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ABSTRACT
Summary: We introduce a novel unsupervised approach for the
organization and visualization of multidimensional data. At the heart of
the method is a presentation of the full pairwise distance matrix of the
data points, viewed in pseudocolor. The ordering of points is iteratively
permuted in search of a linear ordering, which can be used to study
embedded shapes. Several examples indicate how the shapes of cer-
tain structures in the data (elongated, circular and compact) manifest
themselves visually in our permuted distance matrix. It is important to
identify the elongated objects since they are often associated with a
set of hidden variables, underlying continuous variation in the data.
The problem of determining an optimal linear ordering is shown to be
NP-Complete, and therefore an iterative search algorithm with O(n3)

step-complexity is suggested. By using sorting points into neighbor-
hoods, i.e. SPIN to analyze colon cancer expression data we were
able to address the serious problem of sample heterogeneity, which
hinders identification of metastasis related genes in our data. Our
methodology brings to light the continuous variation of heterogeneity—
starting with homogeneous tumor samples and gradually increasing
the amount of another tissue. Ordering the samples according to their
degree of contamination by unrelated tissue allows the separation of
genes associated with irrelevant contamination from those related to
cancer progression.
Availability: Software package will be available for academic users
upon request.
Contact: fedafna@wisemail.weizmann.ac.il
Supplementary information: http://www.weizmann.ac.il/physics/
complex/compphys/spin

INTRODUCTION
Exploratory data analysis is critical in a broad range of research areas,
where large collections of data need to be meaningfully arranged and
presented. It is especially relevant in biology, where the past decade
has witnessed an explosion in data production, largely attributed to
the widespread use of high-throughput technologies, such as gene-
expression arrays. One major challenge in the analysis of large-scale
expression data is effective data organization and visualization (Eisen
et al., 1998), where typical goals include class discovery and feature
extraction (Ramaswamy et al., 2001). However, in many cases the
data is characterized by inherently gradual progression rather than

∗To whom correspondence should be addressed.

by clear, abrupt changes between discrete states. For such cases
clustering algorithms, whose aim is to partition the data into several
distinct groups, fail to capture the gradual nature of the phenomena.
For example, when studying the evolution of a certain disease one
expects the existence of continuous variables associated with disease
progression. Therefore, any attempt to place a sharp division on such
an inherently continuous phenomenon is doomed to be somewhat
arbitrary.

The problem of uncovering and presenting continuous trajectories
and variables led us to develop sorting points into neighborhoods
(SPIN), an unsupervised sorting method, very different in spirit,
philosophy and implementation from clustering. SPIN uses an iter-
ative process to find an informative permutation of the data points.
This is challenging since permutation space is factorially large,
containing a very small measure of meaningful orderings (needle
in a haystack problem). SPIN’s intuitively color coded image of
the reordered distance matrix uncovers elongated structures that
reveal the existence of continuous variables that govern the vari-
ation in the data. Our ordering approach is especially appropriate
for studying scenarios characterized by the accumulation of gradual
changes, since it excels at tracking progression. There exist other
methods that search efficiently for informative submatrices in expres-
sion data (Ben-Dor et al., 2003; Getz et al., 2000; Lepre et al.,
2004). One of these (Ben-Dor et al., 2003) is limited to the case
when the expression levels of the selected genes vary monoton-
ously over the ordered samples, whereas SPIN uncovers with equal
ease a multidimensional subspace of genes in which the samples
trace a complicated trajectory, along which not a single gene var-
ies monotonously. Another method (Lepre et al., 2004) captures
efficiently a group of samples that forms a tight sphere in the spe-
cial subspace of genes, but is not designed to capture continuous
variation.

The purpose of identifying shapes is to gain insight into the under-
lying process, such as the continuous nature of cell differentiation or
the closed loop formed by cells along different stages in the yeast cell
cycle. In our main application we demonstrate a possible resolution
of a well-known problem in microarray measurements, namely that
of sample heterogeneity. Previous expression-array based studies of
cancer (Alon et al., 1999) recognized the issue of variability in tis-
sue composition of samples, and showed that some of the variation
in expression between normal and cancer tissue can be attributed
to such causes. This may result in identification of differentially
expressed genes that are unrelated to the biological agenda, wrongly
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implicating them with cancer. We demonstrate how SPIN can be
used to distinguish disease related genes from irrelevant ones.

