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Abstract

The relative entropy rate is a natural and useful measure of distance between two stochastic processes. In this paper

we study the relative entropy rate between two Hidden Markov Processes (HMPs), which is of both theoretical

and practical importance. We give new results showing analyticity, representation using Lyapunov exponents, and

Taylor expansion for the relative entropy rate of two discrete-time finite-alphabet HMPs.

1 Introduction

Let {XN} be a finite state stationary Markov process

over the alphabetΣ = {1, .., s}. Let {YN} be its

noisy observation (on the same alphabet). We consider

two probability laws for the processes{XN , YN}, de-

noted λ, µ. For the lawη (η = λ, µ) we let Mη =
{mη(i, j)} denote the Markov transition matrix and

Rη = {rη(i, j)} denote the emission matrix, i.e.Mη

andRη ares× s real nonnegative stochastic matrices,

Pη(XN+1 = j|XN = i) = mη(i, j) and Pη(YN =
j|XN = i) = rη(i, j). We further assume that the

Markov matricesMη are strictly positive (mη(i, j) >

0), and denote their stationary distributions byπη. Note

that the lawη is entirely determined byMη andRη and

we may writeη = {Mη, Rη}.
The processY can be viewed as a noisy version of

X, observed through a noisy channel. It is known as a

Hidden Markov Process (HMP). HMPshave a rich and

developed theory, and enormous applications in various

fields (see [1], [2]).λ andµ can be viewed as the laws

generating the process, and are also frequently termed

Hidden Markov Models (HMMs).

For the modelη (η = λ, µ), we associate a family

of probability measures{P (N)
η }, P (N)

η : ΣN → [0, 1],
defined by

P (N)
η ([Y ]N1 ) =

∑

[X]N1

{
πη(X1)

N−1∏

i=1

mη(Xi, Xi+1)
N∏

i=1

rη(Xi, Yi)
}

(1)

Where here and throughout the paper,[X]ji denotes the

vector (Xi, .., Xj), uppercase denote random variables

while lower case denote their realizations, and the latter

are often omitted, i.e.Pη(X) stands forPη(X = x).

When no confusion may occur, we shall also omit the

(N) superscript and simply writePη.

In many applications, such as classification, monitoring

the training process, or clustering, the need for a

dissimilarity measure between twoHMPs arises. A

natural and appealing choice is the relative entropy

rate (RE-rate), first introduced in [3] forHMPs. Let

D(P (N)
λ ||P (N)

µ ) be the relative entropy ([4]) distance

(also known as Kullback-Leibler distance, or cross-

entropy) between the two probability distributions1:

D(P (N)
λ ||P (N)

µ ) =
∑

[Y ]N1

P
(N)
λ ([Y ]N1 ) log

P
(N)
λ ([Y ]N1 )

P
(N)
µ ([Y ]N1 )

(2)

Then the RE-rate (also known as the Kullback-Leibler

divergence rate), is defined by:

D(λ||µ) = lim
N→∞

1
N

D(P (N)
λ ||P (N)

µ ) (3)

D(λ||µ) can also be computed via the conditional

relative-entropy ([5]),D(λ||µ) = limN→∞DN (λ||µ),
whereDN is defined as:

DN (λ||µ) =
∑

[Y ]N1

Pλ([Y ]N1 ) log
Pλ(YN |[Y ]N−1

1 )
Pµ(YN |[Y ]N−1

1 )
(4)

For two stationary ergodicHMMs, it is known that

the above two limits exist and coincide ([3], [6]).

Using the chain-rule for relative-entropies ([5]),DN

is also given asDN (λ||µ) = D(P (N)
λ ||P (N)

µ ) −
D(P (N−1)

λ ||P (N−1)
µ ), which will be used later.

Although it is not a norm, the RE-rate has several

natural interpretations. For example, it represent the

discriminative power of one model over the other. Thus

if data is generated by the modelλ, then D(λ||µ)

1For simplicity, we use natural logarithms throughout the paper



represents the average difference in the likelihood score

per-symbol betweenλ and µ. D(λ||µ) is also the

average loss-per-symbol when compressing the data,

assuming (erroneously) it was generated byµ ([5]).

