
Chapter X

MASKED INVERSION IN GF(2N) USING MIXED FIELD

REPRESENTATIONS AND ITS EFFICIENT

IMPLEMENTATION FOR AES

SHAY GUERON
1,2

, ORI PARZANCHEVSKY
1
 and OR ZUK

1,3

1
 Discretix Technologies, Netanya, ISRAEL

2
 Department of Mathematics, University of Haifa, Haifa, 31905, ISRAEL

3
Faculty of Physics, Weizmann Institute of Science, Rehovot, ISRAEL

shay@math.haifa.ac.il, ori.parzan@discretix.com, or.zuk@weizmann.ac.il

This paper describes an efficient method for protecting implementations of inversions

in GF(2
n
) against DPA attacks. The general method combines two techniques, both of

which were proposed in the context of AES S-Box design: a) the simplified

multiplicative mask, and b) the use of mixed field representations for the AES S-box.

Here, we modify the masking procedure and make it suitable for situations where the

inversion is performed in a preferred field representation that differs from the

representation in which the input/output are given. For n=8 in particular, we provide the

details of the mask updates that are required for the complete AES round. Our results

indicate that significantly increased efficiency is gained when this method is used to

construct a hardware implementation of AES, protected against DPA attacks.

X.1. INTRODUCTION

Multiplicative masking for protecting implementations of the AES S-Box against

Differential Power Analysis (DPA) attacks was originally proposed in [1], and was later

simplified in [9]. Interestingly, this method has a broader range of applications. For example,

it can also be applied to other ciphers whose S-Box design is based on inversion in finite

fields (e.g. Camellia [2] and Zodiac [5]).

Masking a data chunk, x, is achieved by using x+r in the AES round, where r (the mask)

is a random bit stream whose length equals to the length of x, and + denotes addition in

GF(2
8
) (i.e., bytewise XOR). This way, the true input (x) is never used in clear. Consequently,

an attacker cannot collect statistics based on the input/output to the S-Box, which is required

Shay Gueron, Ori Parzanchevsky, Or Zuk

in order to mount a DPA attack. Neither can he control the actual data that is being processed

by the circuit, even when he is able to feed it with some chosen inputs.

To eventually obtain the correct cipher output, one must be able to remove the

cumulative effects of the mask on the components of the AES round. The effect on the Key-

xor, the affine transformation (of the S-Box), the Shift Row and the Mix Column phases can

be easily accounted for, because these parts of the AES round are affine/linear functions over

GF(2
8
). However, it is less straightforward to account for the effect on the nonlinear step,

namely on the GF(28) inversion, which is part of the S-Box operation.

The multiplicative masking method is designed to solve the above problem. Reference

[1] proposes a method that involves two random variables, jiji yx ,, , , where jix , is an additive

mask and jiy , is a nonzero multiplicative mask. A simplification of this method, requiring a

smaller number of operations and therefore a smaller area hardware circuit, was proposed in

[9]. We point out that the simplified masking is the special case of [1], using the substitution

jiji xy ,, = (it requires, additionally, that the additive mask is nonzero). The simplified

multiplicative masking method tackles the problem by: applying a random mask r, processing

xr (instead of rx +) during the inversion (hence the name), and then transforming () 1−
xr to

rx +−1
, in order to continue the affine/linear operations of the AES round with the original

(additive) mask, r. The sequence of operations for the simplified mask [9]

is rxxrxrxrrxrrx
rinverserr

+→+→ →→+→+ −
×

−
+

−

+×
11

1

12 1)()()(2 ,

where the operations (multiplication, addition and inversion) are over GF(28) with the

reduction polynomial 1348 ++++ XXXX , as AES defines [7]. Note that for this method to be

successful, the random byte r must be nonzero.

Implementing this technique involves two multiplications, one square and two additions

in GF(2
8
). Assuming that no time delays are allowed, a hardware implementation must

include additional circuitry: one circuit for squaring in GF(2
8
), and two copies of a

multiplication circuit. The associated hardware overhead is significant. While computing

squares in GF(28) is cheap, the multiplication circuits are very costly (see Appendix A for

details). This fact makes the proposed masking technique less attractive for low resources

environments such as smartcards.

Our goal here is to derive a more efficient and more secure method for implementing

such masking. The underlying idea is to replace the costly multiplications in GF(2
8
) by

several cheaper computations in another field (e.g., GF(24)). This approach was proposed, for

example in [8] (restated in [4]), for reducing the cost of the GF(2
8
) inversion (256 bytes

lookup table), which is part of the AES S-Box. No actual implementation is described in [8]

and [4], and the details of the appropriate conversions between GF(2
8
) and GF(2

4
) are not

mentioned. An attempt to apply the masking technique with mixed field representations

encounters two problems: a) how to handle the effect of the conversions between the two

field representations, and b) how to handle (efficiently) the additional cipher transformations

besides inversion. We show here how to resolve these difficulties, and provide the necessary

details for applying this technique to AES implementation. We also overcome the security

weakness pointed out in [3]. Our study indicates that this approach indeed produces a smaller

area S-Box.

Masking Inversion in GF(2
N
) Using Mixed Field Representations

X.2. MASKING INVERSION IN GF(2
N
) WITH MIXED FIELD

REPRESENTATIONS

Consider the binary field GF(2
n
), given in some polynomial representation (denoted

Rep1) with the irreducible polynomial 0p (i.e., the elements are considered as coefficients of

polynomials over some prime field, where multiplication is done modulo 0p). Suppose that

Rep2 is a different representation of this field. Clearly, there exists at least one isomorphism

between Rep1 and Rep2. Since each representation of a finite field is a linear space of

dimension n over GF(2), and each isomorphism is a linear transformation, there exists an

nn × binary matrix M that converts elements in Rep1 to their representation in Rep2. The

matrix M
-1

 converts from Rep2 to Rep1. In fact, there are n such conversion matrices M for

the following reason: each of the n roots of p0 is a generator of the field, and the set of roots is

invariant under field isomorphism. Therefore (since the multiplicative group of the field is

cyclic), any isomorphism is uniquely determined by setting one pair of corresponding roots.