We start with the concept and intuition of SPIN, explaining how
to infer shape characteristics from SPIN permuted distance matrices.
This is done by going through a set of examples of increasing com-
plexity, including toy models as well as real biological data. Next, we
explain how the algorithm works, and the rationale behind a specific
implementation. We prove that the problem the algorithm attempts to
solve is NP-hard, and also show that our heuristic quickly converges
(O(n2) − O(n3)) to useful solutions. We stress the general applic-
ability of SPIN to any dataset where a dissimilarity metric between
points can be defined. Finally, we describe an application to analysis
of large-scale gene-array data, specifically addressing the issue of
disease progression versus sample contamination in colon cancer.

DEMONSTRATING THE CONCEPT

Ferreting elongation
Our methodology assumes that a distance matrix D, can be defined,
whose elementDij represents the dissimilarity between points i and j

(Euclidean distance was used throughout this paper). Starting with a
random ordering of data points, the corresponding initial unordered
distance matrix is impossible to interpret. However, the permuted
image, obtained after reordering the data by SPIN, is highly inform-
ative. For our first example consider points uniformly distributed
within a cylinder, as presented in Figure 1a (plate 1). SPIN orders
the points from one end of the cylinder to the other, such that the cor-
respondingly permuted distance matrix has a characteristic pattern,
as seen in Figure 1a (plate 3); the elements near the main diagonal
stand for short distances (colored blue), with a clear gradient of
increasing distances (colors vary from blues to reds) as one moves
away from the main diagonal. Although both the ordered [Fig. 1a
(plate 3)] and unordered [Fig. 1a (plate 2)] matrices contain exactly
the same elements, only the permuted matrix allows an observer to
deduce structural information.

In gene-expression data an elongated conformation may be asso-
ciated with a gradual process, such as cells going through several
successive stages of differentiation. In Rozovskaia et al. (2003) the
U95 affymetrix chip was used to determine expression profiles of
acute lymphoblastic leukemias (ALLs), including tumors at various
stages of differentiation (such as pre-B, pro-B and T cell ALLs). One
particular group of genes identified by Rozovskaia et al. displayed
expression profiles that are sensitive to the differences between the
early and late differentiation stages (pro-B versus pre-B and T cell
tumors). Here the dissimilarity matrix between samples was calcu-
lated using only the differentiation-implicated genes as features. In
Figure 1a (plate 4) the SPIN permuted matrix displays a clear pattern
of elongation, with early cells (pro-B) placed at one side and more
differentiated cells (from pre-B and T cell tumors) located at the other
end of the trajectory.

If the elongated object closes upon itself, i.e. represents a cycle,
then the corresponding fingerprint is also periodic, as shown in
Figure 1b (plate 1–3). The phasing in the colors as one progressively
deviates from the main diagonal can be understood by considering
the organization of a circle. Starting from any arbitrary point A and
going around the ring, the distance of the current point to A increases
monotonously (color changes from blue to red) until the diametric-
ally opposing point is reached. At this stage the distances begin to
decrease (color goes back to blue), as we approach the point of origin

from the other side. The most obvious fingerprint of a circular object
is the appearance of blue at the corners far from the main diagonal
of the distance matrix.

For a real-world application consider the yeast elutriation-
synchronized cell-cycle expression data (taken from Spellman et al.,
1998). Spellman et al. employed a supervised phasing method to
assign genes to five known classes, namely G1, S, S/G2, G2/M and
M/G1, utilizing the expression profiles of genes that were previously
known to participate in specific phases of the cell cycle. They then
proceeded to perform unsupervised analysis, specifically hierarch-
ical clustering, and found that most genes belonging to the same
class were clustered together. Here we simply analyzed the most
highly varying transcripts, as monitored during the progression of
cell cycle, and proceeded to calculate their pairwise dissimilarity
matrix. As seen in Figure 1b (plate 4), the permuted distance matrix
contains the signature of a ring. Assigning such a cyclic nature to
genes associated with cell cycle is in accordance with known bio-
logical dynamics and functions. This example highlights the ease
of ordering gene-expression data in SPIN, and the informative and
intuitive nature of the color-enhanced output. Previous studies have
recognized the inherent cyclic nature of this dataset (Alter et al.,
2000), but required several stages of data manipulation and normal-
ization, followed by a manual ordering using the PCA projection to
convey the results that are easily captured in SPIN.

