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Abstract— Finding the entropy rate of Hidden Markov Pro-
cesses is an active research topic, of both theoretical and practical
importance. A recently used approach is studying the asymptotic
behavior of the entropy rate in various regimes. In this paper we
generalize and prove a previous conjecture relating the entropy
rate to entropies of finite systems. Building on our new theorems,
we establish series expansions for the entropy rate in two different
regimes. We also study the radius of convergence of the two series
expansions.

I. I NTRODUCTION

Let {XN} be a finite state stationary markov process

over the alphabetΣ = {1, . . . , s}. Let {YN} be its noisy

observation (on the same alphabet). LetM = Ms×s = {mij}
be the Markov transition matrix andR = Rs×s be the

emission matrix, i.e.P (XN+1 = j|XN = i) = mij and

P (YN = j|XN = i) = rij . We assume that the Markov matrix

M is strictly positive (mij > 0), and denote its stationary

distribution by the (column) vectorπ, satisfyingπtM = πt.

The processY can be viewed as a noisy observation ofX,

through a noisy channel. It is known as aHidden Markov

Process (HMP), and is determined by the parametersM and

R. HMPs have a rich and developed theory, and enourmous

applications in various fields (see [1], [2]).

An important quantity of the processY is its entropy rate. The

Shannon entropy rate of a stochastic process ([3]) measures the

amount of ’uncertainty per-symbol’. More formally, fori ≤ j,

let [Y ]ji denote the vector(Yi, . . . , Yj). Then the entropy rate

H̄(Y ) is defined as:

H̄(Y ) = lim
N→∞

H([Y ]N1 )
N

(1)

WhereH(Y ) = −∑
Y P (Y ) log P (Y ). Here and throughout

the paper we use natural logarithms, so the entropy is mea-

sured inNATS, and also adopt the convention0 log 0 ≡ 0.

We sometimes omit the realizationy of the variableY , so

P (Y ) should be understood asP (Y = y). The entropy

rate can also be computed via the conditional entropy as:

H̄(Y ) = limN→∞H(YN |[Y ]N−1
1 ), since for a stationary

process the two limits exist and coincide ([4]). The conditional

entropyH(Y |X) (whereX, Y are sets of r.v.s.) represents the

average uncertainty ofY , assuming that we knowX, that is

H(Y |X) =
∑

x P (X = x)H(Y |X = x). By the chain rule

for entropy, it can also be viewed as a difference of entropies,

H(Y |X) = H(X, Y )−H(X), which will be used later.

There is at present no explicit expression for the entropy rate

of a HMP ([1], [5]). Few recent works ([5], [6], [7]) have dealt

with finding the asymptotic behavior of̄H in several parameter

regimes. However, they concentrated only on binary alphabet,

and proved rigorously only bounds or at most second ([7])

order behavior.

Here we generalize and prove a conjecture posed in [7], which

justifies (under some mild assumptions) the computation of

H̄ as a series expansion in the High Signal-to-Noise-Ratio

(’High-SNR’) regime. The expansion coefficients were given

in [7], for the symmetric binary case. In this case, the matrices

M andR are given by:

M =

(
1− p p

p 1− p

)
, R =

(
1− ε ε

ε 1− ε

)
(2)

and the process is characterized by the two parametersp, ε.

The High-SNR expansion in this case is an expansion inε

around zero.

In section II, we present and prove our two main theorems;

Thm. 1 is a generalization of a conjecture raised in [7] which

connects the coefficients of entropies using finite histories to

the entropy rate. Proving it justifies the High-SNR expansion

of [7]. We also give Thm. 2, which is the analogue of Thm. 1



in a different regime, termed ’Almost-Memoryless’ (’A-M’).

In section III we use our two new theorems to compute the

first coefficients in the series expansions for the two regimes.

We give the first-order asymptotics for a general alphabet, as

well as higher order coefficients for the symmetric binary case.

In section IV we estimate the radius of convergence of our

expansions using a finite number of terms, and compare our

results for the two regimes. We end with conclusions and

future directions.

