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Abstract

The relative entropy rate is a natural and useful measure of distance between two stochastic processes. In this paper
we study the relative entropy rate between two Hidden Markov Processes (HMPs), which is of both theoretical
and practical importance. We give new results showing analyticity, representation using Lyapunov exponents, and
Taylor expansion for the relative entropy rate of two discrete-time finite-alphabet HMPs.

1 Introduction When no confusion may occur, we shall also omit the
(V) superscript and simply writé,.

In many applications, such as classification, monitoring
the training process, or clustering, the need for a
dissimilarity measure between twdMPs arises. A
natural and appealing choice is the relative entropy
rate (RE-rate), first introduced in [3] fddMPs. Let
D(PA(N )HP,EN )) be the relative entropy ([4]) distance
(also known as Kullback-Leibler distance, or cross-
entropy) between the two probability distributidns

Let {Xy} be a finite state stationary Markov process
over the alphabet: = {1,..,s}. Let {Yy} be its
noisy observation (on the same alphabet). We consider
two probability laws for the process€s{y, Yy}, de-
noted A, u. For the lawn (n = A, u) we let M, =
{my(i,j)} denote the Markov transition matrix and
R, = {ry(i,j)} denote the emission matrix, i.84,
and R, ares x s real nonnegative stochastic matrices,
Pn(XN—H = j|XN = Z) = mn(i,j) and Pn(YN =
JjIXn = i) = r,(i,5). We further assume that the D(P(N)HP(N)) _ Z PO [y P){N)([YHV)
Markov matrices)M,, are strictly positive (i, j) > A A PN (V)N

bgh
0), and denote their stationary distributions7y. Note ' (2)
that the lawy is entirely determined by/, andR,, and Then the RE-rate (also known as the Kullback-Leibler
we may writen = {M,,, R, }. divergence rate), is defined by:

The processY” can be viewed as a noisy version of
X, observed through a noisy channel. It is known as a
Hidden Markov Process (HMPHMPshave arichand  p()||4) can also be computed via the conditional
developed theory, and enormous applications in variousre|ative-entropy ([5]),D(A||p) = lmy—oe D (A1),
fields (see [1], [2])A and . can be viewed as the laws \yhere Dy is defined as:
generating the process, and are also frequently termed

. 1
D(Au) = lim =DERM[IPN) (3

-1
Hidden Markov Models (HMMs) N =D Py log B llY] o~ 4
For the modelp (n = A, p), we associate a family Y1y POV
of probability measure$ P}, P{N) : SN — [0,1], For two stationary ergoditiMMs, it is known that
defined by the above two limits exist and coincide ([3], [6]).
PM([Y]Y) = Using the chain-rule for relative-entropies ([5Ix
N-1 N is also given asDy(\||p) = D(PA(N)HP#EN)) —
3 {m] (X1) T mn(Xs, Xiga) [ [ rn (X, 5) } D(PN VPN, which will be used later.
Ry i=1 =1 Although it is not a norm, the RE-rate has several

Q) . , .
natural interpretations. For example, it represent the
Where here and throughout the pagéf]’ denotes the o P P P
discriminative power of one model over the other. Thus

vector (X;, .., X;), uppercase denote random variables .
. (X, ., X;), upp S if data is generated by the modal then D(\||u)

while lower case denote their realizations, and the latter

are often omitted, i.eP,(X) stands forP,(X = z). LFor simplicity, we use natural logarithms throughout the paper



represents the average difference in the likelihood scorel et p%N) be the (random) vector defined by

per-symbol betweem\ and p. D(M||n) is also the

N)(. N -
average loss-per-symbol when compressing the data, pg’ )(Z) =BV X =19) ©)
assuming (erroneously) it was generated;b[5]). Using the forward equations, one can write the recur-
Lately, many new results were obtained for the Shannonsion relation
entropy-rate ([13]) of aHMP. These include analyt- pslN) _ G%YN)pqu) @)

icity ([8]), representation as a Lyapunov exponent for

a random matrix product ([9], [10]), and asymptotic With the initial vector oy given by pil(i) =
evaluations in various regimes ([10], [11], [12]). The ™ (i)m(é,Y1). By induction, the joint probability func-
Shannon entropy raté/ ()\) is related to a special case tion P,([Y]Y'), is given by:

of the RE-rate where one of the models is uniform, 9

using the identityd () = log s — D(\||u), whereu is P (YY) =¢ T[] GY7pl) (8)

a uniform model (say, with, (i, ) = s~!). The main i=N

purpose of this paper is to apply the same methodsWhere here and throughout the papgrdenotes the
used in the aforementioned papers, and derive similar,(column) vector ofs ones. Therefore, the RE-rate can
yet more general results, for the RE-rate. be written as:

In section 2 we represent the RE-rate as a difference
of two Lyapunov exponents, with the same probability
laws, albeit different matrix values. In section 3 we )
prove, under mild positivity assumption, that the RE- log (¢! H G}(me,(}))} (9)
rate is analytic in the processes parameters. While the i=N

RE-rate for two Markov chains is known ([7], [14]), The mappingsd — 5tAp5]1), n = \pu are easily
there is at present no explicit expression for the RE-rateshown to satisfy the requirements for being matrix
of two HMPs, in terms of the parameters of the tWO norms. Moreover, the above limit exists also when
underlying models. So far, only bounds ([15]) or ap- taking only the first term in the sum (and is equal to
proximation algorithms ([7], [16], [17]) were obtained. the minus of the entropy rate). This immediately gives:

In section 4 we study the representation of the RE-rate  proposition 1: D(A||) is the difference of the two
as a Taylor series expansion in various parameters. Waop Lyapunov exponents:

show a relation between the Taylor series coefficients

2
. 1 D) (i
D(AJu) = lim —Bx[log(¢" T 60p0")-
i=N

2
of the relative-entropy conditioned on finite histories, D(\||p) = i %EAH log(H G&Yi))H—
to those of the RE-rate, in two different parameter i=N
regimes. We also demonstrate the applicability of our 2
results, by giving the first order asymptotic behavior Am %EAH 1°g(4H GLYi))" (10)
of the RE-rate in one of the regimes. We end with =
conclusions and future directions. Note that different matrices appear in the above two

Lyapunov exponents, but the probability law of select-

2  Relative Entropy Rate and Lya- ing the matrices is the same. The matrices are chosen
according to the Markovian law, where the probability

punov Exponents of picking G after G\ is

It was previously shown ([9], [10]) that the entropy Py(Yny1 =bYy =a) =
rate of aHMP can be represented as a top Lyapunov

exponent of a random matrix product. Here we extend > PXN Xwvin Y =Yy = a) =

Xn,X
this result, and represent the RE-rate as a difference of N N“S ’ . o ,
two Lyapunov Exponents. For= A,z anda = 1, .., s, i =1 “(S’)“(l’ ‘f)mAQ’J)“U» b) (11)
we define the matrice§ (" = {¢\" (i, j)} as: 2 j=1 ™), a)

One should not be concerned by the fact that a different
norm was used for each exponent, as the Lyapunov
my(j,4)ry (1, a) (5) exponent is independent of the norm chosen ([18]).

94, 5) = Py(Xns1 =i, Yn41 = a| Xy = j) =



3 Analyticity two specific parameters regimes. We then demonstrate
an application of our results, by computing the first term
in the Taylor series expansion for one of the regimes,
{ermed 'High-SNR".

It was recently shown ([8]) that under mild positivity

assumptions, the entropy rate oHMP is analytic in

the underlying process parameters. We show here tha

a similar result holds also for the RE-rate: 4.1 The High SNR regime
Theorem 1:Let M(s,C) be the ring of complex

squares x s matrices. Lef” ¢ M (s, C)* be the hyper- Loosely speaking, the term high SNR regime represents
plane defined by: a regime in the parameters domain in which the obser-

vations Yy are likely to equal the hidden statésy.
In other words, the emission matric&s, (n =\, p)

5 o 5 o are close to the identity matriX. We may therefore
;m”@’j) - ;7"7(1’]) - 1} (12) write R, = I + €T,), wheree > 0 is a small constant
andT, = {t,(i,j)} are matrices satisfying,(i,:) <
0,t,(1,7) > 0,Vi # jandd>"_, t,(i,5) = 0. The RE-
rate in this regime can be given as an expansion in
around zero. We state here our new theorem, connecting
the relative entropy of finite systems to the RE-rate:

A= {(MA’RA’MM’RH) € F' Theorem 2:Let Dy = Dy(A||u, €) be the condi-
My (i, §)ro (i, 5) > 0, ¥ = A, , Vi, j = 1, ..75} tional relative entropy between the probability laws
(13) of A and i on a finite system of lengthV, where
2) D(A||n) is an analytic function of the parameters ftn =1 + €Iy, 1= A, . Assumé that there is some
(My, Ry, M, R,,) in €. (complex) neighborhood of = 0 in which the (one-
variable) functions{ Dy}, D are analytic ine, with a
Taylor expansion given by

r= {(MA,RA,M#,R#) V=M, Yi=1,.,s,

Then there is some relatively open dom&irc T', such
that:
1) Q contains the open domain of all real positive
stochastic matrices:

Proof: We represent the RE-rate as the sum:
1 N
_ 7 : Y;
D(\||n) = 7H>\7A;1H1 NE)\Hlog(IlQG& ))H (14)

The first term —H,, is simply the (minus) entropy  Dn(M||u,€) = ZD%C)ek, D(M||p, €) = ZD(k)ek
rate of the process\,, which was recently shown to k=0 k=0 (15)
be analytic in somé2, €2 > A ([8]). As for the second (Here the coefficientng\’f),DU“) are functions of the
term, one can repeat the proof from [8] (with the appro- parametersi/y, M,, andTy, T,.. From now on we omit
priate modifications) and show analyticity by showing this dependence). Then we have:

uniform convergence in som@ of the finite condi-

tional functionsyy;x Pa([Y 1)) log P(Yar|[Y TN ). N>k+2= DYy =D (16)
Alternatively, we observe that the parametérs, R,
influence only the probabilities in the Lyapunov expo-

oo oo

The behavior stated in Thm. 2 was discovered using

. symbolic computations, but was not proven before. A
nent representation (prop. 1), whereas the parameters ) .
stronger statement (of settling of the coefficients for

M, R, influence only the matrix entries. Thus no pa- i3 ] o
. . > [%££3]) was proven (using similar methods) for
rameter influence both, and we can rely directly on re- :
. the special case of the entropy rate ofiBIP ([22]).
sults from Lyapunov expnents theory, which guarantee

C . The proof of Thm. 2 is based on the following two

the analyticity in both the matrices values themselves " o ideas: Fi distinauish b h .
(119], [20]), and their probabilities ([21]). - simple ideas; |.rst, we _|st|ngw_s . etween the n_mse
parameters at different sites. This is done by consider-

. . L ing a more general proce$< y }, whereZ;'s emission
4 Taylor Expansmns Usmg Finite- matrix according to the mode} is R,,; = I + &7T,.

System Relative Entropies __ _ _
2Analyticity arounde = 0 was shown in [8], albeit only for the
In this section we show a relation between the Tay- entropy rate. The function® y are easily shown to be differentiable

| . ffici f fini diti | relati to all orders ine, ate = 0. The unproven assumption here is that
or series coefficients of finite conditional relative en- they are also analytic with a radius of analyticity uniformAh and

tropies, and those of the RE-rate. Our results apply inare uniformly bounded within some common neighborhood &f 0



The joint distribution of[Z]YV is thus determined by

M, T, and [¢]%¥. We define the following functions:

N-1
Z P\([Z log —i EgNHZ]}V_l)
M N‘[Z]l )
17)
Setting all thee;'s equal, reduces us back to thé
process, so in particulafy (A, i, (€, ..,€)) = Dy (€).
Second, we observe that if a particutaris set to zero,

N (A, s [

the corresponding observatidfy must equal the state
X;. Thus, conditioning back to the past is 'blocked'.

This can be used to prove the following:
Lemma 1:Assumee; = 0 for somel < j < N.
Then :

Fy([eY) = Fy—ja([e}) (18)
Proof: F' can be written as:
Fy = Z P\([Z)) 1og w (19)

[Z]N P,U(ZNHZHV_l)

Sincee; = 0, we must haveX; = Z;, and therefore

(since the X;’s form a Markov chain), conditioning

further to the past is 'blocked’, that is, for= A, u:

Py(Zn][2]77Y) (20)

(Note that eq. (20) is true fof < NN, but not forj =
N). Substituting in eq. (19) gives:

¢ =0= Py(2Zy|[Z]) ) =

Fy=Y_ {PA([Z] HP(2Zn|[2)]7Y)