We point out that this observation suggests a practical method for generating all of the

isomorphism matrices. From the point of view of hardware implementation, the conversion

between representations is cheap (multiplication by a fixed binary matrix). Therefore,

improved efficiency can be expected if the operations in Rep2 are cheaper to implement than

their analogs in Rep1.

X.2.1. Inversion

Inversion in GF(2
n
), using mixed field representations (say Rep1 and Rep2), is done in

the following way: a certain isomorphism is chosen. The input, x, given in Rep1, is

transformed to Rep2, and is then inverted. Then, the inverse isomorphism is applied, to obtain

the desired inverse in Rep1. If M denotes the nn × conversion matrix from Rep1 to Rep2, and

T denotes the field inversion operator in Rep2, then for x in Rep1, Mx is its image in Rep2,

and the inverse of x is obtained by M
-1

T(Mx).

X.2.2. Masked Inversion: computing x
-1

+r in GF(2
n
) without exposing x

The true input, x, is masked with a random field element 0≠r and x+r becomes the

actual input to the inversion circuit. Conversion to the new representation yields x+r →

M(x+r) = Mx + Mr. The sequence of operations Mx + Mr →+r
 Mx + Mr + r →+Mr

Mx + r can recover Mx + r, but we choose not to do so. Since M is a regular matrix, and the

random mask r is nonzero, Mr is also a valid random mask (i.e., it can also take any nonzero

value in with equal probability). Therefore, we may securely process Mx+Mr through the

inversion circuit, and "update" the mask from r to Mr. After the inversion is carried out, the

result is converted back to the original representation, by multiplying it by M
-1

, and the final

output is rx +−1
(i.e., the original mask is now recovered).

Shay Gueron, Ori Parzanchevsky, Or Zuk

Figure X.1 illustrates the mixed representation masked inversion circuit. The cost of this

masked inversion is two n-length vector additions in GF(2) (XOR), three multiplications of a

vector by an nn× bit binary matrix, and two (presumably cheaper) multiplications plus one

square in the new chosen representation.

Using appropriate

representation-

dependant operations

GF Addition

ΜΜΜΜ

Data In (x+r)

(n bits)

Random Mask (r)
(n bits)

ΜΜΜΜ

1

GF Inversion

ΜΜΜΜ−1−1−1−1

Data Out

GF Multiplication

GF Squaring

Masked Message

Inversion in the

alternative representation

Conversion to the

alternative representation

Conversion back to the

original representation

1 : 00...0001 (n digits)

Figure X.1: A masked inversion circuit, using mixed field representations. The input (x+r) and the

output (x
-1

+r) are given in one field representation, whereas the inversion is computed in an

alternative field representation. The details of the inversion, multiplication and squaring depend on

the particular choice of the alternative representation.

Masking Inversion in GF(2
N
) Using Mixed Field Representations

X.3. MASKING THE AES ROUND

This section describes the details of an efficient implementation of a masked AES round,

using mixed field representations of GF(2
8
). It is therefore assumed hereafter that n=8. The

resulting circuit is illustrated in Figure X.2. It is displayed after the following explanations.

X.3.1. Masking the AES S-Box

Here, unlike the simpler case for plain inversion, our output is not rx +−1
, and as we

describe below, careful mask updating is required. The AES S-Box computes the

transformation x a Ax
-1

+b

for encryption (and key schedule), and x a (A

-1
x + A

-1
b)

-1
for

decryption (A
8

2

88

2 , ZbZ ∈∈ ×
are given by the standard [7]. The operations are in GF(2

8
)).

For efficiency, we merge the affine transformations with the transformations that account for

representation conversion. The resulting modified S-Box operation is x a AM
-1

T(Mx)+b for

encryption, and x a M
-1

T(MA
-1

x+MA
-1

b) for decryption, where T denotes the inverse

operator in the new representation, and M
88

2

×∈ Z is the conversion matrix.

At the first round, a randomly generated byte 0≠r is added to the data, x, and the S-

Box input, rx + , is passed through a linear (for encryption) or an affine (for decryption)

transformation. For brevity, we denote both transformations by x a Ux+v (U
88

2

×∈ Z ,

8

2Zv∈). Applying it to the masked data yields U(x+r)+v=Ux+Ur+v. Since U is a regular

matrix, and 0≠r , it follows that Ur is also a valid mask, so we may securely process

Ux+Ur+v through the inversion circuit, and update the mask to Ur.

After the inversion in the new representation (the T operation), the inverted value is again

passed through an affine (for encryption) or linear (for decryption) transformation. We denote

both transformations by x a U’x+v’ (U'
88

2

×∈ Z ,
8

2' Zv∈). In parallel, the updated mask

(now Ur) is updated again, to U’Ur. Consequently, the twice updated mask equals Ar for

encryption and A
-1

r for decryption, and it must be part of the output of the circuit, in order to

be used in the subsequent rounds.

