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The Entropy of a Binary Hidden Markov Process
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The entropy of a binary symmetric Hidden Markov Process is calculated as an
expansion in the noise parameter ε. We map the problem onto a one-dimen-
sional Ising model in a large field of random signs and calculate the expansion
coefficients up to second order in ε. Using a conjecture we extend the calcula-
tion to 11th order and discuss the convergence of the resulting series.
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1. INTRODUCTION

Hidden Markov Processes (HMPs) have many applications, in a wide range
of disciplines—from the theory of communication(1) to analysis of gene
expression.(2) Comprehensive reviews on both theory and applications of
HMPs can be found in refs.1 and 3. Recent applications to experimen-
tal physics are in refs. 4 and 5. The most widely used context of HMPs
is, however, that of construction of reliable and efficient communication
channels.

In a practical communication channel the aim is to reliably transmit
source message over a noisy channel. Figure 1 shows a schematic repre-
sentation of such a communication. The source message can be a stream
of words taken from a text. It is clear that such a stream of words con-
tains information, indicating that words and letters are not chosen ran-
domly. Rather, the probability that a particular word (or letter) appears
at a given point in the stream depends on the words (letters) that were
previously transmitted. Such dependency of a transmitted symbol on the
precedent stream is modeled by a Markov process.
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Fig. 1. Schematic drawing of message transmission through a noisy channel.

The Markov model is a finite state machine that changes state once
every time unit. The manner in which the state transitions occur is prob-
abilistic and is governed by a state-transition matrix, P , that generates
the new state of the system. The Markovian assumption indicates that the
state at any given time depends only on the state at the previous time step.
When dealing with text, a state usually represents either a letter, a word or
a finite sequence of words, and the state-transition matrix represents the
probability that a given state is followed by another state. Estimating the
state-transition matrix is in the realm of linguistics; it is done by measur-
ing the probability of occurrence of pairs of successive letters in a large
corpus.

One should bear in mind that the Markovian assumption is very
restrictive and very few physical systems can expect to satisfy it in a strict
manner. Clearly, a Markov process imitates some statistical properties of
a given language, but can generate a chain of letters that is grammatically
erroneous and lack logical meaning. Even though the Markovian descrip-
tion represents only some limited subset of the correlations that govern a
complex process, it is the simplest natural starting point for analysis. Thus
one assumes that the original message, represented by a sequence of N

binary bits, has been generated by some Markov process. In the simplest
scenario, of a binary symmetric Markov process, the underlying Markov
model is characterized by a single parameter—the flipping rate p, denoting
the probability that a 0 is followed by 1 (the same as a 1 followed by a 0).
The stream of N bits is transmitted through a noisy communication chan-
nel. The received string differs from the transmitted one due to the noise.
The simplest way to model the noise is known as the Binary Symmet-
ric Channel (BSC), where each bit of the original message is flipped with
probability ε. Since the observer sees only the received, noise-corrupted
version of the message, and neither the original message nor the value of
p that generated it are known to him, what he records is the outcome of
a Hidden Markov Process. Thus, HMPs are double embedded stochastic
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processes; the first is the Markov process that generated the original mes-
sage and the second, which does not influence the Markov process, is the
noise added to the Markov chain after it has been generated.

Efficient information transmission plays a central role in modern soci-
ety, and takes a variety of forms, from telephone and satellite communi-
cation to storing and retrieving information on disk drives. Two central
aspects of this technology are error correction and compression. For both
problem areas it is of central importance to estimate �R, the number of
(expected) received signals.

In the noise free case this equals the expected number of transmitted
signals �S ; when the Markov process has flipping rate p = 0, only two
strings (all 1 or all 0) will be generated and �S = 2, while when the flip
rate is p = 1/2 each string is equally likely and �S = 2N .

