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Abstract

A recent result presented the expansion for the entropy rate of a Hidden Markov Process (HMP) as a

power series in the noise variable ε. The coefficients of the expansion around the noiseless (ε = 0) limit

were calculated up to 11th order, using a conjecture that relates the entropy rate of a HMP to the entropy

of a process of finite length (which is calculated analytically). In this paper we generalize and prove the

conjecture, and discuss its theoretical and practical consequences.

1 Introduction

Let {XN} be a finite state stationary Markov process over the alphabet Σ = {1, .., s}, and

let {YN} be its noisy observation (on the same alphabet). The process Y is generated by the

Markov transition matrix M = Ms×s = {mij} and the emission matrix I + εT , where I is

the s × s identity matrix, the matrix T = Ts×s = {tij} satisfies tii < 0, tij ≥ 0, ∀i 6= j and
∑s

j=1 tij = 0, and ε > 0 is some constant. (There is no loss of generality here, as any stochastic

matrix can be represented as I+εT .) This yields the probabilities P (XN+1 = j|XN = i) = mij

and P (YN = j|XN = i) = δij + εtij, where δ is Kronecker’s delta. We consider the case of

high signal to noise ratio (’High-SNR’), characterized by small values of ε, and assume strictly

positive M (mij > 0) with a unique stationary distribution.

The process Y can be viewed as an observation of X through a noisy channel. It is a

Hidden Markov Process (HMP), governed by the parameters M , T and ε. HMPs have a rich
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theory, with applications in various fields, such as speech recognition ([1]), information theory

([2]) and signal processing ([3]). While we concentrate on a finite-state first-order HMP, our

results can be easily generalized to more cases (e.g. continuous observations).

An important quantity for a stochastic process is the Shannon entropy rate, which measures

its ’uncertainty per-symbol’ ([4]). More formally, for i ≤ j let [Y ]ji denote the vector (Yi, .., Yj).

The entropy rate of Y is defined as:

H̄(Y ) = lim
N→∞

H([Y ]N1 )

N
(1)

Where H(Y ) = −∑
Y P (Y ) log P (Y ); Sometimes we omit the realization y of the variable

Y , so P (Y ) should be understood as P (Y = y). For a finite-entropy stationary process the

limit (1) exists and H̄ can also be computed via the conditional entropy ([5]) as: H̄(Y ) =

limN→∞ H(YN |[Y ]N−1
1 ). Here H(U |V ) represents the conditional entropy, which for random

variables U and V is the average uncertainty of the conditional distribution of U given V ,

that is H(U |V ) =
∑

v P (V = v)H(U |V = v). By the entropy chain rule, it is also given as a

difference of entropies, H(U |V ) = H(U, V )−H(V ). This relation will be used below.

There is at present no explicit expression for the entropy rate of a HMP ([2, 6]). Few recent

works ([6, 7, 8]) have studied the asymptotic behavior of H̄ in several regimes, albeit giving

rigorously only bounds or at most second ([8]) order behavior. Here we generalize and prove

a relationship, first posed in [8] as a conjecture, thereby turning the computation presented

there, of H̄ as a series expansion up to 11th order in ε, into a rigorous statement.

2 Theorem Statement and Proof

We first state our main result, which will be proven at the end of the section.

Theorem 1 Let HN ≡ HN(M, T, ε) = H([Y ]N1 ) be the entropy of a system of length N , and

let CN = HN −HN−1. Let Bρ(0) ⊂ C be some (complex) neighborhood of zero, in which the

functions {CN} and H̄ are analytic in ε, with Taylor expansions given by:

CN(M,T, ε) =
∞∑

k=0

C
(k)
N εk, H̄(M, T, ε) =

∞∑

k=0

C(k)εk (2)
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(The coefficients C
(k)
N are functions of M and T . From now on we omit this dependence).

Then:

N ≥
⌈k + 3

2

⌉
⇒ C

(k)
N = C(k) (3)

Analyticity of {CN} and H̄ around ε = 0 was recently shown in [9]. One may also use

[10], which showed that the law of the process Y is Gibbsian, together with the complete

analyticity results for Gibbsian measures of [12], to deduce analyticity of H̄. CN is in fact

an upper-bound ([5]) for H̄. The behavior stated in Thm. 1 was discovered using symbolic

computations, but was proven only for k ≤ 2, in the binary symmetric case ([8]). Although it

may appear technically involved, our proof is based on two simple ideas.

First, we distinguish between the noise parameters at different sites. We thus consider

a more general process {ZN}, where Zi’s emission matrix is I + εiT . The process {ZN} is

determined by M ,T and [ε]N1 . We define the following functions:

FN(M,T, [ε]N1 ) = H([Z]N1 )−H([Z]N−1
1 ) (4)

Setting all the εi’s equal reduces this to the Y process, and in particular FN(M,T, (ε, .., ε)) =

CN(ε).