Shay Gueron, Ori Parzanchevsky, Or Zuk

encrypt: x�AM-1x+b

decrypt: x�M-1x

Representation

dependant

operations

Xor

Affine #1

Data In (x+r')
(column - 32 bit)

Random Mask (r)
(column - 32 bit)

Linear #1

1

Inverse
GF(256)

Affine #2

Linear #2

Data Out
(Sent to Shift Rows)

Mul GF(256)

(Inv)Mix ColumnKey In
(32 bit)

(decrypt)

(encrypt)

Mask Out (r')

encrypt: x�Mx

decrypt: x�MA-1x+MA-1b

(final round)

Inversion with Multiplicative

Masking, performed in the

alternative representation

Previous mask out (r')
(0 on first round)

(32 bit)

Affine transformation part

of the S-Box merged with

the conversion to the

alternative representation

Affine transformation part

of the S-Box merged with

the conversion to the

original representation

encrypt: x�Mx

decrypt: x�MA-1x

encrypt: x�AM-1x

decrypt: x�M-1x

1 00...0001 (n digits)

Sqr GF(256)

(first round, or if mask
updating is applied)

(Optional)

(either new or
previous r')

Zero
Detector

And

Figure X.2: Circuit design for an AES round (for one column), where the random masking,

and the mixed field representation techniques are applied.

Masking Inversion in GF(2
N
) Using Mixed Field Representations

X.3.2. New mask for every round

Extra security may be achieved by using a different mask for every round. This option is

illustrated in Figure X.2, where a new mask is generated, and the previous one is cleaned out

(in a proper order, so as not to expose a protected intermediate result). This optional feature

requires a sufficiently fast supply of random bits, and additional storage of 8 bits for the

mask.

X3.3. Feeding to the Mix Column and Shift Rows transformations without

mask updates

After the S-Box, the (masked) data is either sent to the Mix/InvMix Column module, or

added (in GF(2
8
)) to the round key (the order depends on the encryption/decryption mode).

The composition of these operations is an affine transformation whose linear part is the

Mix/InvMix Column (regular) matrix denoted W
448)2(×∈GF .

The following problem now occurs. Unlike the S-Box that operates on each byte

separately, the Mix/InvMix Column transformations operate on a column (4 bytes). If the

mask of the entire column is 0)2(ˆ 48 ≠∈GFr , then we also have W 0)2(ˆ 48 ≠∈GFr .

However, the problem is that some of the bytes of the column W r̂ may be zero, and this

would destroy the multiplicative masking process of the next round. To overcome this

obstacle, we suggest using the same mask for each of the four bytes of the column. If we start

with such a mask, this property is also preserved throughout the mask updates. Furthermore,

inspection of the Mix Column matrix reveals the following property:

=

×

r

r

r

r

r

r

r

r

02010103

03020101

01030201

01010302

(with a similar property for the InvMix Column matrix). This implies that no mask update is

required at all, for the Mix/InvMix Column phase.

To avoid mask updating after the Shift Row phase as well, we must use the same mask

for all the bytes of the entire block.

Since we keep track of the updated mask throughout the rounds, as part of the circuit

output, it is easy to remove the mask after the final round by simply adding it to the output.

X.3.4. Handling a zero data byte without compromising the security

The simplified multiplicative masking in [9] is much cheaper to implement than the

original method proposed in [1], because it involves fewer operations. However, in [3] it was

argued that the simplified version is less secure than the original one because it does not

really mask a zero data byte. Indeed, a zero input to the S-Box is masked by multiplying by r,

Shay Gueron, Ori Parzanchevsky, Or Zuk

and thus remains zero. Note that the input to the S-Box in the first round is the plaintext,

xored with a corresponding part of the key. Thus, an attacker can set this input to be zero by

choosing the same plaintext byte as the key that is being guessed, and this may facilitate a

DPA attack.

We propose a simple remedy, via a zero detector (ZD for short) module, as shown in

Figure X.2. ZD operates before the inversion, and its input is the "questionable" byte xr. Its

output ZD(xr) is 1 if xr=0 and 0 otherwise (a zero byte is detected by taking the logical NOT

of its bits, and then their logical AND). This output is expanded to eight identical bits, denoted

ZD8(xr), and then Q(xr)=ZD8(xr) AND r is computed. Now, Q(xr) becomes the input to the

inversion circuit. Clearly, for a nonzero xr, Q(xr)=xr, so the result of the masked inversion is

not affected in this case. On the other hand, if xr=0 we have 0)(≠= rxrQ , so the inversion

circuit operates on some nonzero input, and the fact that xr=0 is therefore not exposed. In this

case, the inversion's output is r
-1

, and the rest of the process produces

rrr
r

+→+→ ×
−

+
− 111

1

1
instead of r (= 0

-1
+r), as required (note that 0

-1
 is defined to

be 0, as in [7]). This is corrected by adding the latter output to the output of ZD8, which

appropriately equals 0 or 1 (see Figure X.3).

For a discussion on a procedure generating nonzero random bytes, see Appendix C.

Masking Inversion in GF(2
N
) Using Mixed Field Representations

Inp ut1 Inpu t2

(lsb)(m sb) (lsb)(m sb)

G F[16]

M u l

G F[16]
M ul

G F[16]
M u lG F[16]

M ulβ

(m sb) (lsb)

O utpu t

A.

In p u t

(ls b)(m s b)

G F [1 6]

S q r

G F [1 6]

ββββ * S q r

G F [1 6]

S q r

(m s b) (ls b)

O u t p u t

B .

G F [1 6]

S q r

G F [1 6]

ββββ * S q r

G F [1 6]

M u l

X O R

G F [1 6]
I n v

X O R

G F [1 6]

M u l

G F [1 6]

M u l

(m s b) (ls b)

(ls b)(m s b)

I n p u t

O u t p u t

C .