In general, �R is given, for large N , by 2NH , where H = H(p, ε) is
the entropy of the process. The importance of knowing �R for compres-
sion is evident: one can number the possible messages i =1,2, . . . ,�R, and
if �R < 2N , by transmitting only the index of the message (which can be
represented by log2 �R <N bits) we compress the information. Note that
we can get further compression using the fact that the �R messages do
not have equal probabilities.

Error correcting codes are commonly used in methods of information
transmission to compensate for noise corruption of the data during trans-
mission. These methods require the use of additional transmitted informa-
tion, i.e., redundancy, together with the data itself. That is, one transmits a
string of M >N bits; the percentage of additional transmitted bits required
to recover the source message determines the coding efficiency, or channel
capacity, a concept introduced and formulated by Shannon. The channel
capacity for the BSC and for a random i.i.d. source was explicitly derived
by Shannon in his seminal paper of 1948.(6) The calculation of channel
capacity for a Markovian source transmitted over a noisy channel is still
an open question.

Hence, calculating the entropy of a HMP is an important ingredient
of progress towards deriving improved estimates of both compression and
channel capacity, of both theoretical and practical importance for mod-
ern communication. In this paper we calculate the entropy of a HMP as
a power series in the noise parameter ε.

In Section 2 we map the problem onto that of a one-dimensional
nearest neighbor Ising model in a field of fixed magnitude and random
signs (see ref. 7 for a review on the Random Field Ising Model). Expan-
sion in ε corresponds to working near the infinite field limit.

Note that the object we are calculating is not the entropy of an
Ising chain in a quenched random field, as shown in Eq. (17) and in the
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discussion following it. In technical terms, here we set the replica index
to n = 1 after the calculation, whereas to obtain the (quenched average)
properties of an Ising chain one works in the n → 0 limit.

In Section 3 we present exact results for the expansion coefficients of
the entropy up to second order. While the zeroth and first order terms
were previously known,(8,9) the second order term was not.(10) In Section
4 we introduce bounds on the entropy that were derived by Cover and
Thomas;(11) we have strong evidence that these bounds actually provide
the exact expansion coefficients. Since we have not proved this statement,
it is presented as a conjecture; on it’s basis the expansion coefficients up
to 11th order are derived and listed. We conclude in Section 5 by studying
the radius of convergence of the low-noise expansion, and summarize our
results in Section 6.

2. A HIDDEN MARKOV PROCESS AND THE RANDOM-FIELD ISING

MODEL

2.1. Defining the Process and its Entropy

Consider the case of a binary signal generated by the source. Binary
valued symbols, si =±1 are generated and transmitted at fixed times i�t .
Denote a sequence of N transmitted symbols by

S = (s1, s2, . . . , sN ) (1)

The sequence is generated by a Markov process; here we assume that the
value of si+1 depends only on si (and not on the symbols generated at pre-
vious times). The process is parametrized by a transition matrix P , whose
elements are the transition probabilities

P+,− =Pr(si+1 =+1|si =−1) P−,+ =Pr(si+1 =−1|si =+1) (2)

Here we treat the case of a symmetric process, i.e., P+,− = P−,+ = p, so
that we have

si+1 =
{

si prob.=1−p

−si prob.=p
(3)

The first symbol s1 takes the values ±1 with equal probabilities, Pr(s1 =
+1) = Pr(s1 = −1) = 1/2. The probability of realizing a particular
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sequence S is given by

Pr(S)= 1
2

N∏
i=2

Pr(si |si−1) (4)

The generated sequence S is “sent” and passes through a noisy channel;
hence the received sequence,

R = (r1, r2, . . . , rN ) (5)

is not identical to the transmitted one. The noise can flip a transmitted
symbol with probability ε:

Pr(ri =−si |si)= ε (6)

Here we assumed that the noise is generated by an independent identically
distributed (i.i.d.) process; the probability of a flip at time i is indepen-
dent of what happened at other times j < i and of the value of i. We
also assume that the noise is symmetric, i.e., the flip probability does not
depend on si .