II. FROM FINITE SYSTEM ENTROPY TO ENTROPY RATE

In this section we prove our main results, namely Thms. 1

and 2, which relate the coefficients of the finite boundsCN

to those of the entropy ratēH in two different regimes.

A. The High SNR Regime

This regime was dealt in further details in [7], [8], albeit with

no rigorous justification for the obtained series expansion. In

the High-SNR regime the observations are likely to be equal

to the states, or in other words, the emission matrixR is close

to the identity matrixI. We therefore writeR = I+εT , where

ε > 0 is a small constant andT = {tij} is a matrix satisfying

tii < 0, tij ≥ 0, ∀i 6= j and
∑s

j=1 tij = 0. The entropy rate in

this regime can be given as an expansion inε around zero. We

state here our new theorem, connecting the entropy of finite

systems to the entropy rate in this regime.

Theorem 1:Let HN ≡ HN (M, T, ε) = H([Y ]N1 ) be the

entropy of a system of lengthN , and letCN = HN −HN−1.

Let Bρ(0) ⊂ C be some (complex) neighborhood of zero, in

which the functions{CN} andH̄ are analytic inε, with Taylor

expansions given by:

CN (M, T, ε) =
∞∑

k=0

C
(k)
N εk, H̄(M, T, ε) =

∞∑

k=0

C(k)εk (3)

(The coefficientsC(k)
N are functions of the parametersM and

T . From now on we omit this dependence). Then:

N ≥
⌈k + 3

2

⌉
⇒ C

(k)
N = C(k) (4)

The analyticity of{CN} and H̄ aroundε = 0 was recently

shown in [9]. One can also use [10], which showed that the

law of the processY is Gibbsian, together with the complete

analyticity results for Gibbsian measures in [11] to deduce

analyticity of H̄.

CN is actually an upperbound ([4]) for̄H. The behavior

stated in Thm. 1 was discovered previously using symbolic

computations, but was proven only fork ≤ 2 , and only for

the symmetric binary case (see [7]).

Although it may appear technically involved, the proof of

Thm. 1 is based on the following two simple ideas. First,

we distinguish between the noise parameters at different sites.

This is done by considering a more general process{ZN},
where Zi’s emission matrix isRi = I + εiT . The joint

distribution of [Z]N1 is thus determined byM ,T and [ε]N1 .

We define the following functions:

FN (M,T, [ε]N1 ) = H([Z]N1 )−H([Z]N−1
1 ) (5)

Setting all theεi’s equal reduces us back to theY process,

and in particularFN (M, T, (ε, . . . , ε)) = CN (ε).
Second, we observe that if a particularεi is set to zero, the

corresponding observationZi must equal the stateXi. Thus,

conditioning back to the past is ’blocked’. This can be used

to prove the following:

Lemma 1:Assumeεj = 0 for some1 < j < N . Then:

FN ([ε]N1 ) = FN−j+1([ε]Nj+1)

Proof:

F can be written as a sum of conditional entropies:

FN = −
∑

[Z]N1

P ([Z]N−1
1 )P (ZN |[Z]N−1

1 ) log P (ZN |[Z]N−1
1 )

(6)

Where the dependence on[ε]N1 andM,T comes through the

probabilitiesP (..). Sinceεj = 0, we must haveXj = Zj , and

therefore (since theXi’s form a Markov chain), conditioning

further to the past is ’blocked’, that is:

εj = 0 ⇒ P (ZN |[Z]N−1
1 ) = P (ZN |[Z]N−1

j ) (7)

(Note that eq. (7) is true forj < N , but not for j = N ).