Lately, many new results were obtained for the Shannon

entropy-rate ([13]) of aHMP. These include analyt-

icity ([8]), representation as a Lyapunov exponent for

a random matrix product ([9], [10]), and asymptotic

evaluations in various regimes ([10], [11], [12]). The

Shannon entropy ratēH(λ) is related to a special case

of the RE-rate where one of the models is uniform,

using the identityH̄(λ) = log s−D(λ||u), whereu is

a uniform model (say, withru(i, j) = s−1). The main

purpose of this paper is to apply the same methods

used in the aforementioned papers, and derive similar,

yet more general results, for the RE-rate.

In section 2 we represent the RE-rate as a difference

of two Lyapunov exponents, with the same probability

laws, albeit different matrix values. In section 3 we

prove, under mild positivity assumption, that the RE-

rate is analytic in the processes parameters. While the

RE-rate for two Markov chains is known ([7], [14]),

there is at present no explicit expression for the RE-rate

of two HMPs, in terms of the parameters of the two

underlying models. So far, only bounds ([15]) or ap-

proximation algorithms ([7], [16], [17]) were obtained.

In section 4 we study the representation of the RE-rate

as a Taylor series expansion in various parameters. We

show a relation between the Taylor series coefficients

of the relative-entropy conditioned on finite histories,

to those of the RE-rate, in two different parameter

regimes. We also demonstrate the applicability of our

results, by giving the first order asymptotic behavior

of the RE-rate in one of the regimes. We end with

conclusions and future directions.

2 Relative Entropy Rate and Lya-

punov Exponents

It was previously shown ([9], [10]) that the entropy

rate of aHMP can be represented as a top Lyapunov

exponent of a random matrix product. Here we extend

this result, and represent the RE-rate as a difference of

two Lyapunov Exponents. Forη = λ, µ anda = 1, .., s,

we define the matricesG(a)
η = {g(a)

η (i, j)} as:

g(a)
η (i, j) = Pη(XN+1 = i, YN+1 = a|XN = j) =

mη(j, i)rη(i, a) (5)

Let ρ
(N)
η be the (random) vector defined by

ρ(N)
η (i) = Pη([Y ]N1 , XN = i) (6)

Using the forward equations, one can write the recur-

sion relation

ρ(N)
η = G(YN )

η ρ(N−1)
η (7)

With the initial vector ρ
(1)
η given by ρ

(1)
η (i) =

πη(i)rη(i, Y1). By induction, the joint probability func-

tion Pη([Y ]N1 ), is given by:

Pη([Y ]N1 ) = ξt
2∏

i=N

G(Yi)
η ρ(1)

η (8)

Where here and throughout the paper,ξ denotes the

(column) vector ofs ones. Therefore, the RE-rate can

be written as:

D(λ||µ) = lim
N→∞

1
N

Eλ

[
log(ξt

2∏

i=N

G
(Yi)
λ ρ

(i)
λ )−

log(ξt
2∏

i=N

G(Yi)
µ ρ(1)

µ )
]

(9)

The mappingsA → ξtAρ
(1)
η , η = λ, µ are easily

shown to satisfy the requirements for being matrix

norms. Moreover, the above limit exists also when

taking only the first term in the sum (and is equal to

the minus of the entropy rate). This immediately gives:

Proposition 1: D(λ||µ) is the difference of the two

top Lyapunov exponents:

D(λ||µ) = lim
N→∞

1
N

Eλ

∥∥∥ log(
2∏

i=N

G
(Yi)
λ )

∥∥∥−

lim
N→∞

1
N

Eλ

∥∥∥ log(
2∏

i=N

G(Yi)
µ )

∥∥∥ (10)

Note that different matrices appear in the above two

Lyapunov exponents, but the probability law of select-

ing the matrices is the same. The matrices are chosen

according to the Markovian law, where the probability

of picking G
(b)
η after G

(a)
η is

Pλ(YN+1 = b|YN = a) =
∑

XN ,XN+1

Pλ(XN , XN+1, YN+1 = b|YN = a) =

∑s
i,j=1 πλ(i)rλ(i, a)mλ(i, j)rλ(j, b)∑s

j=1 πλ(j)rλ(j, a)
(11)

One should not be concerned by the fact that a different

norm was used for each exponent, as the Lyapunov

exponent is independent of the norm chosen ([18]).