Figure X.3: Three circuits for implementing operations GF(2
8
), when the field is represented

as the extension of GF(2
4
). A. Multiplication (requires three multiplications, three additions, and

one multiplication of two elements by β, all in GF(2
4
)) B. Squaring (requires one addition, two

squares, and one β square). C. Inversion (requires three multiplications, one square, one β square,

and one (table) inverse).

X.4. EXAMPLE AND RESULTS

The example discussed in this section uses the representation of GF(2
8
) as the extension

of GF(2
4
), i.e., β++ XXxGF 24])[2(for some polynomial representation of GF(2

4
), in

which β++ XX 2 is irreducible. Each 8-bit element of GF(2
8
) is a pair of 4-bit nibbles

],[ba , ()42, GFba ∈ , and is viewed as the linear polynomial baX + . With this

Shay Gueron, Ori Parzanchevsky, Or Zuk

representation, each of the operations multiplication, squaring, inversion in GF(2

8
), is

replaced by a sequence of several operations in GF(2
4
). For ()42,,, GFdcba ∈ we have:

()() ()() ()bdacXbcdcadcXbaX ++++=++ β , () () ()2222
baXabaX ++=+ β ,

() () () 1221221
)(

−−− ++++++=+ abbabaXabbaabaX ββ , where in these

expressions, multiplications, inversions and additions, are operations in GF(2
4
). The three

corresponding circuit designs are shown in Figure X.3.

There are three polynomial representations of GF(2
4
). For each representations of GF(2

4
),

there are eight values of β for which β++ XX 2 is irreducible. For each β , there are eight

conversion matrices. Altogether, there are 192 such field representations of GF(2
8
), and their

details are provided in Appendix B.

All of the 192 field representations were tested, in order to find an optimal one (in terms

of area). These circuits were synthesized using DC Shell 2001.08-SP1 (DC Expert) from

Synopsys. The target library was TSMC0.18micron (Artisan SAGE-X). We tested S-Box

designs that include both encryption and decryption modes (except for the S-boxes used

during the key-schedule, where only encryption mode is needed). The results were compared

with the standard design (lookup table, and a multiplicative mask in GF(2
8
)). The synthesis

was performed for different time propagation delays constraints, which enable running

frequencies between 66.7 to 111 MHZ. These synthesis results indicate that a significant

reduction in area is achieved by the proposed design: more than 45% compared with the

straightforward approach. Furthermore, our inspection reveals that some choices among the

192 variations result in significantly smaller area. The representation where GF(2
4
) is defined

by the reduction polynomial X
4
 + X

3
 + X

2
 + X + 1, with the choice choose β=8 was found to

be one of the most favorable option. The conversion that corresponds to this optimal choice

matrix M is [01 0c 50 ed 42 35 67 92] (here, each of the eight hexadecimal numbers

represents, in binary form, a column of M).

The bit level expression for squaring in this specific representation of GF(24) is

[a3,a2,a1,a0]
2
 = [a2, a1+a2, a2+a3, a0+a2], and the bit level expression for multiplication is

[a3,a2,a1,a0]*[b3,b2,b1,b0]=[a2b1+a3b0+a3b1+a1b2+a1b3+a2b2+a0b3,a3b1+a2b2+a1b1+a2b0+a0b2+a1

b3, a0b1+a1b3+a1b0+a3b1+a3b3+a2b2, a3b2+a1b3+a0b0+a2b3+a2b2+a3b1].

Table X.1 summarizes the cost of the resulting circuit.

Operation Number of copies

Multiplications 8x8 Matrix with a vector 4 (2 for decryption and 2 for encryption)

Byte multiplexer (selecting encrypt/decrypt) 2

Byte addition over GF(2) (xor) 12

Inverse circuit in GF(2
4
) 1

Multiplication circuits in GF(2
4
) 6

Squaring circuit in GF(2
4
) 3

β*Square circuit in GF(2
4
) 2

β*Multiplication circuit in GF(2
4
) 1

Zero Detector 1

Table X.1: Summary of elements and circuits required for the masked S-box.

Masking Inversion in GF(2
N
) Using Mixed Field Representations

X.5. CONCLUSION

We described here a design for an efficient and secure hardware implementation of a

masked AES round. This masking technique turns out to be more attractive for low resources

environments. Experimental results indicate that the improvement, compared with the

straightforward implementation, is significant. The masked S-Box design with mixed

representations is approximately 45% more efficient, in terms of area, than the standard

implementation. Further manual optimization can improve the results of the synthesis that

was performed in automatic mode.

Other S-Box implementations use GF(2
8
) representations which are different from the

one used here. One example is the implementation, optimized for low power AES design, that

uses the recursive representation of GF(2
8
), ()()

 2222GF , as proposed in [6]. The masking

technique described here, can be used with any field representation of GF(2
8
).

X.6. REFERENCES

[1] M. Akkar, and C. Giraud, “An implementation of DES and AES, secure against some

attacks”, CHES 2001, Lecture Notes in Computer Science 2162, 2001, pp. 309-318.
[2] K. Aoki, T. Ichikawa, M. Kanda, M. Matsui, S. Moriai, J. Nakajima, and T. Tokita,

“Specification of Camellia – a 128-bit Block Cipher”, http://info.isl.ntt.co.jp/camellia/.

[3] J. D. Golic, and C. Tymen, “Multiplicative Masking and Power Analysis of AES”, CHES

2002, Lecture Notes in Computer Science 2523, 2002, pp. 198-212.

[4] J. Daemen, and V. Rijmen, The design of Rijndael: AES – The Advanced Encryption

Standard, Springer-Verlag Berlin Heidelberg, 2002. (Section 4.3.2).