Multiple clusters
The most common approach to analyzing a dataset composed of mul-
tiple objects is clustering. However, by emphasizing the partitioning
of data, the clustering approach neglects the issue of elucidating the
shapes of embedded objects in multidimensional data. SPIN, on the
other hand, focuses on meaningful ordering and presentation, thus
gaining insight into local and global structures. This is demonstrated
on artificial data (Fig. 2a), where a presentation of the permuted dis-
tance matrix (Fig. 2b) brings to light the separation into four groups,
as can be seen by the sharp boundaries. Furthermore, one can infer
the shape of each cluster, as well as the global conformation. The
two tight spherical clusters (eyes) appear as dark blue squares on
the main diagonal. From the light blue color of the squares between
them we can deduce that the eyes are relatively close to each other,
i.e. their relative placement. The next cluster (smile) has a gradient
of colors, from dark blue on the main diagonal to light blue at the
corners. As explained above, this indicates an elongated structure.
The fourth cluster cycles through the entire spectrum, returning to
dark blue at the corners, signifying a cyclic shape (Fig. 1b). The fact
that the distance between opposing points on the ring is the largest
(i.e. the darkest red in the matrix) indicates that the ring encompasses
all other points.

Some clustering algorithms, such as average-linkage and k-means,
fail to cluster this data correctly (Fig. 2c and d). Others, such as
single-linkage, succeed in rightly separating the data (Fig. 2e), but
are not able to convey the different shape characteristics of all four
objects. A linkage algorithm can be supplemented by a leaf-ordering
algorithm (Bar-Joseph et al., 2001), in order to provide a meaningful
organization of points within clusters. However, even an ordered tree
is lacking with respect to highlighting shapes. In SPIN, the inherent
coupling between visualization and organization produces a powerful
presentation tool. The permuted distance matrix captures the overall
layout of compound structures, as well as the local conformation of
its components.
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Projection enhancement
In the exploration of gene-expression data linear models were
employed to describe the expression levels of genes as a linear
function of common hidden variables. Singular value decomposi-
tion (SVD) (Alter et al., 2000) was used to decompose the gene
profiles into linear combinations of eigengenes, i.e. the eigenvectors
of the covariance matrix; independent component analysis (ICA)
(Liebermeister, 2002) produced a linear model based on hidden vari-
ables termed expression modes. In such approaches the projection of
data onto smaller subspaces reduces noise and allows useful visualiz-
ation. In SPIN we suggest a different approach, in which the distance
matrix is not subjected to any distortions, thus fully preserving the
original structure of the data. One advantage of avoiding distortion
is elimination of false positives, in the sense that the fingerprint of an
elongated structure in the SPIN permuted matrix invariably implies
a genuine elongation in the data. In the Supplementary informa-
tion section we further discuss the relationships between the SPIN
permutation and projection according to PCA.

In the examples presented so far, by applying dimensionality
reduction methods, the shapes of objects could be clearly discerned
from a three-dimensional (3D) projection of the data points. The next
example illustrates SPIN’s ability to deal with more complex objects
embedded in a truly high-dimensional space, objects whose struc-
ture is seriously distorted when projected onto 3D. In such cases even
the most up-to-date dimensionality reduction methods are doomed
to fail in finding 3D representations which properly capture the data
structure. Figure 3a shows a PCA projection of points constituting
a set of seven intersecting twisted cylinders in d = 7 dimensions.
Projecting such a relatively complicated object onto the first prin-
cipal components does not produce a clear image (Fig. 3a). Coloring
the points according to SPIN’s linear ordering (Fig. 3b) produces
a much more informative image. Furthermore, the distance matrix
(Fig. 3c) identifies each rod as an elongated structure (along the main
diagonal). The relationships between the seven rods can be deduced
from the patterns in the off-diagonal regions in the organized dis-
tance matrix. For example, the fact that the rods share a common
nexus is reflected by a grid of blue patches. The combination of any
dimensionality reduction technique with SPIN may serve to highlight
the shape-characteristics of a high-dimensional object, which are not
immediately made evident by projection onto a lower dimensional
space.