Substituting in eq. (6) gives:

FN = −
∑

[Z]N1

P ([Z]N−1
1 )P (ZN |[Z]N−1

j ) log P (ZN |[Z]N−1
j ) =

−
∑

ZN
j

P ([Z]N−1
j )P (ZN |[Z]N−1

j ) log P (ZN |[Z]N−1
j )

= FN−j+1 (8)

Let~k = [k]N1 be a vector withki ∈ {N∪0}. Define its ’weight’

asω(~k) =
∑N

i=1 ki. Define also:

F
~k
N ≡ ∂ω(~k)FN

∂εk1
1 , . . . , ∂εkN

N

∣∣∣∣∣
~ε=0

(9)



With the above definition,C(k)
N is obtained by summingF~k

N

on all ~k’s with weight k, and dividing byk!:

C
(k)
N =

1
k!

∑

~k,ω(~k)=k

F
~k
N (10)

As is shown next, one does not need to sum on all such~k’s,

since many of them give zero contribution:

Lemma 2:Let ~k = [k]N1 . If ∃i, j, 1 ≤ i < j < N , with

kj ≤ 1 ≤ ki, thenF
~k
N = 0.

Proof: Assume firstkj = 0. Using lemma 1 we get

F
~k
N ≡ ∂ω(~k)FN ([ε]N1 )

∂εk1
1 , . . . , ∂εkN

N

∣∣∣∣∣
~ε=0

=
∂ω(~k)FN−j+1([ε]Nj )

∂εk1
1 , . . . , ∂εkN

N

∣∣∣∣∣
~ε=0

=

∂ω(~k)−1

∂εk1
1 , . . . , ∂εki−1

i , . . . , ∂εkN

N

[
∂FN−j+1([ε]Nj )

∂εi

]∣∣∣∣∣
~ε=0

= 0

(11)

The casekj = 1 is more difficult, but follows the same

principles. Write the probability ofZ:

P ([Z]N1 ) =
∑

[X]N1

P ([X]N1 )P ([Z]N1 |[X]N1 ) =

∑

[X]N1

P ([X]N1 )
N∏

i=1

(δXiZi + εitXiZi) (12)

whereδij is Kronecker delta. Write the partial derivative with

respect toεj :

∂P ([Z]N1 )
∂εj

∣∣∣∣
εj=0

=

∑

[X]N1


P ([X]N1 )tXjZj

∏

i 6=j

(δXiZi + εitXiZi)




∣∣∣∣∣∣
εj=0

=

{
s∑

a=1

taZj P ([Z]N1
(j→a)

)

}∣∣∣∣∣
εj=0

(13)

Where[Z]N1
(j→a)

denotes the vector which is equal to[Z]N1 in

all coordinates except on coordinatej, whereZj = a. Using

Bayes’ ruleP (ZN |[Z]N−1
1 ) = P ([Z]N1 )

P ([Z]N−1
1 )

, we get:

∂P (ZN |[Z]N−1
1 )

∂εj

∣∣∣∣∣
εj=0

=

1
P ([Z]N−1

1 )

s∑
a=1

taZj

[
P ([Z]N1

(j→a)
)−

P (ZN |[Z]N−1
1 )P ([Z]N−1

1

(j→a)
)
]∣∣∣

εj=0
(14)

This gives:

∂[P ([Z]N1 ) log P (ZN |[Z]N−1
1 )]

∂εj

∣∣∣∣∣
εj=0

=

s∑
a=1

taZj

{
P ([Z]N1

(j→a)
) log P (ZN |[Z]N−1

1 )+

P ([Z]N1
(j→a)

)− P (ZN |[Z]N−1
1 )P ([Z]N−1

1

(j→a)
)
}∣∣∣

εj=0

(15)

And therefore:
∂FN

∂εj

∣∣∣∣
εj=0

=

−
s∑

a=1

taZj

{∑

[Z]N1

[
P ([Z]N1

(j→a)
) log P (ZN |[Z]N−1

1 )−

P (ZN |[Z]N−1
1 )P ([Z]N−1

1

(j→a)
)
]}∣∣∣∣∣

εj=0

=

{
−

s∑
a=1

taZj

∑

[Z]Nj

[
P ([Z]Nj

(1→a)
) log P (ZN |[Z]N−1

j )−

P (ZN |[Z]N−1
j )P ([Z]N−1

j

(1→a)
)
]}∣∣∣∣∣

ε1=0

(16)

Where the latter equality comes from using eq. (7), which

’blocks’ the dependence backwards. Eq. (16) shows that
∂FN

∂εj

∣∣∣
εj=0

does not depend onεi for i < j, therefore

∂ki+1FN

∂ε
ki
i ∂εj

= 0 andF
~k
N = 0.