3 Analyticity

It was recently shown ([8]) that under mild positivity

assumptions, the entropy rate of aHMP is analytic in

the underlying process parameters. We show here that

a similar result holds also for the RE-rate:

Theorem 1:Let M(s,C) be the ring of complex

squares× s matrices. LetΓ ⊂ M(s,C)4 be the hyper-

plane defined by:

Γ =
{

(Mλ, Rλ,Mµ, Rµ)
∣∣∣∀η = λ, µ, ∀i = 1, .., s,

s∑

j=1

mη(i, j) =
s∑

j=1

rη(i, j) = 1
}

(12)

Then there is some relatively open domainΩ ⊂ Γ, such

that:

1) Ω contains the open domain of all real positive

stochastic matrices:

Λ =
{

(Mλ, Rλ,Mµ, Rµ) ∈ Γ
∣∣∣

mη(i, j)rη(i, j) > 0, ∀η = λ, µ, ∀i, j = 1, .., s
}

(13)

2) D(λ||µ) is an analytic function of the parameters

(Mλ, Rλ, Mµ, Rµ) in Ω.

Proof: We represent the RE-rate as the sum:

D(λ||µ) = −H̄λ− lim
N→∞

1
N

Eλ

∥∥∥ log(
N∏

i=2

G(Yi)
µ )

∥∥∥ (14)

The first term−H̄λ, is simply the (minus) entropy

rate of the processλ, which was recently shown to

be analytic in someΩ, Ω ⊃ Λ ([8]). As for the second

term, one can repeat the proof from [8] (with the appro-

priate modifications) and show analyticity by showing

uniform convergence in someΩ of the finite condi-

tional functions
∑

[Y ]N1
Pλ([Y ]N1 ) log Pλ(YN |[Y ]N−1

1 ).
Alternatively, we observe that the parametersMλ, Rλ

influence only the probabilities in the Lyapunov expo-

nent representation (prop. 1), whereas the parameters

Mµ, Rµ influence only the matrix entries. Thus no pa-

rameter influence both, and we can rely directly on re-

sults from Lyapunov expnents theory, which guarantee

the analyticity in both the matrices values themselves

([19], [20]), and their probabilities ([21]).

4 Taylor Expansions Using Finite-

System Relative Entropies

In this section we show a relation between the Tay-

lor series coefficients of finite conditional relative en-

tropies, and those of the RE-rate. Our results apply in

two specific parameters regimes. We then demonstrate

an application of our results, by computing the first term

in the Taylor series expansion for one of the regimes,

termed ’High-SNR’.

4.1 The High SNR regime

Loosely speaking, the term high SNR regime represents

a regime in the parameters domain in which the obser-

vationsYN are likely to equal the hidden statesXN .

In other words, the emission matricesRη (η = λ, µ)
are close to the identity matrixI. We may therefore

write Rη = I + εTη, whereε > 0 is a small constant

and Tη = {tη(i, j)} are matrices satisfyingtη(i, i) <

0, tη(i, j) ≥ 0, ∀i 6= j and
∑s

j=1 tη(i, j) = 0. The RE-

rate in this regime can be given as an expansion inε

around zero. We state here our new theorem, connecting

the relative entropy of finite systems to the RE-rate:

Theorem 2:Let DN ≡ DN (λ||µ, ε) be the condi-

tional relative entropy between the probability laws

of λ and µ on a finite system of lengthN , where

Rη = I + εTη, η = λ, µ. Assume2 that there is some

(complex) neighborhood ofε = 0 in which the (one-

variable) functions{DN}, D are analytic inε, with a

Taylor expansion given by

DN (λ||µ, ε) =
∞∑

k=0

D
(k)
N εk, D(λ||µ, ε) =

∞∑

k=0

D(k)εk

(15)

(Here the coefficientsD(k)
N , D(k) are functions of the

parametersMλ,Mµ andTλ, Tµ. From now on we omit

this dependence). Then we have:

N ≥ k + 2 ⇒ D
(k)
N = D(k) (16)

The behavior stated in Thm. 2 was discovered using

symbolic computations, but was not proven before. A

stronger statement (of settling of the coefficients for

N ≥ dk+3
2 e) was proven (using similar methods) for

the special case of the entropy rate of aHMP ([22]).