[5] H. Lee, “Zodiac: Block Cipher Proposal”,

http://www.safedigm.com/productpds/download/Safedigm_Zodiac.pdf.
[6] S. Morioka, and A. Satoh, “An optimized S-Box circuit architecture for low power AES

design”, CHES 2002, Lecture Notes in Computer Science 2523, 2003, pp. 172-186.

[7] AES. http://csrc.nist.gov/CryptoToolkit/aes/.
[8] V. Rijmen, “Efficient implementation of the Rijndael S-box”,

http://www.esat.kuleuven.ac.be/~rijmen/rijndael/sbox.pdf.
[9] E. Trichina, D. De Seta, and L. Germani, “Simplified Adaptive Multiplicative Masking

for AES and its secure Implementation”, CHES 2002, Lecture Notes in Computer Science

2523, 2002, pp. 187-197.

X. APPENDIX A: MULTIPLICATION AND SQUARING IN GF(2
8
)

MODULO 1348 ++++ XXXX

The simplified mask design is expensive, mainly because of the two required

multiplication circuits. To appreciate why multiplication is costly, we provide here the bit

level expressions for multiplication and squaring in GF(2
8
) modulo 1348 ++++ XXXX (with

AND, and XOR (+) operations, operating on a pair of bits):

Shay Gueron, Ori Parzanchevsky, Or Zuk

[a7 a6 a5 a4 a3 a2 a1 a0] [b7 b6 b5 b4 b3 b2 b1 b0] =

b2a6+b3a5+a2b6+a1b7+a0b0+a6b7+a4b4+a3b5+a6b6+b1a7+a7b6+a5b7+(a5b4+a1b0+a5b7+b3a6+b2a7+

b3a5+b1a7+a7b7+a4b5+a4b4+a1b7+a2b6+a0b1+a3b5+a6b6+a3b6+b2a6+a2b7+(a5b4+a6b7+a7b6+b3a6+

a2b0+a3b6+a6b4+a3b7+b3a7+a4b5+a2b7+a4b6+a1b1+b2a7+a0b2+a5b5+(a1b7+a3b0+a1b2+a0b3+a2b1+(

a1b7+a1b3+b0a4+a0b4+a3b1+a2b2+(b1a4+a5b4+a0b5+a3b7+a2b7+a3b6+a4b6+a4b5+b5a7+b3a6+b0a5+

a2b3+a6b6+b3a7+a6b4+b2a7+a5b5+a3b2+a5b7+a1b4+(a6b4+a3b3+a4b7+a3b7+a6b7+b2a4+a6b5+a0b6+

a2b4+a5b6+a4b6+a1b5+a7b4+b0a6+a7b6+b3a7+a5b5+b1a5+(a4b7+a1b6+b1a6+a6b6+a5b7+a7b7+b3a4+

a0b7+b5a7+a2b5+b0a7+a3b4+a5b6+a7b4+a6b5+b2a5+b5a7X)X)X)X+b3a5+a4b4+a3b5+b1a7+b5a7+a5

b4+b3a6+b2a6+a7b4+a2b7+a4b5+a4b7+b2a7+a6b5+a3b6+a5b6+a7b7+a2b6)X+b3a5+a4b4+a3b5+b1a7+a

6b7+a7b6+a5b7+a6b6+a3b7+b3a7+b2a6+a6b4+a7b4+a4b7+a6b5+a4b6+a5b5+a5b6+a7b7+a2b6)X)X)X

[a7 a6 a5 a4 a3 a2 a1 a0]
2
 =

a4+a0+a6+a5a7+(a7+a4+a5a7+a6+(a5+a1+(a5a7+a4+a6+a7+a5+(a4+a7+a2+a5a7+(a6+a5+(a5+a3+(a6+

a7+xa5a7)X)X)X)X)X)X)

Multiplication requires 149 XOR and 150 AND operations, which is approximately 1.5

times the corresponding number required with the optimal representation.

APPENDIX B: GF(2
8
) REPRESENTATIONS BY GF(2

4
) FIELD EXTENSION

To find and count the number of possible representations GF(2
8
), as the extension of

GF(2
4
), we use the following algebraic properties:

1. There are three polynomial representations of GF(2
4
) (over GF(2)). These are

obtained by using the three irreducible reduction polynomials 1+x+x
4
, 1+x

3
+x

4
,

1+x+x
2
+x

3
+x

4
.

2. There are exactly 120 irreducible quadratic polynomials (over GF(2
4
)) of the form

x
2
 + α x + β (where α and β are in GF(2

4
)).

It follows that the field GF(2
8
) can be represented as the field extensions of GF(2

4
) in 360

ways. For our study, we are interested only in polynomials x
2
 + α x + β where α = 1 (because

this simplifies the inversion circuit). There are exactly eight such polynomials (listed below).

Considering only these eight (out of 120) polynomials, the number of relevant extensions

reduces from to 24.

We now note that for each one of the 24 extensions, we need to compute the appropriate

conversion to and from the AES standard representation, in order to construct an equivalent

S-box. The following two lists provide the details of the 192 GF(2
8
) representations and

conversion matrices, which were tested.

List I. Bit level operations for GF(2
4
)

For each reduction polynomial, the list gives the GF(2
4
) inversion table (i.e., the inverses of

the 16 elements (in ascending order), written in hexadecimal form), the squaring circuit, and

the multiplication circuit, in the corresponding GF(2
4
) representation.