Second, we observe that if a particular εi is set to zero, we must have Zi = Xi. Thus,

conditioning back to the past is ’blocked’. This is used to prove:

Lemma 1 If εj = 0 for some 1 < j < N , then:

FN([ε]N1 ) = FN−j+1([ε]
N
j ) (5)

Proof F can be written as the sum:

FN = −
∑

[Z]N1

[
P ([Z]N−1

1 )P (ZN |[Z]N−1
1 ) log P (ZN |[Z]N−1

1 )

]
(6)

The dependence on [ε]N1 and M,T is hidden in the probabilities P (..). Since εj = 0, we have
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Xj = Zj, and conditioning further to the past is ’blocked’:

εj = 0 ⇒ P (ZN |[Z]N−1
1 ) = P (ZN |[Z]N−1

j ) (7)

Substituting in eq. 6 gives:

FN = −
∑

[Z]N1

[
P ([Z]N−1

1 )P (ZN |[Z]N−1
j ) log P (ZN |[Z]N−1

j )

]
=

−
∑

[Z]Nj

P ([Z]Nj ) log P (ZN |[Z]N−1
j ) = FN−j+1 (8)

Let ~k = [k]N1 be a vector with ki ∈ {N∪0}. Define its ’weight’ as ω(~k) =
∑N

i=1 ki. Define also:

F
~k
N ≡ ∂ω(~k)FN

∂εk1
1 , .., ∂εkN

N

∣∣∣∣∣
~ε=0

(9)

C
(k)
N is obtained by summing the contributions F

~k
N of all the vectors ~k’s with weight k:

C
(k)
N =

1

k!

∑

~k,ω(~k)=k

F
~k
N (10)

The next lemma shows that many such ~k’s give zero contribution to the sum:

Lemma 2 Let ~k = [k]N1 . If ∃i, j, 1 ≤ i < j < N , with ki ≥ 1, kj ≤ 1, then F
~k
N = 0.

Proof Assume first kj = 0. Using lemma 1 we get:

F
~k
N ≡ ∂ω(~k)FN([ε]N1 )

∂εk1
1 , .., ∂εkN

N

∣∣∣∣∣
~ε=0

=
∂ω(~k)FN−j+1([ε]

N
j )

∂εk1
1 , .., ∂εkN

N

∣∣∣∣∣
~ε=0

=

∂ω(~k)−1

∂εk1
1 , .., ∂εki−1

i , .., ∂εkN
N

[
∂FN−j+1([ε]

N
j )

∂εi

]∣∣∣∣∣
~ε=0

= 0 (11)

Assume now kj = 1. Write the probability of Z:

P ([Z]N1 ) =
∑

[X]N1

P ([X]N1 )P ([Z]N1 |[X]N1 ) =
∑

[X]N1

P ([X]N1 )
N∏

i=1

(δXiZi
+ εitXiZi

) (12)
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Let [Z]N1
(j→a)

denote the vector we get from [Z]N1 by changing Zj to a (while keeping other

coordinates). Differentiating with respect to εj gives (see [11] for more details):

∂P ([Z]N1 )

∂εj

∣∣∣∣
εj=0

=
∑

[X]N1

[
P ([X]N1 )tXjZj

∏

i 6=j

(δXiZi
+ εitXiZi

)

]∣∣∣∣∣∣
εj=0

=

{
s∑

a=1

taZj
P ([Z]N1

(j→a)
)

}∣∣∣∣∣
εj=0

(13)

By Bayes’ rule P (ZN |[Z]N−1
1 ) =

P ([Z]N1 )

P ([Z]N−1
1 )

, we get:

∂P (ZN |[Z]N−1
1 )

∂εj

∣∣∣∣
εj=0

=
1

P ([Z]N−1
1 )

s∑
a=1

taZj

[
P ([Z]N1

(j→a)
)−

P (ZN |[Z]N−1
1 )P ([Z]N−1

1

(j→a)
)
]∣∣∣

εj=0
(14)

This gives:

∂[P ([Z]N1 ) log P (ZN |[Z]N−1
1 )]

∂εj

∣∣∣∣
εj=0

=
s∑

a=1

taZj

{
P ([Z]N1

(j→a)
) log P (ZN |[Z]N−1

1 )+

P ([Z]N1
(j→a)

)− P (ZN |[Z]N−1
1 )P ([Z]N−1

1

(j→a)
)
}∣∣∣

εj=0
(15)

And therefore:

∂FN

∂εj

∣∣∣∣
εj=0

=

−
s∑

a=1

taZj

{∑

[Z]N1

[
P ([Z]N1

(j→a)
) log P (ZN |[Z]N−1

1 )− P (ZN |[Z]N−1
1 )P ([Z]N−1

1

(j→a)
)
]}∣∣∣∣∣

εj=0

=

{
−

s∑
a=1

taZj

∑

[Z]Nj

[
P ([Z]Nj

(1→a)
) log P (ZN |[Z]N−1

j )− P (ZN |[Z]N−1
j )P ([Z]N−1

j

(1→a)
)
]}∣∣∣∣∣

ε1=0

(16)

The latter equality comes from using eq. (7), which ’blocks’ the dependence backwards. Eq.