Once the underlying Markov process S has been generated, the prob-
ability of observing a particular sequence R is given by

Pr(R|S)=
N∏

i=1

Pr(ri |si) (7)

and the joint probability of any particular S and R to occur is given by

Pr(R, S)=Pr(R|S)P r(S) (8)

The original transmitted signal, S, is “hidden” and only the received (and
typically corrupted) signal R is “seen” by the observer. Hence it is mean-
ingful to ask—what is the probability to observe any particular received
signal R? The answer is

Q(R)=
∑
S

P r(R, S) (9)
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Furthermore, one is interested in the Shannon entropy H of the observed
process,3

HN =−
∑
R

Q(R) log Q(R) (10)

and in particular, in the entropy rate, defined as

H = lim
N→∞

HN

N
(11)

2.2. Casting the Problem in Ising Form

It is straightforward to cast the calculation of the entropy rate onto
the form of a one-dimensional Ising model. The conditional Markov prob-
abilities (3), that connect the symbols from one site to the next, can be
rewritten as

Pr(si+1|si)= eJsi+1si /(eJ + e−J ) with e2J = (1−p)/p (12)

and similarly, the flip probability generated by the noise, Eq. (6), is also
recapitulated by the Ising form

Pr(ri |si)= eKrisi /(eK + e−K) with e2K = (1− ε)/ε (13)

The joint probability of realizing a pair of transmitted and observed
sequences (S,R) takes the form(12,13)

P r(R, S)=A exp

(
J

N−1∑
i=1

si+1si +K

N∑
i=1

risi

)
(14)

where the constant A is the product of two factors, A = A0A1, given by

A0 = 1
2

(
eJ + e−J

)−(N−1)

A1 =
(
eK + e−K

)−N

(15)

The first sum in Eq. (14) is the Hamiltonian of a chain of Ising spins
with open boundary conditions and nearest neighbor interactions J ; the

3The Shannon entropy is defined using log2; we use natural log for simplicity.
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Fig. 2. An Ising model in a random field. The solid lines represent interactions of strength
J between neighboring spins Si,Si+1 while the dashed lines represent local fields Kri acting
on the spin Si.

interactions are ferromagnetic (J > 0) for p < 1/2. The second term cor-
responds, for small noise ε <1/2, to a strong ferromagnetic interaction K

between each spin si and another spin, ri , connected to si by a “dangling
bond” (see Fig. 2).

Denote the summation over the hidden variables by Z(R):

Z(R)=
∑
S

exp

(
J

N−1∑
i=1

si+1si +K

N∑
i=1

risi

)
(16)

so that the probability Q(R) becomes (see Eq. (9)) Q(R)=A Z(R). Substi-
tuting in Eq. (10), the entropy of the process can be written as

HN =−
∑
R

A Z(R) log[AZ(R)]=−
[

d

dn

∑
R

[A Z(R)]n
]

n=1

(17)

The interpretation of this expression is obvious: an Ising chain is
submitted to local fields hi = Kri , with the sign of the field at each site
being ± with equal probabilities, and we have to average Z(h1, . . . , hN)n

over the field configurations. This is precisely the problem one faces in
order to calculate properties of a well-studied model, of a nearest neighbor
Ising chain in a quenched random field of uniform strength and random
signs at the different sites (there one is interested, however, in the limit
n→0). This problem has not been solved analytically, albeit a few exactly
solvable simplified versions of the model do exist,(14−17) as well as expan-
sions (albeit in the weak field limit).(18)
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One should note that here we calculate the entropy associated with
the observed variables R . In the Ising language this corresponds to an
entropy associated with the randomly assigned signs of the local fields,
and not to the entropy of the spins S. Because of this distinction the
entropy HN has no obvious physical interpretation or relevance, which
explains why the problem has not been addressed yet by the physics com-
munity. The two entropies are, however, related, and our results can be
used to calculate the entropy of the spins.