Before proving Thm. 1, we need one more lemma, which

already shows a ’settling’ behavior. More precisely, we prove

here that adding zeros to the left of~k leavesF~k
N unchanged:

Lemma 3:Let ~k = [k]N1 with k1 ≤ 1. Denote ~k(r)

the concatenation of~k with r zeros on the left:~k(r) =
(0, . . . , 0︸ ︷︷ ︸

r

, k1, . . . , kN ). Then:

F
~k
N = F

~k(r)

r+N ,∀r ∈ N

Proof: Assume firstk1 = 0. Using lemma 1, we get:

F
~k(r)

r+N ([ε]r+N
1 ) =

∂ω(~k(r))Fr+N ([ε]r+N
1 )

∂εk2
r+2, . . . , ∂εkN

r+N

∣∣∣∣∣
~ε=0

=

∂ω(~k)FN ([ε]r+N
r+1 )

∂εk2
r+2, . . . , ∂εkN

r+N

∣∣∣∣∣
~ε=0

= F
~k
N ([ε]r+N

r+1 ) (17)

The casek1 = 1 is reduced back to the casek1 = 0 by taking

the derivative. We next prove the claim forr = 1 and for



greater values it follows by induction. Using eqs. (16,17), we

get:

F
~k(1)

N+1([ε]
N+1
1 ) =

∂ω(~k)−1

∂εk2
3 . . . ∂εkN

N+1

[
∂FN+1

∂ε2

∣∣∣∣
ε2=0

]∣∣∣∣∣
~ε=0

=

∂ω(~k)−1

∂εk2
3 . . . ∂εkN

N+1

{
−

s∑
a=1

taZ2

∑

[Z]N+1
1

[
P ([Z]N+1

1

(2→a)
) log P (ZN+1|[Z]N1 )−

P (ZN+1|[Z]N1 )P ([Z]N1
(2→a)

)
]∣∣∣

ε2=0

}∣∣∣∣∣
[ε]N+1

1 =0

=

∂ω(~k)−1

∂εk2
2 . . . ∂εkN

N

{
−

s∑
a=1

taZ2

∑

[Z]N1

[
P ([Z]N1

(1→a)
) log P (ZN |[Z]N−1

1 )−

P (ZN |[Z]N−1
1 )P ([Z]N1

(1→a)
)
]∣∣∣

ε1=0

}∣∣∣∣∣
[ε]N1 =0

= F
~k
N ([ε]N1 )

(18)

We are now ready to prove Thm. 1, which follows directly

from lemmas 2 and 3:

Proof:

Let ~k = [k]N1 with ω(~k) = k. Define its ’length’ (from right,

considering only entriesstrictly larger than one) asl(~k) = N+
1−minki>1{i}. It easily follows from lemma 2 that ifF~k

N 6= 0,

then all the entries of~k except some of its leftmost entries

are at least ’2’, and thus we must havel(~k) ≤ dk+3
2 e − 1.

Therefore, according to lemma 3 we have:

F
~k
N = F

(k
N−d k+3

2 e+1
,...,kN )

d k+3
2 e (19)

for all ~k’s in the sum. From eq. 10, by summing over all

F
~k
N with the same ’weight’, we getC(k)

N = C
(k)

d k+3
2 e, ∀N >

dk+3
2 e. From the analyticity ofCN and H̄ around ε = 0,

one can show by induction onk that limN→∞ C
(k)
N = C(k),

therefore we must haveC(k)
N = C(k), ∀N ≥ dk+3

2 e.

