MOH initiated housing, house prices and 

building costs. In doing so, we distinguish between local and nation-wide shocks.  

The reported impulse responses express the richness of the spatial specification of the 

model.  

Finally, we draw attention to a number of econometric issues. Since the panel 

data are nonstationary we have used panel cointegration to test hypotheses about 

housing construction. It is assumed in standard panel unit root and panel cointegration 

tests that the units in the panel are independent. This assumption is naturally violated 

in spatial panel data. We have carried out Monte Carlo simulations of the sensitivity 

of these tests to spatial dependence between panel units. These simulations show that 

provided the spatial dependence is not too pronounced the critical values for standard 

panel unit root and cointegration tests are reasonably reliable.       
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Appendix: Identification in Nonstationary Spatial Panel Data 

This appendix shows that the principles of econometric identification for 

nonstationary data are different to when the data are stationary. Stock (1987) was the 

first to show that OLS parameter estimates in cointegrated models are super-

consistent; they converge faster than root-T to their population counterparts. Due to 

super-consistency the parameter estimates of cointegrating vectors are consistent even 

if the variables in the model happen to be jointly determined. This means that 

parameter estimates that would not be consistent when the data are stationary are 

consistent if the data are nonstationary, provided that the variables concerned are 

cointegrated..  

 These properties carry over to nonstationary panel data when N is fixed
7
. In 

the present context this means that OLS estimates of the price elasticity of supply of 

housing construction and related parameters are consistent despite the fact that the 

price of housing is jointly determined with supply. Conveniently, the determinants of 

demand may be ignored asymptotically when testing hypotheses about supply, and the 

determinants of supply may be ignored when testing hypotheses about demand. 

 These properties also carry over to the estimation of SAR coefficients (of 

spatial lagged dependent variables). In the case of stationary data OLS estimates of 

SAR coefficients are inconsistent because the outcomes of neighbors are jointly 

determined. In this case, consistent estimation of SAR coefficients is by ML or IV 

(Anselin 1988). When the data are nonstationary, however, OLS estimates of SAR 

coefficients are super-consistent, as we show. 

As is well known, IV and GMM are consistent estimators but biased in finite 

samples. The same applies to the estimation of cointegrating vectors which may be 

biased in finite samples (Banerjee et al 1993). However, the finite sample bias in the 

latter is mitigated and in many cases may be negligible, especially if the variance of 

the cointegrated residuals is small relative to the variance in the data.   

The Identification Problem 

The model to be estimated is: 
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7
 Matters are different if N is not fixed (Baltagi 2008, p 299). Notice that Baltagi’s NT tends to zero 

when N is fixed but T tends to infinity. 
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where equation (1) represents the equation for construction and equation (2) is an 

inverted demand schedule for housing. Z
d
 and Z

s
 are variables hypothesized to shift 

the demand and supply of housing. Without loss of generality the Z variables are 

assumed to be independent of u and v. The main parameters of interest are c and d. If 

the data are stationary, identification of c and d requires that Pit and uit be 

independent. P is weakly exogenous if u is serially independent and uncorrelated with 

v, because in this makes Hit and Pit independent of uit and vit. In what follows we 

assume that these identifying restrictions do not apply, so that Pit and uit are 

dependent. 

Asymptotic Orders in Probability 

Let the data generating process (DGP) for a difference stationary variable such as P be 

a random walk with drift  (subscript i is dropped for convenience) so that P has a 

stochastic trend: 

)4(ttP     

where  ~ iid(0, s) without loss of generality. The general solution for P is: 


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P is (covariance) nonstationary because its first two moments depend on time. Its 

mean is t in equation (5), and its variance (the variance of ~ ) is st.  

   Suppose ut is a stationary random variable. The covariance between P and u 

obtained by multiplying equation (5) by ut, summing, and dividing by T: 

)6(~)cov(
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This covariance has two components unless  = 0. The asymptotic orders in 

probability
8
 of these component are ½  and 0 respectively because (see e.g. Hendry 

1995, p107, Hamilton 1994, p 485): 
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8
 A random variable V has asymptotic order  when the first two moments of  T

-
V are finite. 
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Therefore the covariance of P and u is independent of T if  = 0 and it increases with 

root-T otherwise.  