We are interested in calculating the entropy rate in the limit of small
noise, i.e., ε �1. In the Ising representation this limit corresponds to K �
1 and hence an expansion in ε corresponds to expanding near the infinite
field limit of the Ising chain.

3. EXPANSION TO ORDER ε2: EXACT RESULTS

We are interested in calculating the entropy rate

H =− lim
N→∞

[
1
N

∑
R

A Z(R) log A Z(R)

]
(18)

to a given order in ε. A few technical points are in order. First, we will
actually use

e−2K = ε/(1− ε) (19)

as our small parameter and expand to order ε2 afterwards. Second, we
will calculate HN and take the large N limit. Therefore we can replace
the open boundary conditions with periodic ones (setting sN+1 = s1)—the
difference is a surface effect of order 1/N . The constant A0 becomes

A0 =
(
eJ + e−J

)−N

(20)

and the interaction term J s1sN is added to the first sum in Eq. (14), which
contains now N pairs of neighbors.

Expanding Z(R). Consider Z(R) from Eq. (16). For any fixed R =
(r1, r2, . . . rN ) the leading order is obtained by the S configuration with
si = ri for all i. For this configuration each site contributes K to the “field
term” in Eq. (16). The contribution of this configuration to the summa-
tion over S in Eq. (16) is

Z(R)(0) = eNK exp

(
J

N∑
i=1

ri+1ri

)
(21)
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The next term we add consists of the contributions of those S configu-
rations which have si = ri at all but one position. The field term of such
a configuration is K from N − 1 sites and −K from the single site with
sj =−rj . There are N such configurations, and the total contribution of
these terms to the sum (16) is

Z(R)(1) = eNKe−2K exp

(
J

N∑
i=1

ri+1ri

)
N∑

j=1

exp[−2J rj (rj−1 + rj+1)] (22)

The next term is of the highest order studied in this paper; it involves
configurations S with all but two spins in the state si = ri ; the other two
take the values sj = −rj , sk = −rk, i.e., are flipped with respect to the cor-
responding local fields. These S configurations belong to one of two clas-
ses. In class a the two flipped spins are located on nearest neighbor sites,
e.g., k = j + 1; there are N such configurations. To the second class, b,
belong those configurations in which the two flipped spins are not neigh-
bors—there are N(N −3)/2 such terms in the sum (16), and the respective
contributions are4

Z(R)(2a) = eNKe−4K exp

(
J

N∑
i=1

ri+1ri

)

×
N∑

j=1

exp[−2J (rj rj−1 + rj+1rj+2)] (23)

Z(R)(2b) = eNKe−4K exp

(
J

N∑
i=1

ri+1ri

)

×1
2

N∑
j=1

∑
k �=j,j±1

exp[−2J rj (rj−1 + rj+1)−2J rk(rk−1 + rk+1)]

(24)

Calculation of H is now straightforward, albeit tedious: substitute AZ into
Eq. (18), expand everything in powers of ε, to second order, and for each
term perform the summation over all the ri variables. These summations

4We use the obvious identifications imposed by periodic boundary conditions, e.g., rN+1 =
r1, rN+2 = r2.
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involve two kinds of terms. The first is of the “partition-sum-like” form

∑
R

eH(R) where H(R)=
∑
j

�jJ rj rj+1 with �j =±1 (25)

For the case studied here we encounter either all bonds �jJ > 0, or two
have a flipped sign (corresponding to Eqs. (22) and (23)), or four have
flipped signs (corresponding to Eq. (24)). These “partition-sum-like” terms
are independent of the signs of the �j ; in fact we have for all of them

A0

∑
R

eH(R) =1 (26)

The second type of term that contributes to H is of the “energy-like”
form:

∑
R

eH(R)rkrk+1 (27)

The absolute value of these terms is again independent of the �j , but one
has to keep track of their signs. Finally, one has to remember that the con-
stant A1 also has to be expanded in ε. The calculation finally yields the
following result (here we switch from J to the “natural” variable p using
Eq. (12)):