The proof of Thm. 2 is based on the following two

simple ideas; First, we distinguish between the noise

parameters at different sites. This is done by consider-

ing a more general process{ZN}, whereZi’s emission

matrix according to the modelη is Rη,i = I + εiTη.

2Analyticity aroundε = 0 was shown in [8], albeit only for the
entropy rate. The functionsDN are easily shown to be differentiable
to all orders inε, at ε = 0. The unproven assumption here is that
they are also analytic with a radius of analyticity uniform inN , and
are uniformly bounded within some common neighborhood ofε = 0



The joint distribution of[Z]N1 is thus determined by

Mη,Tη and [ε]N1 . We define the following functions:

FN (λ, µ, [ε]N1 ) =
∑

[Z]N1

Pλ([Z]N1 ) log
Pλ(ZN |[Z]N−1

1 )
Pµ(ZN |[Z]N−1

1 )
(17)

Setting all theεi’s equal, reduces us back to theY

process, so in particularFN (λ, µ, (ε, .., ε)) = DN (ε).
Second, we observe that if a particularεi is set to zero,

the corresponding observationZi must equal the state

Xi. Thus, conditioning back to the past is ’blocked’.

This can be used to prove the following:

Lemma 1:Assumeεj = 0 for some1 < j < N .

Then :

FN ([ε]N1 ) = FN−j+1([ε]Nj ) (18)

Proof: F can be written as:

FN =
∑

[Z]N1

Pλ([Z]N1 ) log
Pλ(ZN |[Z]N−1

1 )
Pµ(ZN |[Z]N−1

1 )
(19)

Since εj = 0, we must haveXj = Zj , and therefore

(since theXi’s form a Markov chain), conditioning

further to the past is ’blocked’, that is, forη = λ, µ:

εj = 0 ⇒ Pη(ZN |[Z]N−1
1 ) = Pη(ZN |[Z]N−1

j ) (20)

(Note that eq. (20) is true forj < N , but not forj =
N ). Substituting in eq. (19) gives:

FN =
∑

[Z]N1

{
Pλ([Z]N−1

1 )Pλ(ZN |[Z]N−1
j )

log
Pλ(ZN |[Z]N−1

j )

Pµ(ZN |[Z]N−1
j )

}
=

∑

ZN
j

{
Pλ([Z]N−1

j )

Pλ(ZN |[Z]N−1
j ) log

Pλ(ZN |[Z]N−1
j )

Pµ(ZN |[Z]N−1
j )

}
= FN−j+1

(21)

Let ~k = ([k]N1 be a vector withki ∈ {N ∪ 0}. Define

its ’weight’ asω(~k) =
∑N

i=1 ki. Define also:

F
~k
N ≡ ∂ω(~k)FN

∂εk1
1 , .., ∂εkN

N

∣∣∣∣∣
~ε=0

(22)

The next lemma shows that adding zeros to the left of
~k leavesF~k

N unchanged:

Lemma 2:Let ~k = [k]N1 with k1 = 0. Denote~k(c)

the concatenation of~k with c zeros to the left,~k(c) =
(0, .., 0︸ ︷︷ ︸

c

, k1 = 0, .., kN ). Then:

F
~k
N = F

~k(c)

c+N , ∀c ∈ N (23)

Proof: Using lemma 1, we get :

F
~k(c)

c+N ([ε]c+N
1 ) =

∂ω(~k(c))Fc+N ([ε]c+N
1 )

∂εk2
c+2, .., ∂εkN

c+N

∣∣∣∣∣
~ε=0

=

∂ω(~k)FN ([ε]c+N
c+1 )

∂εk2
c+2, .., ∂εkN

c+N

∣∣∣∣∣
~ε=0

= F
~k
N ([ε]c+N

c+1 ) (24)

SummingF
~k
N over all~k’s with weight k givesD

(k)
N :

D
(k)
N =

1
k!

∑

~k,ω(~k)=k

F
~k
N (25)

We now show that one does not need to sum on all

such~k’s, as many of them give zero contribution:

Lemma 3:Let ~k = [k]N1 . If ∃i < j < N , with ki >

kj = 0, thenF
~k
N = 0.