(217
P\(Zn|[2)] )
log ———— — % ¢ = PA([Z)}7Y)
Pu(ZnI[Z)}7Y) ;
Py(Zx|12)) 7
PA(Zn|[2)] ) log ————— e ¢ = Fv—j
! Pu(ZnI[2)}7) ’
(21)
[ ]
Let k = ([k]¥ be a vector withk; € {N U 0}. Define
its "weight' asw(k) = Y., k;. Define also:
o aw(E)F
Pk = N (22)

k1 kN
Oei, .., Oy o0

The next lemma shows that adding zeros to the left of

i leavesF¥ unchanged:

Lemma 2:Let k = [k]¥ with k; = 0. Denotek(®)
the concatenation of with ¢ zeros to the lefti(®) =
(0,..,0,ky =0,..,kn). Then:

NAAZ

C

Fh=FRY VeeN (23)

Proof: Using lemma 1, we get :

w(k(©) c
c ko
660+2, . 860+N o
aw(k)F ([ ]c+N) R .
ko = F]I\Cf([e](I{V) (24)
866+2,..7860+N o0
| |

SummingF}f, over all E’s with weight & giveng\’,"):

ZFN

k w(k)=

Dy = (25)
We now show that one does not need to sum on all
suchk’s, as many of them give zero contribution:
Lemma 3:Let k = [k]N. If 3i < j < N, with k; >
k; =0, then Fk = 0.
Proof: Using lemma 1 we get

3“’(E)FN([€HV)

FE = =
N 8511“, . aerN =0
G‘U(k)FijJrl([d;y) _
85’1“ s e aelva 0
aw(E)—l aFN—j+1(H§V) —0
661 y .. 78 a kN aEi =0
(26)
| ]

We are now ready to prove Thm. 2, which follows
directly from lemmas 2 and 3:

Proof: Let k = [k]¥ with w(k) = k. Define its
‘length’ (from right, considering only non-zero entries)
asl(k) = N + 1 — miny,-o{i}. It easily follows from
lemma 3 that ifF5 + 0, we must havé (k) < k + 1.
Therefore, according to lemma 2:

F]I\Q]_F(kauk)

k42 (27)

for all k's in the sum. Summing on aIFJ’\g, with the

same ’'weight’, we getDE\'f) = D,(Ji)z, VN > k +

2. From the analyticity of Dy and D arounde = 0,

one can show by induction thn y_, o D](\’,“) = D),
therefore we must hav®\) = D) YN >k + 2.
]

4.2 The Almost Memoryless Regime

In the almost memoryless (A-M) regime, we assume
that the Markov transition matrices are close to a
'memoryless’ matrix. A matrix? is called memoryless,
if all its rows are identical, i.eq(7,j) = ¢(j). Thus, a
Markov process with a memoryless transition matrix



is in fact an i.i.d. process. Throughout this section we ¢ . .
o ma()mx (i, Dmy(l, k)
assume thab/,, is given byM,, = Q,, + 013, such that iRt
@, are memoryless matrice§,> 0 is a small constant mx(i)ma(i, )ma(j, k)
and > °_, t,(i,5) = 0. Interestingly, in similar to the ta(l,j)log | 2 A AR T
=l - : : (1) (3, 5)my (5, k)
high-SNR regime, the conditional relative entropy given
a finite history gives the correct RE-rate up to a certain my (4, §)my. (7, k)t (4, 1)} 0@ (30)
order. This is stated in: my, (i, Dymy, (1, k)

Theorem 3:Let Dy = Dn(Al[n,d) be the condi- Proof: According to Thm. 2,D = D3 + O(?).
tional relative entropy between the probability laws e thus expand; arounde = 0, by substitutingR,, =
and p on a finite system of lengtv, where M,, = I+ €T, n=\u
Qn + 9T, n = A\ p and the@,’s are memoryless
matrices. Let the Taylor expansions @&y and D Ds(\||p) = Z {PA([Y]:{’ = (i,4,k)")
arounds = 0 be given by: i3,k