Expression data analysis
In the context of gene-expression data we implemented SPIN in
an interactive GUI that accepts an expression matrix as input, and
supports the following actions:

(1) ordering of samples using genes as features,

(2) ordering of genes using samples as features and

(3) zooming in on subsets of the original expression matrix to order
objects in a reduced subspace.

A coupling between samples and genes is produced by the ability to
identify a group of genes (samples) that fluctuate in a synchronized
manner. Similar in spirit to the coupled two-way clustering (CTWC)
approach (Getz et al., 2000) we proceed by using the zoom in oper-
ation to order the samples (genes) in a selected reduced subspace.
One can redefine the working space in a recursive manner.

FORMAL STATEMENT OF THE PROBLEM
The input to SPIN is a distance matrix D ∈ R

n×n calculated for data
composed of n points, and its output is a reordered distance matrix,
obtained by permuting the n objects according to a particular per-
mutation P ∈ Sn (the permutation group of n points). We denote by
P also the permutation matrix associated with P . In search for cri-
teria for an informative permutation, we observed that well-ordered
distance matrices exhibit two distinct and sometimes competing
properties. First, in many cases the values in the upper rows tend
to increase with the column index (and decrease in the bottom rows),
as in Figure 1a (plate 3). This type of ordering demands that large
distances are assigned to corners, far from the diagonal. The second,
alternative aim is to ensure that the elements near the main diagonal
tend to have smaller dissimilarity values, i.e. the linear ordering is
such that if two points are positioned near each other, their distance
in the full high-dimensional space is also small [Fig. 1b (plate 3)]. We
term the two properties ‘Side-to-Side’ (STS) and ‘Neighborhood’.

These attributes can be mathematically formulated by introdu-
cing an energy (or cost) function F ≡ FD :Sn → R quantifying
the quality of a permutation. Thus, the ordering problem becomes
one of finding the permutation P that minimizes F . We concen-
trate on the following family of functions: F(P ) = tr(PDP TW) =∑n

i,j=1 WijDP(i)P (j), where tr denotes matrix trace and W ∈ R
N×N

is some weight matrix. For this family, the optimization problem is
known as the quadratic assignment problem (QAP), introduced by
Koopmans and Beckmann (1957). The general QAP is considered
an extremely difficult optimization problem. It is known to be NP-
Hard even to approximate, and in practice, usually untractable for
n >30. [See Burkard et al. (1998) for a comprehensive survey of the
problem.]

The STS property is captured by setting W = XXT, for some
strictly increasing (column) vector X (in our implementation we
worked with Xi = i − (n + 1)/2). Neighborhood is reflected by
choosing W to be symmetric and concentrated in a region, determ-
ined by a parameter σ , around its main diagonal (our choice of W

is defined below). We show below that finding a global minimum
for our particular choices of F is NP-hard, and we propose two iter-
ative heuristic algorithms to search for minima. We prove, for both
algorithms, that the energy is non-increasing on every iteration. Both
algorithms were used in the examples presented in this paper, but the
displayed images are from Neighborhood.

The STS algorithm
We have shown that the STS problem is NP-Complete by redu-
cing it to the well known k-clique problem in graph theory (see
Supplementary material).

The STS algorithm is shown below:

Side-to-Side
Input : D and X.
(1) Set X0 = X, t = 0, define P −1 = In×n.
(2) Calculate St = DXt .
(3) Find P t which sorts St in a descending order.
(4) If P tSt �= P t−1St , set Xt+1 = P t T

X0,
set t = t + 1 and go to 2.

(5) Output P tDP t T.
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We call each pass through steps 2–4 a STS iteration, whose
complexity is O(n2). Each STS iteration can be viewed as a map-
ping from the permutation group Sn to itself, GD :Sn → Sn.
Thus P is a possible output of STS if and only if it is a fixed
point of GD .