Proof: Using lemma 1 we get

F
~k
N =

∂ω(~k)FN ([ε]N1 )
∂εk1

1 , .., ∂εkN

N

∣∣∣∣∣
~ε=0

=

∂ω(~k)FN−j+1([ε]Nj )

∂εk1
1 , .., ∂εkN

N

∣∣∣∣∣
~ε=0

=

∂ω(~k)−1

∂εk1
1 , .., ∂εki−1

i , .., ∂εkN

N

[
∂FN−j+1([ε]Nj )

∂εi

]∣∣∣∣∣
~ε=0

= 0

(26)

We are now ready to prove Thm. 2, which follows

directly from lemmas 2 and 3:

Proof: Let ~k = [k]N1 with ω(~k) = k. Define its

’length’ (from right, considering only non-zero entries)

as l(~k) = N + 1−minki>0{i}. It easily follows from

lemma 3 that ifF~k
N 6= 0, we must havel(~k) ≤ k + 1.

Therefore, according to lemma 2:

F
~k
N = F

(kN−k−1,..,kN )
k+2 (27)

for all ~k’s in the sum. Summing on allF~k
N with the

same ’weight’, we getD(k)
N = D

(k)
k+2, ∀N > k +

2. From the analyticity ofDN and D aroundε = 0,

one can show by induction thatlimN→∞D
(k)
N = D(k),

therefore we must haveD(k)
N = D(k), ∀N ≥ k + 2.

4.2 The Almost Memoryless Regime

In the almost memoryless (A-M) regime, we assume

that the Markov transition matrices are close to a

’memoryless’ matrix. A matrixQ is called memoryless,

if all its rows are identical, i.e.q(i, j) = q(j). Thus, a

Markov process with a memoryless transition matrix



is in fact an i.i.d. process. Throughout this section we

assume thatMη is given byMη = Qη +δTη, such that

Qη are memoryless matrices,δ > 0 is a small constant

and
∑s

j=1 tη(i, j) = 0. Interestingly, in similar to the

high-SNR regime, the conditional relative entropy given

a finite history gives the correct RE-rate up to a certain

order. This is stated in:

Theorem 3:Let DN ≡ DN (λ||µ, δ) be the condi-

tional relative entropy between the probability lawsλ

and µ on a finite system of lengthN , whereMη =
Qη + δTη, η = λ, µ and theQη ’s are memoryless

matrices. Let the Taylor expansions ofDN and D

aroundδ = 0 be given by:

DN (λ||µ, δ) =
∞∑

k=0

D
(k)
N δk, D(λ||µ, δ) =

∞∑

k=0

D(k)δk

(28)

Then we have:

N ≥ k + 2 ⇒ D
(k)
N = D(k) (29)

Proof: The proof of Thm. 3 is very similar to

that of Thm. 2. Distinguishing between the sites by

setting Mη,i = Qη + δiTη in site i, we note that

settingδi = 0 for somei makes the transition matricx

Mη,i memoryless, and thus knowingYi ’blocks’ the

dependence ofYN on previousYj ’s (∀j < i). The rest

of the proof continues in an analogous way to that of

Thm. 2 (including the three lemmas therein), and its

details are thus omitted here.

4.3 Computing the series-coefficients

An immediate application of Thms. 2 and 3 is the

computation of the first terms in the series expansion

for D, by simply computing these terms forDN for

N large enough. In this section we demonstrate, for

the High-SNR regime, the computation of the first

order coefficient. If one wishes to compute higher

orders, a straightforward way is to computeD
(k)
N for

N = k + 2. This can be done by simply enumerating

all sequences[Y ]N1 , computing thek-th coefficient

in Pλ([Y ]N1 ) log Pλ([Y ]N1 )

Pµ([Y ]N1 )
and summing their contribu-

tions. This computation is, however, exponential ink

and raises the challenge of designing faster algorithms.