(16) shows that εi does not appear in ∂FN

∂εj

∣∣∣
εj=0

for i < j, therefore ∂ki+1FN

∂ε
ki
i ∂εj

∣∣∣∣
εj=0

= 0 and

F
~k
N = 0.

Before proving Thm. 1, we show here that adding zeros to the left of ~k leaves F
~k
N unchanged:
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Lemma 3 Let ~k = [k]N1 with k1 ≤ 1. Denote ~k(r) the concatenation of ~k and r zeros to the

left: ~k(r) = (0, .., 0︸ ︷︷ ︸
r

, k1, .., kN). Then:

F
~k
N = F

~k(r)

r+N ,∀r ∈ N (17)

Proof Assume first k1 = 0. Using lemma 1 we get:

F
~k(r)

r+N([ε]r+N
1 ) =

∂ω(~k(r))Fr+N([ε]r+N
1 )

∂εk2
r+2, .., ∂εkN

r+N

∣∣∣∣∣
~ε=0

=
∂ω(~k)FN([ε]r+N

r+1 )

∂εk2
r+2, .., ∂εkN

r+N

∣∣∣∣∣
~ε=0

= F
~k
N([ε]r+N

r+1 ) (18)

The case k1 = 1 is reduced back to the case k1 = 0 by taking the derivative. Using eqs. (16,18),

we get:

F
~k(1)

N+1([ε]
N+1
1 ) =

∂ω(~k)−1

∂εk2
3 . . . ∂εkN

N+1

[
∂FN+1

∂ε2

∣∣∣∣
ε2=0

]∣∣∣∣∣
~ε=0

=

∂ω(~k)−1

∂εk2
3 . . . ∂εkN

N+1

{
−

s∑
a=1

taZ2

∑

[Z]N+1
1

[
P ([Z]N+1

1

(2→a)
) log P (ZN+1|[Z]N1 )−

P (ZN+1|[Z]N1 )P ([Z]N1
(2→a)

)
]∣∣∣

ε2=0

}∣∣∣∣∣
[ε]N+1

1 =0

=

∂ω(~k)−1

∂εk2
2 . . . ∂εkN

N

{
−

s∑
a=1

taZ2

∑

[Z]N1

[
P ([Z]N1

(1→a)
) log P (ZN |[Z]N−1

1 )−

P (ZN |[Z]N−1
1 )P ([Z]N1

(1→a)
)
]∣∣∣

ε1=0

}∣∣∣∣∣
[ε]N1 =0

= F
~k
N([ε]N1 ) (19)

This proved the claim for r = 1. The claim for larger r’s follows by induction.

We are now ready to prove our main theorem, which follows directly from lemmas 2 and 3:

Proof (Thm. 1) Let ~k = [k]N1 with ω(~k) = k. Define its ’length’ as l(~k) = N+1−minki>1{i}.
It easily follows from lemma 2 that F

~k
N 6= 0 ⇒ l(~k) ≤ dk+3

2
e− 1. Thus, according to lemma 3,

we have:

F
~k
N = F

(k
N−d k+3

2 e+1
,..,kN )

d k+3
2
e (20)
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for all ~k’s in the sum. Summing over all F
~k
N with the same ’weight’ gives C

(k)
N = C

(k)

d k+3
2
e, ∀N >

dk+3
2
e. But from the analyticity of CN and H̄ near ε = 0 it can be shown by induction that

limN→∞ C
(k)
N = C(k), therefore C

(k)
N = C(k), ∀N ≥ dk+3

2
e.

3 Conclusion

The theorem proven above sheds light on the connection between finite and infinite chains, and

gives a practical and straightforward way to compute the entropy rate as a series expansion in ε

up to an arbitrary power. The surprising ’settling’ of the expansion coefficients C
(k)
N = C(k) for

N ≥ dk+3
2
e, holds for the entropy. For other functions involving only conditional probabilities

(e.g. relative entropy between two HMPs) a weaker result holds: the coefficients ’settle’ for

N ≥ k + 2. One can expand the entropy rate in several parameter regimes. As it turns

out, exactly the same ’settling’ as was proven in Thm. 1 happens in the ’almost memoryless’

regime, where the transition matrix M is close to a matrix which makes the Xi’s i.i.d, (i.e. a

matrix whose rows are identical). This and other regimes, as well as the analytic behavior of

the HMP ([9]), will be discussed elsewhere.
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