B. The Almost Memoryless Regime

In the A-M regime, the Markov transition matrix is close to

uniform. Thus, throughout this section, we assume thatM is

given by M = U + δT , such thatU is a constant (uniform)

matrix, uij = s−1, δ > 0 is a small constant andT satisfies∑s
j=1 tij = 0. Thus the process is entirely characterized by

the set of parameters(R, T, δ), where R again denotes the

emission matrix.

Interestingly, similarly to the High-SNR regime, the condi-

tional entropy given a finite history gives the correct entropy

rate up to a certain order which depends on the finite history

taken. In the A-M regime we can also prove analyticity of

{CN} and H̄ in δ nearδ = 0. This is stated as:

Theorem 2:Let HN ≡ HN (R, T, δ) = H([Y ]N1 ) be the

entropy of a finite system of lengthN , and letCN = HN −
HN−1. Let Bρ(0) ⊂ C be some (complex) neighborhood of

δ = 0, in which the (one-variable) functions{CN}, H̄ are

analytic inδ, with Taylor expansions given by:

CN (M,T, δ) =
∞∑

k=0

C
(k)
N δk, H̄(M,T, ε) =

∞∑

k=0

C(k)δk

(20)

(The coefficientsC(k)
N are functions of the parametersM and

T .) Then:

N ≥
⌈k + 3

2

⌉
⇒ C

(k)
N = C(k) (21)

Proof: The proof is very similar to that of Thm. 1.

Distinguishing between the sites by settingMi = U + δiT

in site i, we notice that if one setsδi = 0 for some i,

thenMi becomes uniform, and thus knowingZi ’blocks’ the

dependence ofZN on previousZj ’s (∀j < i). The rest of the

proof continues in an analogous way to the proof of Thm. 1

(including the three lemmas therein), and its details are thus

omitted here.

III. C OMPUTATION OF THE SERIES COEFFICIENTS

An immediate application of Thms. 1 and 2 is the computa-

tion of the first terms in the series expansion forH̄ (assuming

its existence), by simply computing these terms forCN for N

large enough. In this section we compute, for both regimes,

the first order for the general alphabet case, and also give few

higher order terms for the simple symmetric binary case. Our

method for computingC(k) is straightforward. We compute

C
(k)
N for N = dk+3

2 e by simply enumerating all sequences

[Y ]N1 , computing thek-th coefficient inP ([Y ]N1 ) log P ([Y ]N1 )
for each one, and summing their contribution. This computa-

tion is, however, exponential ink, and thus raises the challenge

of designing more efficient algorithms, in order to compute

further orders and for larger alphabets.

Before giving the calculated coefficients, we need some new

notations. For a vectorα, diag(α) denotes the square matrix

with α’s elements on the diagonal. We use Matlab-like no-

tation to denote element-by-element operations on matrices.

Thus, for matricesA andB, logA is a matrix whose elements

are {log aij}, and [A. ∗ B] is a matrix whose elements are

{aijbij}. ξ denotes the (column) vector ofN ones.



A. The High-SNR expansion

According to Thm. 1, computingC2 enables us to extract

H̄(k). This is used to show the following:

Proposition 1: Let R = I + εT . Assume that the entropy

rate H̄ is analytic in some neighborhood ofε = 0. Then H̄

satisfies:

H̄ = −πt[M. ∗ log M ]ξ + ξt
{

diag(log(π))T tdiag(π)M−

[diag(π)MT +T tdiag(π)M ].∗ [log(diag(π)M)]
}

ξε+O(ε2)
(22)

Proof: Noting that according to Thm. 1,̄H = C2 +
O(ε2), we first compute (exactly)C2, and then expand it by

substitutingR = I + εT . Write C2 as:

C2 = H(YN |YN−1) =

−
∑

i,j

P (YN = j, YN−1 = i) log
P (YN = j, YN−1 = i)

P (YN−1 = i)
(23)

We can express the above probabilities as:

P (YN−1 = i) = [πtR]i

P (YN = j, YN−1 = i) = [Rtdiag(π)MR]ij ≡ Fij (24)