For the High-SNR regime we have:

Proposition 2: Let η = {Mη, Rη}, with Rη = I +
εTη, η = λ, µ. Then the RE-rateD(λ||µ) satisfies:

D(λ||µ) =
s∑

i,j=1

πλ(i)mλ(i, j) log
(

mλ(i, j)
mµ(i, j)

)
+

ε

s∑

i,j,k,l=1

{
πλ(i)mλ(i, l)mλ(l, k)

[

tλ(l, j) log
(

πλ(i)mλ(i, j)mλ(j, k)
πµ(i)mµ(i, j)mµ(j, k)

)
−

mµ(i, j)mµ(j, k)tµ(j, l)
mµ(i, l)mµ(l, k)

]}
+ O(ε2) (30)

Proof: According to Thm. 2,D = D3 + O(ε2).
We thus expandD3 aroundε = 0, by substitutingRη =
I + εTη, η = λ, µ:

D3(λ||µ) =
∑

i,j,k

{
Pλ([Y ]31 = (i, j, k)t)

log
Pλ([Y ]31 = (i, j, k)t)Pµ([Y ]21 = (i, j)t)
Pµ([Y ]31 = (i, j, k)t)Pλ([Y ]21 = (i, j)t)

}
(31)

The above probabilities are of the formPη([Y ]N1 ), and

are given in eq. (1). One can, however, sum in eq. (1)

only on vectors[X]N1 which differ from [Y ]N1 in at

most one site, and still get the correct probability up to

an O(ε2) correction. This gives:

Pη([Y ]21 = (i, j)t) = πη(i)mη(i, j)+

ε

s∑

k=1

[
πη(k)mη(k, j)tη(k, i) + πη(i)mη(i, k)tη(k, j)

]

+O(ε2) (32)

And

Pη([Y ]31 = (i, j, k)t) = πη(i)mη(i, j)mη(j, k)+

ε

s∑

l=1

[
πη(l)mη(l, j)mη(j, k)tη(l, i)+

πη(i)mη(i, j)mη(l, k)tη(l, j)+

πη(i)mη(i, j)mη(j, l)tη(l, k)
]

+ O(ε2) (33)

Substituting eqs. (32, 33) in eq. (31) , and using the

Taylor expansion of the logarithm functionlog(a+x) =
log a+ x

a +O(x2) gives, after simplification, the result

(30).

The rigorous result (30) was compared to simulation-

based computations of the RE-rate, and good agreement

was found for small values ofε (results are omitted

here, due to lack of space). One can perform a similar

expansion ofD3 in δ, to obtain the first order coefficient

in the A-M regime. Note that for memoryless matrices

Qη we haveqη(i, j) = πη(j), thus the RE-rate equals

D(P (1)
λ ||P (1)

µ ), and is given by:

D(λ||µ) =



s∑

i=1

{[ s∑

j=1

πλ(j)rλ(j, i)
]
log

(∑s
j=1 πλ(j)rλ(j, i)∑s
j=1 πµ(j)rµ(j, i)

)}

(34)

When expanding near a memoryless matrix, one needs

to take into account both the perturbations in the

Markov matricesMη, and in the stationary vectors

πη. We note that if one is given two modelsλ, µ,

one can choose to expand aroundany memoryless

matrices, and different matrices will naturally give

different Taylor coefficients. Two such possibilities are,

for example, taking uniform matrices,qη(i, j) = s−1,

or taking matrices which preserve the singleton distri-

butions ofXN , i.e. qη(i, j) = πη(j). Unlike the High-

SNR regime, when one wishes to compute of the first

order of, sayD3, one needs to sum over all vectors

[X]31, as they all contribute to the sum.

5 Conclusion

We have obtained new results about the RE-rate be-

tween two finite-alphabetHMMs. We have represented

the relative entropy as a difference of two Lyapunov

exponents from random matrix theory. We established

the analyticity of the RE-rate, in the interior of the

allowable parameters range. We have also shown a

connection between the relative entropy of distribu-

tions on a finite chain and the RE-rate. This gives a

straightforward way to compute the RE-rate as a (one

parameter) Taylor series-expansion, in two different

regimes. Other parameter regimes still need to be

explored. For example, it is interesting to determine

the behavior of the RE-rate when one of the models

is a small perturbation of the other. In the context of

model selection, it is also of interest to compare HMMs

of different sizes, where here the RE-rate gives the

(average) increase in the likelihood score when adding

more parameters. Determining the (maximal) domain of

analyticity for the entropy rate is also of considerable

interest, as it relates to the radius of convergence of the

Taylor series we have obtained.
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