In the Supplementary material we prove that when the input matrix,
D, is a distance matrix, convergence of STS to a fixed point is

guaranteed after a finite number of steps. The proof is based on
showing that every STS iteration reduces the cost function, F ,
guaranteeing convergence to a local minimum. Note that the STS
procedure may converge to a P which does not correspond to the
global minimum of F ; for different initial permutations the algorithm
may terminate at different fixed points, with different values of F .
A known strategy to cope with this problem is to start the algorithm

1
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from many randomly generated initial permutations, and choose the
best fixed point obtained. Moreover, it is also possible to have mul-
tiple global minima. For example, define for every permutation P its
‘reverse’ P̄ by P̄ (i) = P(n + 1 − i), (i = 1, . . . , n). If X is anti-
symmetric we get for STS: F(P ) = F(P̄ ), leading to at least two
global minima. Some data-sets may contain further degeneracies
due to inherent symmetries. In practice it is not essential to reach
the global minimum since the fixed points to which the algorithm
converges are often just as informative.

The Neighborhood algorithm

Claim. The Neighborhood problem is NP-Hard.

Proof. The two ingredients of the problem are the distance
matrix D and the weight matrix W . Setting Wij = 1|i−j |=1 gives
tr(PDP TW) = ∑n−1

i=1 DP(i+1),P(i) + ∑n
i=2 DP(i−1),P(i) = 2

∑n−1
i=1

DP(i+1),P(i). This is the cost function for the Travelling Salesman
Problem, which is known to be NP-Hard, even in the Euclidian case
(Papadimitriou, 1977).

The following algorithm attempts to relocate a point A to a
local neighborhood that best fits it, i.e. none of the points in the
neighborhood of A are at a large distance from it.

Neighborhood
Input : Dn×n and Wn×n

(1) Set W 0 = W , P −1 = In×n, t = 0.
(2) Compute Mt = DWt .
(3) Set P t = argminQ∈Sn

tr(QMt).
(4) If tr(P tMt ) �= tr(P t−1Mt−1), set Wt+1 = P t T

W ,
t = t + 1 and go to 2.

(5) Output P tDP t T.

Each passage of steps 2–4 constitutes one Neighborhood iteration.
The size of the neighborhood is dictated by the choice of W , and,
in turn, affects the scale at which objects are distinguished. Step 3
can be accomplished by solving the linear assignment problem. This
solution reflects the best current guess for an improved location for
all the data points. At every iteration, points are sent to their new
location, based on the current ordering of the points. That is, point A

Fig. 1. Shapes of simple objects, each consisting of 500 points (except for plate 4 of a where only 27 samples are available). (a) 1. Points uniformly distributed
within a cylinder. 2. The corresponding distance matrix: the color of element Dij reflects the relative distance between points i and j , where blue (red) denotes
small (large) distances, respectively. This randomly ordered distance matrix is the input to SPIN. 3. The final permutation in which points are ordered along
the trajectory of the cylinder. Only the permutation of the rows/columns changes. 4. Leukemia samples: the permuted distance matrix for 27 blasts at various
stages of differentiation, including pre-B, pro-B and T cell ALLs. (b) Corresponding images for a cyclic object: A ring of points is characterized by a cyclic
pattern, with small distances (blue) near the main diagonal and at the corners. 4. Yeast cell cycle: 500 genes with highest standard deviation across the samples
were analyzed, using the raw expression data without any manipulation (except for thresholding at the 99th percentile to avoid spikes). The ordered image
reveals the heterogeneous nature of the ring, corresponding to separation into different stages of the cell cycle.

Fig. 2. Relations and shapes of multiple clusters. SPIN’s results for a toy dataset of 800 points in 10D. The complex object was originally generated in 3D, and
then seven additional dimensions of noise (uniformly distributed between −1 and 1) were added. (a) The projection of the data points onto the first and second
PCA plane. (b) The SPIN sorted distance matrix. From this organized matrix one can easily infer the shapes of the four clusters and their relative placement.
For example, the position on the ring closest to the top eye is marked by a red circle. This can be inferred from the sorted matrix by locating the darkest blue
elements in the rectangle corresponding to the distances between the eye and the ring, as shown by the arrows. For comparison, the results of three popular
clustering methods were translated to permutations on the distance matrix: (c) k-Means (with k = 4); (d) average linkage and (e) single linkage. The division
of the points into four clusters (red, blue, green and black) is presented below each matrix. k-Means and average linkage fail to identify the correct clusters.
Single linkage does identify the four clusters, but does not order the points within them in an informative manner.