 The variances of nonstationary variables such as P increase with T if  = 0 and 

with T
2
 otherwise, because the square of P in equation (6) depends on t

2
. For similar 

reasons covariances between difference stationary variables increase with T
2
.   

Nonstationary Panel Data with Fixed N 

Since Z
s
 and u are independent in equation (1) but P and u are not, the OLS estimate 

of c equals: 

 
)9(
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Where ri denotes the correlation between Pi and Zi
s
. Because N is fixed the numerator 

of B increases with T
½  

but the denominator increases with T
2
. Therefore B tends to 

zero with T
-3/2

 in which case the OLS estimate of c is consistent. Indeed, it is super-

consistent. If the variables in the model happen to be driftless
9
 the numerator of B 

does not depend on T, but the denominator increases with T. Therefore B tends to 

zero with T
-1

, which is still super-consistent.  

 Because parameter estimates from cointegrating vectors typically have non-

standard distributions (Hendry 1995 p. 185), hypothesis tests cannot be carried using 

t, chi-square and F statistics, which assume that the residuals are asymptotically 

normally distributed. Instead, restrictions may be tested using cointegration tests. If 

equation (1) is panel cointegrated, but ceases to be so if Z
s
 is dropped from the model, 

this would establish that supply shifters are statistically significant, and that the 

estimate of equation (1) is a supply schedule. The same applies to equation (2). If it 

ceases to be panel cointegrated if Z
d
 is dropped from the model this would establish 

that a demand schedule had been estimated.    

Spatial Lagged Dependent Variables 

If spatial lagged dependent variables are specified in equations (1) and (2) and the 

data are difference stationary OLS estimates of SAR coefficients are consistent. To 

demonstrate this, assume without loss of generality that c = d = 0 and the model is: 

                                                 
9
 Textbooks such as Hamilton (1994) and Hendry (1995) follow Stock (1987) in assuming this case. In 

practice, the presence of stochastic trends in the data increases the degree of super-consistency. 
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






N

ij

jtijnit

itnitit

SwS

elSaS )10(

  

Sn is the spatial lagged dependent variable where wij are spatial weights row-summed 

to 1. Without loss of generality eit is assumed to be spatially and temporally 

independent. OLS estimates of the SAR coefficient are not consistent if the data are 

stationary, but matters are different if they are nonstationary.  

 The OLS estimator of the SAR coefficient is: 
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Equation (10) is vectorized as: 

)12(ttt elWSaiS    

where St and et are N-vectors and W denotes the spatial connectivity matrix with 

elements wij. Solving equation (12) and pre-multiplying the result by W expresses the 

N-vector of spatial lagged dependent variables in terms of et:   
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where  is an NxN matrix with elements ij. Since the data are difference stationary 

the counterpart to equation (5) for Sit is: 

)14(~
0 itiiit tSS    

  The covariance between Sni and ei is obtained by substituting equation (14) into 

equation (13) and multiplying the result by eit: 
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which has asymptotic order T
1/2

 from equation (7). It has been assumed that  and e 

are dependent within but not between spatial units. 

 The variance of Sni is a spatially weighted average of the variances of Sj and 

their covariances: 

)16()cov()var()var(
1 1 1

2 
  


N

j

N

j

N

k

kjikijjijni SSSS     



 31 

 which has asymptotic order T
2
. According to equations (15) and (16) B has 

asymptotic order T
-3/2

 in which case OLS estimates of SAR coefficient l are super-

consistent.        
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Figure 1:  Map of Israeli Regions 
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Figure 2:  Regional House Prices (Set 1991’s CPI=100) 

 

 

 

 
 

 

 

Figure 3: Housing Starts (1000's m
2
), 1987-2010 
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Figure 4; Public Sector Housing Starts (1000's m
2
) 

 

 
 

 

Figure 5: Relative Land Prices by District 
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Figure 6: Residuals of Model 4 
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