Masking Inversion in GF(2
N
) Using Mixed Field Representations

1. Reduction polynomial: x
4
 + x + 1

Inversion : [0, 1, 9, e, d, b, 7, 6, f, 2, c, 5, a, 4, 3, 8]

Squaring : [a3,a2,a1,a0]
2
 = [a3,a1+a3,a2,a0+a2]

Multiplication : [a3,a2,a1,a0] * [b3,b2,b1,b0] =

[a1b2+a3b3+a3b0+a2b1+a0b3, a2b3+a0b2+a3b3+a2b0+a1b1+b2a3,

a1b3+b2a3+a0b1+a2b2+a2b3+a1b0+a3b1, a0b0+a1b3+a2b2+a3b1]

2. Reduction polynomial: x
4
 + x

3
 + 1

Inversion : [0, 1, c, 8, 6, f, 4, e, 3, d, b, a, 2, 9, 7, 5]

Squaring : [a3,a2,a1,a0]
2
 = [a2+a3,a1+a3,a3,a0+a2+a3]

Multiplication : [a3,a2,a1,a0] * [b3,b2,b1,b0] =

[a0b3+a1b3+a3b2+a2b3+a3b1+a2b1+a1b2+a3b3+a3b0+a2b2, a0b2+a3b3+a1b1+a2b0,

a0b1+a3b2+a3b3+a1b0+a2b3, a1b3+a0b0+a2b3+a3b2+a2b2+a3b1+a3b3]

3. Reduction polynomial: x
4
 + x

3
 + x

2
 + x + 1

Inversion : [0, 1, f, a, 8, 6, 5, 9, 4, 7, 3, e, d, c, b, 2]

Squaring : [a3,a2,a1,a0]
2
 = [a2+a1+a2,a2+a3,a0+a2]

Multiplication : [a3,a2,a1,a0] * [b3,b2,b1,b0] =

[a2b1+a3b0+a3b1+a1b2+a1b3+a2b2+a0b3, a3b1+a2b2+a1b1+a2b0+a0b2+a1b3,

a0b1+a1b3+a1b0+a3b1+a3b3+a2b2, a3b2+a1b3+a0b0+a2b3+a2b2+a3b1]

List II. The 192 Conversion Matrices

For each reduction polynomial, and extension polynomial, the list gives the eight conversion

matrices M. Each matrix is represented as eight hexadecimal numbers (two digits each).

Every such number represents, in binary form, the appropriate column of M.

1. Reduction polynomial: x
4
 + x + 1

(a) Extension Polynomial: x
2
 + x + 8

01 e1 5c 0c af 1b e3 85, 01 e1 5c 0c ae fa bf 89, 01 5c e0 50 a2 02 b8 db, 01 5c e0 50 a3 5e

58 8b, 01 e0 5d b0 f2 04 ad 6f, 01 e0 5d b0 f3 e4 f0 df, 01 5d e1 ed 42 10 a7 92,

01 5d e1 ed 43 4d 46 7f

(b) Extension Polynomial: x
2
 + x+ 9

01 e1 5c 0c 12 4b 0f d8, 01 e1 5c 0c 13 aa 53 d4, 01 5c e0 50 1e b2 b5 3a, 01 5c e0 50 1f ee

55 6a, 01 e0 5d b0 4e 09 a1 83, 01 e0 5d b0 4f e9 fc 33, 01 5d e1 ed fe 1c 16 72,

01 5d e1 ed ff 41 f7 9f

(c) Extension Polynomial: x
2
 + x + 10

01 e1 5c 0c 43 46 0e 39, 01 e1 5c 0c 42 a7 52 35, 01 5c e0 50 ae bf 54 36, 01 5c e0 50 af e3

b4 66, 01 e0 5d b0 a3 58 fd d3, 01 e0 5d b0 a2 b8 a0 63, 01 5d e1 ed f2 ad f6 c2,

01 5d e1 ed f3 f0 17 2f

(d) Extension Polynomial: x
2
 + x + 11

01 e1 5c 0c fe 16 e2 64, 01 e1 5c 0c ff f7 be 68, 01 5c e0 50 12 0f 59 d7, 01 5c e0 50 13 53 b9

87, 01 e0 5d b0 1f 55 f1 3f, 01 e0 5d b0 1e b5 ac 8f, 01 5d e1 ed 4e a1 47 22,

Shay Gueron, Ori Parzanchevsky, Or Zuk

01 5d e1 ed 4f fc a6 cf

(e) Extension Polynomial: x
2
 + x + 12

01 e1 5c 0c a2 1a 02 d9, 01 e1 5c 0c a3 fb 5e d5, 01 5c e0 50 f3 03 e4 3b, 01 5c e0 50 f2 5f

04 6b, 01 e0 5d b0 43 05 4d 32, 01 e0 5d b0 42 e5 10 82, 01 5d e1 ed ae 11 fa 73,

01 5d e1 ed af 4c 1b 9e

(f) Extension Polynomial: x
2
 + x + 13

01 e1 5c 0c 1f 4a ee 84, 01 e1 5c 0c 1e ab b2 88, 01 5c e0 50 4f b3 e9 da, 01 5c e0 50 4e ef 09

8a, 01 e0 5d b0 ff 08 41 de, 01 e0 5d b0 fe e8 1c 6e, 01 5d e1 ed 12 1d 4b 93,

01 5d e1 ed 13 40 aa 7e

(g) Extension Polynomial: x
2
 + x + 14

01 e1 5c 0c 4e 47 ef 65, 01 e1 5c 0c 4f a6 b3 69, 01 5c e0 50 ff be 08 d6, 01 5c e0 50 fe e2 e8