H(p, ε)=
∞∑

k=0

H(k)(p)εk (28)

with the coefficients Hk given by:

H(0) =−p log p − (1−p) log(1−p) H(1) =2(1−2p) log
[

1−p

p

]

(29)

H(2) =−2(1−2p) log
[

1−p

p

]
− (1−2p)2

2p2(1−p)2
(30)

The zeroth and first order terms (29) were known,(8,9) while the second
order term is new.(10)
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4. UPPER BOUNDS DERIVED USING A SYSTEM OF FINITE

LENGTH

When investigating the limit H , it is useful to study the quantity CN =
HN − HN−1, which is also known as the conditional entropy. CN can be
interpreted as the average amount of uncertainty we have on rN , assum-
ing that we know (r1, . . . , rN−1). Provided that H exist, it easily follows
that

H = lim
N→∞

CN (31)

Moreover, according to ref. 11, CN �H , and the convergence is monotone:

CN ↘H (N →∞) (32)

We can express CN as a function of p and ε by using Eq. (17). For this,
we represent Z using the original variables p, ε (note that from this point
of we work with open boundary conditions on the Ising chain of N spins):

Z(R) =
∑
S

(1−p)
∑N−1

i=1 1Si ,Si+1 p
N−1−∑N−1

i=1 1Si ,Si+1

×(1− ε)
∑N

i=1 1Si ,Ri εN−∑n
i=1 1Si ,Ri (33)

where we denote 1s,s′ = (1 + ss′)/2. Equation (33) gives Z(R) explicitly as
a polynomial in p and ε with maximal degree N , and can be represented
as :

Z(R)=
N∑

i=0

Zi(R)εi (34)

Here Zi =Zi(R) are functions of p only.
Substituting this expansion in Eq. (17), and expanding log Z(R)

according to the Taylor series log(a +x)= log(a)−∑∞
n=1

(−x)n

nan , we get

HN =−
∑
R

[
N∑

i=0

Zi(R)εi

][
log Z0(R)−

k∑
j=1

(−∑n
i=1 Zi(R)εi)j

jZ0(R)j


+O(εk+1)

(35)
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When extended to terms of order εk, this equation gives us precisely the
expansion of the upper-bound CN up to the k-th order,

CN =
k∑

i=0

C
(i)
N εi +O(εk+1) (36)

For example, stopping at order k =2 gives

HN = −
∑
R

{
Z0(R) log Z0(R)+ [Z1(R)(1+ log Z0(R))] ε

+
[

Z1(R)2

2Z0(R)
+Z2(R)(1+ log Z0(R))

]
ε2

}
+O(ε3) (37)

The zeroth and first order terms can be evaluated analytically for any N ;
beyond first order, we can compute the expansion of HN symbolically5

(using Maple(19)), for any finite N . This was actually done, for N �8 and
k � 11. For the first order we have proved(10) that C

(1)
N is independent of

N (and equals H(1)). The symbolic computation of higher order terms
yielded similar independence of N , provided that N is large enough. So,
C

(k)
N =C(k) for large enough N . For example, C

(2)
N is independent of N for

3 �N � 8 and equals the exact value of H(2) as given by Eq. (30). Simi-
larly, C

(4)
N settles, for N �4, at some value denoted by C(4), and so on. For

the values we have checked, the settling point for C
(k)
N turned out to be at

N = � k+3
2 	. This behavior is, however, unproved for k � 2, and, therefore,

we refer to it as a
Conjecture. For any order k, there is a critical chain length Nc(k) =

� k+3
2 	 such that for N >Nc(k) we have C

(k)
N =C(k).

It is known that CN → H , and CN and H are analytic functions of
ε at ε =06, so that we can expand both sides around ε =0, and conclude
that C

(k)
N →H(k) for any k � 1 when N →∞. Therefore, if our conjecture

is true, and C
(k)
N indeed settles at some value C(k) independent of N (for

N > Nc(k)), it immediately follows that this value equals H(k). Note that
the settling is rigourously supported for k=0,1, while for k=2 we showed
that indeed C(2) =H(2), supporting our conjecture.