Substituting eq. (24) in eq. (23), and writing in matrix form,

we get:

C2 =
{

[log(πtR)]F − ξt[F. ∗ logF ]
}

ξ (25)

SubstitutingR = I + εT gives:

F = diag(π)M + [diag(π)MT + T tdiag(π)M ]ε + O(ε2),

F. ∗ log F = [diag(π)M ]. ∗ log(diag(π)M)+

{
[diag(π)MT + T tdiag(π)M ]. ∗ [I + log(diag(π)M)]

}
ε+

O(ε2) (26)

Substituting these in eq. (25) gives, after simplification, the

result (22).

We note that prop. 1 above is a generalization of the result

obtained by [5] for a binary alphabet.

Turning now into the symmetric binary case, the first eleven

orders of the series expansion were given in [7], but only

the first two were proved to be correct. Thm. 1 proves the

correctness of the entire expansion from [7], which is not

repeated here.

B. The almost memoryless expansion

By Thm. 2, one can expand the entropy rate aroundM = U

by simply computing the coefficientsC(k)
N for N large enough.

For example, by computingC2 we have established, in analogy

to prop. 1, the first order:

Proposition 2: Let M = U + δT . ThenH̄ satisfies:

H̄ = log s− s−1ξtR[log(Rtξ)]−
ξt

[
(s−1RtTR). ∗ log(s−1RtUR)

]
ξδ + O(δ2) (27)

Proof: SinceH̄ = C2 + O(δ2), we expandC2 (as given

in eq. (25)) inδ. M is simply replaced byU+δT . Dealing with

π is more problematic. Note that the stationary distribution of

U is s−1ξ. We write π = s−1ξ + δψ + O(δ2), and solve:

(s−1ξt + δψt)(U + δT ) = (s−1ξt + δψt) + O(δ2) (28)

It follows that ψ should satisfyψt(I −U) = ξtT , whereI is

the identity matrix. We cannot invertI −U since it is of rank

s− 1. The extra equation needed for determiningψ uniquely

comes from the requirement
∑s

i=1 ψi = 0. SubstitutingM =
U + δT andπ = s−1ξ + δψ + O(δ2) in eq. (25), one gets:

C2 =
{

log(s−1ξtR)s−1RtUR−

ξt[(s−1RtUR). ∗ log(s−1RtUR)]
}

ξ+
{

log(s−1ξtR)Rt[s−1diag(ξ)T + diag(ψ)U ]R−

ξt
[(

Rt(s−1diag(ξ)T + diag(ψ)U)R
)
.∗

(
sU + log(s−1RtUR)

)]}
ξδ + O(δ2) (29)

After further simplification, most terms in eq. (29) cancel out,

and we are left with the result (27).

In [12] it was shown that the first order term vanishes for

the symmetric binary case, which is consistent with eq. (27).

Our result holds for general alphabets and process parameters.

Looking at the symmetric binary case might be misleading

here, since by doing so one fails to see the linear behavior in

δ for the general case.

We have computed higher orders for the symmetric binary case

by expandingCN for N = 8, which gives usC(k) for k ≤ 13.

In this case the expansion is in the parameterδ = 1
2 − p, and

gives (for better readability the dependency onε is represented

here viaµ = 1− 2ε):

H̄ = log(2)− µ4

[
2δ2 +

4
3
(7µ4 − 12µ2 + 6)δ4+

32
15

(46µ8 − 120µ6 + 120µ4 − 60µ2 + 15)δ6+



32
21

(1137µ12 − 4088µ10 + 5964µ8 − 4536µ6 + 1946µ4−

504µ2 + 84)δ8 +
512
45

(3346µ16 − 15120µ14 + 28800µ12−

30120µ10 +18990µ8− 7560µ6 +1980µ4− 360µ2 +45)δ10+

1024
165

(159230µ20−874632µ18 +2091100µ16−2857360µ14+

2465100µ12 − 1400960µ10 + 532312µ8 − 135960µ6+

24145µ4 − 3300µ2 + 330)δ12

]
+ O(δ14); (30)

The above expansion generalizes a result from [12], who

provedH̄ = log(2)−2µ4δ2+o(δ2). Note that for the first few

coefficients, all odd powers ofδ vanish, and the coefficients

are all polynomials ofµ2, which makes this series simpler

than the one obtained in the High-SNR regime ([7]).