86, 01 e0 5d b0 12 59 1d 8e, 01 e0 5d b0 13 b9 40 3e, 01 5d e1 ed 1e ac ab 23,

01 5d e1 ed 1f f1 4a ce

(h) Extension Polynomial: x
2
 + x + 15

01 e1 5c 0c f3 17 03 38, 01 e1 5c 0c f2 f6 5f 34, 01 5c e0 50 43 0e 05 37, 01 5c e0 50 42 52

e5 67, 01 e0 5d b0 ae 54 11 62, 01 e0 5d b0 af b4 4c d2, 01 5d e1 ed a2 a0 1a c3,

01 5d e1 ed a3 fd fb 2e

2. Reduction polynomial: x
4
 + x

3
 + 1

(a) Extension Polynomial: x
2
 + x + 2

01 b1 ec 0c 4f 7c 80 69, 01 b1 ec 0c 4e cd 6c 65, 01 ec 0d 50 ff 60 97 d6, 01 ec 0d 50 fe 8c 9a

86, 01 0d 51 b0 13 c7 94 3e, 01 0d 51 b0 12 ca c5 8e, 01 51 b1 ed 1e 24 91 23,

01 51 b1 ed 1f 75 20 ce

(b) Extension Polynomial: x
2
 + x+ 3

01 b1 ec 0c f3 2c dc 38, 01 b1 ec 0c f2 9d 30 34, 01 ec 0d 50 43 3c 7a 37, 01 ec 0d 50 42 d0

77 67, 01 0d 51 b0 ae 27 98 62, 01 0d 51 b0 af 2a c9 d2, 01 51 b1 ed a3 28 70 2e,

01 51 b1 ed a2 79 c1 c3

(c) Extension Polynomial: x
2
 + x + 4

01 b1 ec 0c ff 21 60 68, 01 b1 ec 0c fe 90 8c 64, 01 ec 0d 50 13 6d c7 87, 01 ec 0d 50 12 81

ca d7, 01 0d 51 b0 1e 96 24 8f, 01 0d 51 b0 1f 9b 75 3f, 01 51 b1 ed 4f 95 7c cf,

01 51 b1 ed 4e c4 cd 22

(d) Extension Polynomial: x
2
 + x + 5

01 b1 ec 0c 43 71 3c 39, 01 b1 ec 0c 42 c0 d0 35, 01 ec 0d 50 af 31 2a 66, 01 ec 0d 50 ae dd

27 36, 01 0d 51 b0 a3 76 28 d3, 01 0d 51 b0 a2 7b 79 63, 01 51 b1 ed f2 99 9d c2,

 01 51 b1 ed f3 c8 2c 2f

(e) Extension Polynomial: x
2
 + x + 8

01 b1 ec 0c af 7d 31 85, 01 b1 ec 0c ae cc dd 89, 01 ec 0d 50 a2 61 7b db, 01 ec 0d 50 a3 8d

76 8b, 01 0d 51 b0 f2 c6 99 6f, 01 0d 51 b0 f3 cb c8 df, 01 51 b1 ed 42 25 c0 92,

01 51 b1 ed 43 74 71 7f

(f) Extension Polynomial: x
2
 + x + 9

01 b1 ec 0c 13 2d 6d d4, 01 b1 ec 0c 12 9c 81 d8, 01 ec 0d 50 1e 3d 96 3a, 01 ec 0d 50 1f d1

9b 6a, 01 0d 51 b0 4f 26 95 33, 01 0d 51 b0 4e 2b c4 83, 01 51 b1 ed ff 29 21 9f,

01 51 b1 ed fe 78 90 72

(g) Extension Polynomial: x
2
 + x + 14

Masking Inversion in GF(2
N
) Using Mixed Field Representations

01 b1 ec 0c 1f 20 d1 84, 01 b1 ec 0c 1e 91 3d 88, 01 ec 0d 50 4e 6c 2b 8a, 01 ec 0d 50 4f 80

26 da, 01 0d 51 b0 ff 97 29 de, 01 0d 51 b0 fe 9a 78 6e, 01 51 b1 ed 13 94 2d 7e,

01 51 b1 ed 12 c5 9c 93

(h) Extension Polynomial: x
2
 + x + 15

01 b1 ec 0c a3 70 8d d5, 01 b1 ec 0c a2 c1 61 d9, 01 ec 0d 50 f2 30 c6 6b, 01 ec 0d 50 f3 dc

cb 3b, 01 0d 51 b0 42 77 25 82, 01 0d 51 b0 43 7a 74 32, 01 51 b1 ed ae 98 cc 73,

01 51 b1 ed af c9 7d 9e

3. Reduction polynomial: x
4
 + x

3
 + x

2
 + x + 1

(a) Extension Polynomial: x
2
 + x + 2

01 50 b0 0c a3 8b d3 d5, 01 50 b0 0c a2 db 63 d9, 01 b0 ed 50 f2 6f c2 6b, 01 b0 ed 50 f3 df

2f 3b, 01 ed 0c b0 43 7f 39 32, 01 ed 0c b0 42 92 35 82, 01 0c 50 ed af 85 66 9e,

01 0c 50 ed ae 89 36 73

(b) Extension Polynomial: x
2
 + x+ 3

01 50 b0 0c 1e 3a 8f 88, 01 50 b0 0c 1f 6a 3f 84, 01 b0 ed 50 4f 33 cf da, 01 b0 ed 50 4e 83

22 8a, 01 ed 0c b0 fe 72 64 6e, 01 ed 0c b0 ff 9f 68 de, 01 0c 50 ed 13 d4 87 7e,

01 0c 50 ed 12 d8 d7 93

(c) Extension Polynomial: x
2
 + x + 4

01 50 b0 0c f3 3b df 38, 01 50 b0 0c f2 6b 6f 34, 01 b0 ed 50 43 32 7f 37, 01 b0 ed 50 42 82