= PAYT} = (123, 1) ) PulY R = (5.5))
_ (k) (k) 5 1 A 1 ) J> I 1 ) 1

vl 8) = 2, D'dt, DOl X_%D 8 PV = G OBV E = ) | D

e

The above probabilities are of the forf,([Y]1), and
are given in eq. (1). One can, however, sum in eq. (1)
N>k+2= D = p® (29)  only on vectors[X]{" which differ from [Y]{ in at

most one site, and still get the correct probability up to
Proof: The proof of Thm. 3 is very similar to 4, O(¢?) correction. This gives:

that of Thm. 2. Distinguishing between the sites by

setting M, ; = @, + &;T, in site i, we note that Py([Y = (,)") = my(i)my (4, )+
settingd; = 0 for some: makes the transition matricx s )
M, ; memoryless, and thus knowing; 'blocks’ the 6;1 {W"(k)m"(k’]) (k1) + 7 (1)1 (3, Kt (K, )
dependence oYy on previousY;’s (Vj < 7). The rest

Then we have:

2
of the proof continues in an analogous way to that of +0(€) (32)
Thm. 2 (including the three lemmas therein), and its And
details are thus omitted here. ] 3 o ) o )
Py([YTy = (i,5,k)") = my (0)my (i, 5)mn (5, k) +

4.3 Computing the series-coefficients s .

_ . o . € { Dmy (1, §)my (4, k)ty (1, 1)+
An immediate application of Thms. 2 and 3 is the )
computation of the first terms in the series expansion T (DY (i ) (1, K)ty (1, §)+
for D, by simply computing these terms fdpy for _ o . )
N large enough. In this section we demonstrate, for oy (0)11 (3, )10y (5, Dy (1, k) | + O(€%) (33)

the High-SNR regime, the computation of the first Substituting egs. (32, 33) in eq. (31) , and using the
order coefficient. If one wishes to compute higher Taylor expansion of the logarithm functidog(a+z) =
orders a straightforward way is to computéy’ for log a+ £ +O(z?) gives, after simplification, the result

= k + 2. This can be done by simply enumerating (30). ]
aII sequencesY 7, computing thek-th coefficient  The rigorous result (30) was compared to simulation-
in PA([Y]{')log Pkgﬁl and summing their contribu-  hased computations of the RE-rate, and good agreement
tions. This computation is, however, exponentialkin  was found for small values of (results are omitted
and raises the challenge of designing faster algorithms here, due to lack of space). One can perform a similar

For the High-SNR regime we have: expansion ofD; in 4, to obtain the first order coefficient
Proposition 2: Let n = {M,, R,}, with R, = I+ in the A-M regime. Note that for memoryless matrices
€Ty, 1= A, p. Then the RE-raté)(\|[n) satisfies: Q,, we haveg, (i, j) = m,(j), thus the RE-rate equals
1 p(1 — _
s ma(i, ) D(PA( )HP,S )), and is given by:
D(\||p) = ma(i)ma(i, j) log —
ij=1 m#(uj) D(A|[p) =



S

Z [im(j)m(j,i)} log (%Z_l m(j)m(]}f))

i1 j=1"Tn (j)ru (4,1)
(34)
When expanding near a memoryless matrix, one needs 2]
to take into account both the perturbations in the
Markov matrices M, and in the stationary vectors
m,. We note that if one is given two models, 1,
one can choose to expand arounany memoryless
matrices, and different matrices will naturally give
different Taylor coefficients. Two such possibilities are,
for example, taking uniform matrices,, (i, j) = s~,
or taking matrices which preserve the singleton distri-
butions of X, i.e. g, (¢, j) = m,(j). Unlike the High-
SNR regime, when one wishes to compute of the first
order of, sayDs, one needs to sum over all vectors
[X]3, as they all contribute to the sum.

(1]

(3]
(4
(5]
(el

(7]

[9]
5 Conclusion

[10]
We have obtained new results about the RE-rate be-[ll]
tween two finite-alphabddMMs. We have represented
the relative entropy as a difference of two Lyapunov
exponents from random matrix theory. We established
the analyticity of the RE-rate, in the interior of the [13)
allowable parameters range. We have also shown a
connection between the relative entropy of distribu- [14]
tions on a finite chain and the RE-rate. This gives a
straightforward way to compute the RE-rate as a (one(15]
parameter) Taylor series-expansion, in two different
regimes. Other parameter regimes still need to be[ig
explored. For example, it is interesting to determine
the behavior of the RE-rate when one of the models (7
is a small perturbation of the other. In the context of
model selection, it is also of interest to compare HMMs
of different sizes, where here the RE-rate gives the
(average) increase in the likelihood score when adding
more parameters. Determining the (maximal) domain of [19]
analyticity for the entropy rate is also of considerable
interest, as it relates to the radius of convergence of the
Taylor series we have obtained.