Fig. 3. Intersecting rods. A set of seven orthogonal intersecting cylinders, comprised 1400 points in seven dimensions. The rods were twisted by rotation with
angles that increase linearly with the distance from the origin. (a) The points displayed in the first two PCAs. (b) The same projection with the points colored
according to their placement in SPIN; the first point in the SPIN permutation is colored dark blue, going through blue, green, yellow and orange, with the last
points colored dark red. In this example the coloring is crucial for making sense out of a complex image. (c) The correspondingly SPIN-permuted distance
matrix. The region of the intersection creates blue patches in the off-diagonal regions of the distance matrix.

Fig. 4. Colon cancer data; expression levels of the 1000 highest variance transcripts overall 144 samples. (a) Projection of the samples onto the first (x-axis)
and second (y-axis) principal components, calculated in gene space. The clinical identity of samples is indicated by a color: primary carcinomas (blue),
adenomas (green), normal colon (red), liver metastasis (magenta), lung metastasis (orange), normal liver (black) and normal lung (cyan). This coloring scheme
for tissues is kept in all subfigures. The first PCA reflects 34% of variance, and is dominated by the differences between normal liver and all other samples.
(b) SPIN-permuted distance matrix for the samples. Colors depict dissimilarity levels between samples, with red (blue) indicating large (small) distances.
(c) Genes SPIN-permuted distance matrix. The genes display several distinct expression profiles. (d) Two-way sorted expression matrix. Here colors depict
relative expression intensities, where red (blue) denotes relatively high (low) expression. The colored bar below the matrix provides the clinical identity of the
tissues. Some of the dominant gene clusters and their expression levels are highlighted by dark rectangles. Each gene cluster is used to construct the distance
matrix of a particular subset of the samples. (e) The distance matrix of normal liver, liver metastasis and carcinoma samples, as calculated in the subspace
of the liver-specific gene cluster. The normal liver and carcinoma samples form two distinctly separated, tight spherical clusters, while the metastases form a
connecting elongated cloud, with some of the samples displaying higher proximity (i.e. similarity) to the normal liver samples. The six metastasis samples that
were placed farthest from the liver samples presumably contain the lowest amounts of normal liver tissue, and are therefore referred to as clean metastasis.
(f) Muscle and connective tissue associated genes. Expression profiles related to cell mixtures can be distinguished in SPIN by the fact that affected samples
tend to order into an elongated shape, due to the relatively high variation in the composition of the samples. Here the ordering of the normal colon samples is
indicative of levels of muscle and connective tissue contamination—lowest in the polyp samples. (g) Genes related with a gradual loss of differentiation. Note
the placement of the polyp samples between normal and cancer tissue. In (e)–(g) the clinical identity of the tissues’ is given by the colored bar to the right of
each distance matrix.
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is sent to a new location i(A) on the basis of the presently residing
points near i(A). However, since all the points are permuted simul-
taneously, there is no guarantee that this assignment remains optimal,
since the points that were near i(A) may have moved elsewhere.
Hence the need to re-iterate. Since the linear assignment problem is
known to be solvable in time O(n3) (Dinic and Kronrod, 1969), the
complexity of each iteration is O(n3).

We prove that the energy is improved on every iteration;
thus convergence to a fixed point is guaranteed after a finite
time

Claim. tr(P t+1DP t T
W) ≤ tr(P tDP t−1T

W).

Proof. tr(P t+1DP t T
W) = tr(P t+1DWt+1) ≤ tr(QDWt+1)

∀Q ∈ Sn.
Using the symmetry of W and the property tr(AB) = tr(BA)

we get:

tr(QDWt+1) = tr(QDP t T
W) = tr((QDP t T

W)T)

= tr(WP tDQT) = tr(P tDQTW).

Taking Q = P t−1 gives the desired result.
According to step 4, the algorithm terminates unless a strict

inequality holds in the above claim. This prevents cycles of con-
stant energy. Since the permutation space is finite, termination in a
fixed point after a finite number of steps is guaranteed.