IV. RADIUS OF CONVERGENCE

The usefulness of a series expansion such as the ones

derived in eq. (30) and in [7] for practical purposes, highly

depends on the radius of convergence. Determining the radius

is a difficult problem, as it relates to the domain of analyticity

of H̄. In Thm. 2 we proved that the radius for the A-M

expansion is positive.

For the High-SNR case, we gave a numerical estimation of

the radius of convergenceρ(p) as a function ofp ([8]),

based on the first few known terms. When one applies the

same procedure to the coefficients of the A-M expansion, the

numerical values of the estimated radius are much higher.

The difference is demonstrated in fig. 1. In this figure, the

(finite) series expansions with up to twelfth order is compared

to two known bounds onH̄ from [4]. The upper bound

is simply CN = H(YN |[Y ]N−1
1 ) and the lower bound is

cN ≡ H(YN |X1, [Y ]N−1
1 ), for N = 2. As can be seen from

the figure, for the High-SNR case atp = 0.2, the finite-order

expansions are not within the bounds for large values ofε. For

the A-M case, forε = 0.2, the finite-order expansions remain

within the bounds for any0 < p < 1
2 .

The estimated radiusρ(p) for the High-SNR expansion, is

plotted as a function ofp in fig. 2.a. In our context, the

result of [9] proves that̄H(p, ε) is real analytic in the domain

Ω ⊂ R2, Ω = {(p, ε) : 0 < p, ε < 1} (it is not known

whetherΩ is maximal with that respect). This domain is shown

in fig. 2.b. For any0 < ε < 1, the A-M expansion is near

the point (ε, 1
2 ) which is an interior point ofΩ. The High-

SNR expansion is near some point(p, 0), which lies on the

boundary ofΩ.
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Fig. 1. Approximations forH̄ using first few terms in its series expansion.
a. The High-SNR expansions using9, 10 and11 terms forp = 0.2 deviate
from the bounds for large values ofε. The first few terms of the expansion
have alternating signs, therefore the direction of the deviation is determined
by the parity of the number of terms taken. b. The A-M expansions using
8, 10 and12 terms forε = 0.2 remain within the bounds for any value ofp.

V. CONCLUSION

We presented a generalization and proof of the conjecture

introduced in [7], relating the expansion coefficients of finite

system entropies to those of the entropy rate forHMPs. Our

new theorems shed light on the connection between finite and

infinite chains, as well as give a practical and straightforward

way to compute the entropy rate as a series expansion up to

an arbitrary power.

The surprising ’settling’ of the expansion coefficientsC
(k)
N =

C(k) for N ≥ dk+3
2 e, holds for the entropy. For other functions

involving only conditional probabilities (e.g. relative entropy

between twoHMPs) a weaker result holds: the coefficients
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Fig. 2. a. The estimated radius of convergenceρ(p) for the High-SNR
expansion as a function ofp. b. The domainΩ (shaded gray area) in theR2

plane for which it is known [9] thatH̄ is real analytic in(p, ε). The A-M
expansion is near the vertical linep = 1

2
. The High-SNR expansion is near

the horizonal boundaries atε = 0 andε = 1.

’settle’ for N ≥ k + 2. We note that this is still a highly

non-trivial result, as it is known that for other regimes (e.g.

’rare-transitions’ [13]), a finite chain of any length does not

give the correct asymptotic behavior even to the first order. We

also estimated the radius of convergence for the expansion in

the two regimes, ’High-SNR’ and ’A-M’, and demonstrated

their quantitatively different behavior. Further research in this

direction, which closely relates to the domain of analyticity of

the entropy rate, is still required.
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