The first orders up to H(11), obtained by identifying H(k) with C(k),
are given in the Appendix, as functions of λ=1−2p, for better readabil-
ity. The values of H(0),H (1) and H(2) coincide with the results that were

5The computation we have done is exponential in N , but the complexity can be improved.
6See next Section on the Radius of Convergence.
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derived rigorously from the low-temperature/high-field expansion, thus giv-
ing us support for postulating the above Conjecture.

Interestingly, the nominators have a simpler expression when consid-
ered as a functions of λ, which is the second eigenvalue of the Markov
transition matrix P . Note that only even powers of λ appear. Another
interesting observation is that the free element in [p(1 − p)]2(k−1)H (k)

(when treated as a polynomial in p), is (−1)k

k(k−1)
, which might suggest some

role for the function log(1+ ε

[2p(1−p)]2
) in the first derivative of H . All of

the above observations led us to conjecture the following form for H(k)

(for k �3):

H(k) =
24(k−1)

∑dk

j=0 aj,kλ
2j

k(k −1)(1−λ2)2(k−1)
(38)

where aj,k and dk are integers that can be seen in the Appendix for H(k)

up to k =11.

5. THE RADIUS OF CONVERGENCE

If one wants to use our expansion around ε =0 for actually estimating
H at some value ε, it is important to ascertain that ε lies within the radius
of convergence of the expansion. The fundamental observation made here
is that for p = 0, the function H(ε) is not an analytic function at ε = 0,
since its first derivative diverges. As we increase p, the singularity point
“moves” to negative values of ε, and hence the function is analytic at
ε =0, but the radius of convergence is determined by the distance of ε =0
from this singularity. Denote by ρ(p) the radius of convergence of H(ε)

for a given p; we expect that ρ(p) grows when we increase p, while for
p →0, ρ(p)→0.

It is useful to first look at a simpler model, in which there is no inter-
action between the spins. Instead, each spin is in an external field which
has a uniform constant component J , and a site-dependent component
of absolute value K and a random sign. For this simple i.i.d. model the
entropy rate takes the form

H =hb[p(1− ε)+ ε(1−p)] (39)

where hb[x] =−[x log x + (1 −x) log(1 −x)] is the binary entropy function.
Note that for ε = 0 the entropy of this model equals that of the Ising
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chain. Expanding Eq. (39) in ε (for p >0) gives:

H = −(p log p + (1−p) log(1−p))+ (1−2p) log
(

1−p

p

)
ε

+
∞∑

k=2

1
k(k −1)

[
(2p −1)k

pk
+ (1−2p)k

(1−p)k−1

]
εk (40)

The radius of convergence here is easily shown to be p/(1 − 2p); it goes
to 0 for p →0 and increases monotonically with p.

Returning to the HMP, the orders H(k) are (in absolute value) usu-
ally larger than those of the simpler i.i.d. model, and hence the radius
of convergence may be expected to be smaller. Since we could not derive
ρ(p) analytically, we estimated it using extrapolation based on the first
11 orders. We use the fact that ρ(p) = limk→∞ H(k)

H(k+1) (provided the limit
exists). The data was fitted to a rational function of the following form
(which holds for the i.i.d. model):

H(k)

H (k+1)
∼ ak +b

k + c
, (41)

For a given fit, the radius of convergence was simply estimated by a.
The resulting prediction is given in Fig. 3 for both the i.i.d. model (for
which it is compared to the known exact ρ(p)) and for the HMP. While
quantitatively the predicted radius of the HMP is much smaller than that
of the i.i.d. model, it has the same qualitative behavior, of starting at zero
for p =0, and increasing with p.