Our choice for the weight matrix is taken to be Gaussian, Wij =
e−(i−j)2/nσ , which is then normalized into a doubly stochastic matrix
(i.e. sum of each row and column is equal to 1). In this case the mis-
match matrix M = DW can be viewed as a Gaussian smoothing of
variance σ 2 on each row of D. For a given dataset, there exists a range
of relevant length scales, where large scales reflect the overall layout
of the data, while smaller values give a better local organization at the
expense of possibly fragmenting larger structures. This is captured
in SPIN by controlling the value of σ . One heuristic scheme that usu-
ally works well is starting with a very large σ , iterating several times,
then lowering σ (e.g. by a factor of 2) and so forth, in the spirit of
simulated annealing. Moreover, the solution of the linear assignment
problem (step 3 in the algorithm) can be efficiently approximated by
finding the minimum of each row of M , and then sorting the indices
of the minima (ties are broken arbitrarily). This heuristic, though
not guaranteed to reduce F at every iteration, generally yields a low
energy solution, while considerably speeding up the calculations.

APPLICATION TO COLON CANCER
The biological question addressed here is that of recognizing altera-
tions in gene expression that may be linked with the progression of
cancer. SPIN is especially appropriate for this analysis, since can-
cer evolution is an inherently continuous process, which arises from
a gradual accumulation of genetic alterations that promote selec-
tion of cells with increasingly aggressive behavior. Such continuity
may be completely overlooked by traditional methods that emphas-
ize clear separations. Colon cancer is a good model system since
samples are readily available across several well-defined stages of the
disease, enabling a study of the onset of the neoplastic transforma-
tion. Expression profiles were determined for seven types of samples
using the Affymetrix U133A GeneChip (Tsafrir et al., 2004): 47
primary carcinomas, 24 adenomas, 22 normal colon epithelium, 16

liver metastases, 19 lung metastases, 11 normal livers, and 5 normal
lungs. Standard preprocessing of the data included thresholding to
10 (i.e. all expression values <10 were set to 10) and log2 trans-
formation. A variance filter was utilized to concentrate on the most
relevant genes. We started with the 500 highest varying transcripts,
then doubled the number; since there was a significant change in
the results, the number of transcripts was doubled again, to 2000.
Ensuring that this did not alter the main conclusions to a noticeable
degree we continued to work with the top 1000.

In the context of such complex data, the search for genes and
pathways that are causally involved in cancer is complicated by the
need to distinguish their signal from a large background of inno-
cent bystander genes, whose expression levels appear altered due
to secondary causes. An initial objective is to generate an overall
impression of the data’s structure, identifying major partitions and
relationships. By filtering the highest variance genes and ordering the
resulting expression matrix in SPIN (Fig. 4d) one can get a global
view of the data. Two separate ordering operations were performed:
one on the genes’ distance matrix (rows, Fig. 4c) and another on
the samples’ distance matrix (columns, Fig. 4b). Thus, the two-way
organized expression matrix allows one to study concurrently the
structure of both samples and genes. In consecutive analysis stages,
detailed in the following paragraphs, we proceeded to focus indi-
vidually on sets of correlated genes that were identified in this initial
step. SPIN is used to re-order the samples in the context of each
gene set separately, and the resulting permutation is shown to be
informative of the underlying biology (Fig. 4e–g). This process of
iteratively identifying and focusing on relevant subsets of the ini-
tial data matrix is reminiscent of the previously proposed coupled
two-way clustering algorithm (Getz et al., 2000).

Liver contamination
Previous expression data studies recognized the challenge posed
by the heterogeneous composition of sampled tissues (Alon et al.,
1999), which was not answered in the context of traditional analysis
methods (Ghosh, 2004). In the current data the clearest separa-
tion in the samples is according to their organ of origin—either
colon, liver or lung—with the liver samples forming the most dis-
tinct group (Fig. 4b). Even though the tissue samples were carefully
dissected, the strongest expression signals are indeed related with
the composition of the various samples. The most prominent gene
cluster, highlighted by the bottom black rectangle (Fig. 4c and d),
is characterized by highest expression levels in the liver samples.
The annotation of genes belonging to this cluster is related to liver
functions (including SERPINA3, CP, HP and APOC1), and therefore
we refer to it as liver-specific. These liver-specific genes are totally
irrelevant to the disease, and yet when performing a PCA projection
of the samples (Fig. 4a) the first principal direction (explaining 34%
of variance) is dominated by the difference between normal liver and
all other samples. The highly relevant aspect of this phenomenon is
that some of the liver metastasis samples display elevated expres-
sion levels for the liver-specific genes, shifting their placement in
the SPIN ordering toward the location of the normal liver samples.
This hinders the ability of traditional statistical analysis methods
to generate a list of genes associated with metastatic cancer; when
searching for genes with high expression in liver metastasis versus
carcinoma samples, liver-specific genes may be implicated. Indeed
a supervised hypothesis test (Pan, 2002) generated a list of genes
significantly over expressed in liver metastasis as compared to the
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primary tumor samples [387 transcripts of the examined top 1000
passed the Wilcoxon ranksum test with FDR of q = 0.05 (Benjamini
and Hochberg, 1995)]. The vast majority of these (97%) are associ-
ated with liver functions and are in fact members of our liver-specific
cluster (Fig. 4e). The increased expression for these genes is probably
a byproduct caused by contamination of the metastasis samples with
normal liver tissue. Therefore, these genes could potentially serve as
the basis for constructing a liver-metastasis classifier (Dudoit et al.,
2002); however, analysis based on SPIN clarifies that they do not play
a role in the progression of cancer, but rather as a tissue-of-origin
indicator.