92 67, 01 ed 0c b0 ae 73 89 62, 01 ed 0c b0 af 9e 85 d2, 01 0c 50 ed a3 d5 8b 2e,

01 0c 50 ed a2 d9 db c3

(d) Extension Polynomial: x
2
 + x + 5

01 50 b0 0c 4e 8a 83 65, 01 50 b0 0c 4f da 33 69, 01 b0 ed 50 fe 6e 72 86, 01 b0 ed 50 ff de

9f d6, 01 ed 0c b0 13 7e d4 3e, 01 ed 0c b0 12 93 d8 8e, 01 0c 50 ed 1f 84 6a ce,

01 0c 50 ed 1e 88 3a 23

(e) Extension Polynomial: x
2
 + x + 8

01 50 b0 0c ae 36 62 89, 01 50 b0 0c af 66 d2 85, 01 b0 ed 50 a2 63 c3 db, 01 b0 ed 50 a3 d3

2e 8b, 01 ed 0c b0 f3 2f 38 df, 01 ed 0c b0 f2 c2 34 6f, 01 0c 50 ed 42 35 67 92,

01 0c 50 ed 43 39 37 7f

(f) Extension Polynomial: x
2
 + x + 9

01 50 b0 0c 13 87 3e d4, 01 50 b0 0c 12 d7 8e d8, 01 b0 ed 50 1f 3f ce 6a, 01 b0 ed 50 1e 8f

23 3a, 01 ed 0c b0 4e 22 65 83, 01 ed 0c b0 4f cf 69 33, 01 0c 50 ed fe 64 86 72,

01 0c 50 ed ff 68 d6 9f

(g) Extension Polynomial: x
2
 + x + 14

01 50 b0 0c fe 86 6e 64, 01 50 b0 0c ff d6 de 68, 01 b0 ed 50 13 3e 7e 87, 01 b0 ed 50 12 8e

93 d7, 01 ed 0c b0 1e 23 88 8f, 01 ed 0c b0 1f ce 84 3f, 01 0c 50 ed 4e 65 8a 22,

01 0c 50 ed 4f 69 da cf

(h) Extension Polynomial: x
2
 + x + 15

01 50 b0 0c 43 37 32 39, 01 50 b0 0c 42 67 82 35, 01 b0 ed 50 ae 62 73 36, 01 b0 ed 50 af d2

9e 66, 01 ed 0c b0 a3 2e d5 d3, 01 ed 0c b0 a2 c3 d9 63, 01 0c 50 ed f2 34 6b c2,

01 0c 50 ed f3 38 3b 2f

Shay Gueron, Ori Parzanchevsky, Or Zuk

APPENDIX C: NON-ZERO MASK GENERATION

We show here two possible circuits for a nonzero random mask generator, which is

required for implementing the masking technique.

Smooth non-deterministic generator

Random bits are generated by a hardware random bit generator, and are routed to an n

bits register. If the content of this register is not entirely zero, it is written to another register,

which holds the random mask. The expected number of attempts, required in order to

generate a valid mask in this way, is 2
n
/(2

n
-1). This circuit guarantees nonzero masks which

are evenly distributed among the 2
n
-1 possible nonzero masks, thus offering the maximal

possible entropy. For n=8, this entropy is () 7.99435255log2 ≈ .

If at some stage, an invalid (i.e., zero) random mask is generated, the mask cannot be

refreshed, and the previous mask is reused (of course, the value of this previous mask is

unknown to the attacker). This occurs with the probability n
1 . Therefore, the conditional

entropy of a mask, given the previous mask is

() () () () ()

()()nnnn

tmx

tttttttt xmPxmPmmPmmPmmH

2
1

2
1

2
1

2
1

111

log1log

loglog|

111

1

−−−

−

−+−

===−==−= ∑
≠

−−−

For n=8 this equals 99218.7128
1023 ≈ .

Let us now consider a bit-per-clock random bits generator, an 8 S-Box design and a 16

round AES. The probability of not updating the mask between two consecutive blocks is

negligible 648

256
1 2)(−= , since this is the probability that the generated random value is zero 8

consecutive times.

Deterministic non-smooth generator

A property of the nonzero mask generating circuit discussed above, which could possibly

be considered as a drawback, is that the time required for generating the mask is not constant.

Therefore, we propose here an alternative design, which ensures the generation of a non-zero

random mask in a constant time.

We assume here that n, the length of the mask, is a power of two. The hardware random

bits generator generates 1log −+ nn bits. The first nlog bits form a number x, nx <≤0 . The

other n-1 from a number denoted by y. Now, a mask of length n is generated, where bit

number x is set to 1, and the other n-1 bits assume the values of the bits of y.

For example, suppose that n=8, and the random bits generator generated the 10 bits

1011100101. Three of them form a number 51012 ==x , and the other 7 are 1100101=y .

Now, the byte 0010000025 = is generated (bit number 5 is turned on), and its other 7 zero

Masking Inversion in GF(2
N
) Using Mixed Field Representations

bits are replaced with the bits of y, finally obtaining the nonzero mask 11100101 .This process

assures that

1. A nonzero mask is generated.

2. Every possible nonzero mask can be generated.

3. Masks with the same Hamming weight have the same probability.

4. High entropy is obtained: ∑
=

−−

−

n

k
nn n

k

n

k

k

n

1
11 2

log
2

.

With 2
8
 this amounts to () 90244.7log

88

1

102421024 ≈

−∑

=k

kk

k
.

Note that in practice, a simpler implementation can be achieved at the cost of drawing

one extra random bit. Here, y takes n random bits (instead of n-1), and we perform a logical

AND operation to the x-th bit of y. In C notation, the mask is y & (1 << x).