(12]

(18]

(21]

Acknowledgment [22]

| thank Libi Hertzberg for many helpful discussions and

comments on the manuscript. This work was partially
supported by the Minerva Foundation and the Euro-
pean Community’s Human Potential Programme under
contract HPRN-CT-2002-00319, STIPCO.

References

Y. Ephraim and N. Merhawdidden Markov processe$EEE
Trans. Inf. Th., 48, pp. 1518-1569, 2002.

L. R. RabinerA tutorial on hidden Markov models and selected
applications in speech recognitipRroc. IEEE, 77, pp. 257-286,
1989.

B.H. Juang and L.R. Rabine Probabilistic distance measure
for HMMs, AT&T Technical Journal, 64(2), pp. 391-408, 1985.
S. Kullback and R. LeiblerOn information and sufficiengy
Ann. Math. Stat., 22, pp. 79-86, 1951.

T. M. Cover and J. A. Thomaglements of Information Theqary
Wiley, New York, 1991.

L. Xie, Finite horizon robust state estimation for uncertain
finite-alphabet hidden Markov modeRhd thesis, Univ. of New
South Wales - Australian Defence Force Academy, 2004

X. Li, V.A. Ugrinovskii and I. R. PetersenProbabilistic
distances between finite-state finite-alphabet hidden Markov
models IEEE Trans. Auto. Control, 50(4), pp. 505-511, 2005.
G. Han and B. Marcugnalyticity of Entropy Rate in Families
of Hidden Markov Chainssubmitted to IEEE Trans. Inf. Th.
T. Holliday, P. Glynn and A. GoldsmithOn Entropy and
Lyapunov Exponents for Finite-State Channedsibmitted to
IEEE Trans. Inf. Th.

P. Jacquet, G. Seroussi and W. Szpankow&ki,the Entropy
of a Hidden Markov Proces®CC 2004, pp. 362-371.

E. Ordentlich and T. Weissma@n the optimality of symbol-
by-symbol filtering and denoisindEEE Tran. Inf. Th. 52(1)
pp. 19-40, 2006.

O. Zuk, I. Kanter and E. Domanysymptotics of the Entropy
Rate for a Hidden Markov ProcesBCC 2005, pp. 173-182.
C. E. ShannonA mathematical theory of communicatjdsell
System Technical Journal, 27, pp. 379-423 and 623-656, 1948.
Z. Rached, F. Alajaji and L. L. Campbelrhe Kullback-Leibler
Divergence Rate Between Markov SourcE=EE Trans. Inf.
Th., 50(5), pp. 917-921, 2004.

J. Silva and S. NarayanaAn Upper Bound for the Kullback-
Leibler Divergence for left-to-right Transient Hidden Markov
Models submitted to IEEE Trans. Inf. Th.

M.N. Do, Fast approximation of Kullback-Leibler distance for
dependence trees and hidden Markov mqd&EE Sig. Proc.
Letters, 10(4) pp. 115- 118, 2003.

M. Mohammad and W. H. Trantef novel divergence measure
for hidden Markov mode]sProc. IEEE Southeast Conference,
pp. 240 - 243, 2005.

I. Y. Goldsheid and G. A. Margulisl.yapunov indices of a
product of random matricesRussian Mathematical Surveys,
44, pp. 11-71, 1989.

D. Ruelle,Analyticity properties of the characteristic exponents
of random matrix productsAdv. Math. 32, pp. 68-80, 1979.

] L. Arnold, M. Gundlach and L. Demetriugvolutionary for-

malism for products of positive random matricésn. Appl.
Prob. 4, pp. 859-901, 1994.

Y. PeresPomains of analytic continuation for the top Lyapunov
exponentAnn. Inst. H. Poincare Probab. Statist. 28(1) pp. 131-
148, 1992.

O. Zuk, E. Domany, |. Kanter and M. AizenmaFaylor series
expansions for the entropy rate of Hidden Markov Processes
to appear in ICC 2006.