We compared the analytic expansion to estimates of the entropy rate
based on the lower and upper bounds, for two values of ε (see Fig. 4).
First we took ε =0.01, which is realistic in typical communication applica-
tions. For p less than about 0.1 this value of ε exceeds the radius of con-
vergence and the series expansion diverges, whereas for larger p the series
converges and gives a very good approximation to H(p, ε = 0.01). The
second value used was ε = 0.2; here the divergence happens for p � 0.37,
so the expansion yields a good approximation for a much smaller range.
We note that, as expected, the approximation is much closer to the upper
bound than to the lower bound, given in ref. 11.

6. SUMMARY

Transmission of a binary message through a noisy channel is mod-
eled by a Hidden Markov Process. We mapped the binary symmetric HMP
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(estimated) for 0.05�p �0.35.
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Fig. 4. Approximation using the first 11 orders in the expansion, for ε =0.01 (left) and ε =
0.2 (right), for various values of p. For comparison, upper and lower bounds (using N = 2
from ref. 11) are displayed. For each ε there is some critical p below which the series diverges
and the approximation is poor. For larger p the approximation becomes better.
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onto an Ising chain in a random external field in thermal equilibrium.
Using a low-temperature/high-random-field expansion we calculated the
entropy of the HMP to second order k = 2 in the noise parameter ε. We
have shown for k �11 that when the known upper bound on the entropy
rate is expanded in ε, using finite chains of length N , the expansion coeffi-
cients settle, for Nc(k)�N � 8, to values that are independent of N . Pos-
ing a conjecture, that this continues to hold for any N , we identified the
expansion coefficients of the entropy up to order 11. The radius of conver-
gence of the resulting series was studied and the expansion was compared
to the known upper and lower bounds.

By using methods of Statistical Physics we were able to address a
problem of considerable current interest in the problem area of noisy
communication channels and data compression.

APPENDIX

Orders 3–11, as function of λ=1−2p. (Orders 0−2 are given in Eqs. (29)–
(30)):

H(3) = −16(5λ4 −10λ2 −3)λ2

3(1−λ2)4

H(4) = 8(109λ8 +20λ6 −114λ4 −140λ2 −3)λ2

3(1−λ2)6

H(5) = −128(95λ10 +336λ8 +762λ6 −708λ4 −769λ2 −100)λ4

15(1−λ2)8

H(6) = 128(125λ14 −321λ12 +9525λ10 +16511λ8 −7825λ6

−17995λ4 −4001λ2 −115)λ4/15(1−λ2)10

H(7) = −256(280λ18 −45941λ16 −110888λ14 +666580λ12 +1628568λ10

−270014λ8−1470296λ6−524588λ4 −37296λ2 −245)λ4/105(1−λ2)12

H(8) = 64(56λ22 −169169λ20 −2072958λ18 −5222301λ16 +12116328λ14

+35666574λ12 +3658284λ10 −29072946λ8 −14556080λ6

−1872317λ4 −48286λ2 −49)λ4/21(1−λ2)14
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H(9)=2048(37527λ22+968829λ20+8819501λ18+20135431λ16−23482698λ14

−97554574λ12−30319318λ10+67137630λ8+46641379λ6+8950625λ4

+495993λ2 +4683)λ6/63(1−λ2)16

H(10) = −2048(38757λ26 +1394199λ24 +31894966λ22 +243826482λ20

+571835031λ18 −326987427λ16 −2068579420λ14 −1054659252λ12

+1173787011λ10 +1120170657λ8 +296483526λ6 +26886370λ4

+684129λ2 +2187)λ6/45(1−λ2)18

H(11) = 8192(98142λ30 −1899975λ28 +92425520λ26 +3095961215λ24

+25070557898λ22 +59810870313λ20 −11635283900λ18

−173686662185λ16 −120533821070λ14 +74948247123λ12

+102982107048λ10 +35567469125λ8+4673872550λ6 +217466315λ4

+2569380λ2 +2277)λ6/495(1−λ2)20
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