Muscle and connective tissue contamination
As demonstrated in the previous section, the problem of tissue het-
erogeneity may be a major complication, and one that was mostly
unresolved by traditional analysis methods. In some data sets an
assessment by the pathologist of the percentage of relevant tissues in
each sample is available (Notterman et al., 2001; Alon et al., 1999),
and this information can be utilized to construct an appropriate stat-
istical test (Ghosh, 2004). In the current data no such knowledge
is available, which prevents the proper employment of supervised
methods and necessitates the use of an unsupervised approach. For
example, consider a group of genes that appear significantly under-
expressed in the neoplastic samples as compared with normal tissue
(434 transcripts of the examined top 1000 passed the Wilcoxon rank-
sum test with FDR ofq = 0.05). It has already been observed in colon
cancer studies that tumor samples are more biased toward epithelium
tissue than their normal counterparts, causing apparent underexpres-
sion of genes functioning in muscle and connective tissues (Alon
et al., 1999). In the SPIN-permuted data (Fig. 4c and d) the transcripts
that show reduced expression in diseased tissue clearly separate into
two different gene profiles. One of this gene clusters (Fig. 4f ) exhib-
its extreme variation in expression in the context of the normal colon
samples, which is visually manifested by a pattern of elongation in
the relevant SPIN-sorted distance matrix (Fig. 4f ). The annotation
of these genes associates them with smooth muscle and connect-
ive tissue. Therefore, a likely cause for the disparity in expression
among the normal samples are the differences in tissue composition.
The reduced variability detected in the tumor samples (most tumors
form a tighter, less elongated shape in Fig. 4f ) is consistent with
the observation made in earlier studies that those samples contain
mostly epithelial tissue (Alon et al., 1999), and with the fact that in
this experiment they were carefully dissected (Tsafrir et al., 2004).
The adenomas exhibit the lowest expression, perhaps associated with
the fact that these benign precursors of cancer protrude into the lumen
of the colon, making it easy to remove them surgically without inad-
vertently including some surrounding muscle or connective tissue.
Therefore, using SPIN to study the profile of this gene cluster clarified
that even though the genes are significantly differentially expressed
between normal and tumor cells, they are not connected with the
neoplastic transformation, but rather with tissue mixtures.

Gradual loss of differentiation
The analysis described in the previous section illustrates how an
unsupervised visualization tool such as SPIN can serve to guide rigor-
ous statistical analysis. Employing supervised statistical tests to com-
pare our normal colon samples with the tumors resulted in a mixed
list, which included some genes that the SPIN analysis revealed to
be related with tissue mixtures. It is further possible using SPIN to

distinguish the desired set of disease-progression associated genes,
and show that the reduction in their expression is correlated with the
gradual onset of the cancer. Focusing on this subset of genes reveals
that in this context the samples trace an elongated shape (Fig. 4g),
with the normal colon epithelium placed to one side, followed by the
adenomas that exhibit a somewhat reduced expression, which is even
lower in the carcinoma samples. This set includes genes that were
observed to be preferentially expressed in human epithelial cells and
downregulated in cancer, such as carbonic anhydrases (Notterman
et al., 2001), Guanylate cyclase activators (Birkenkamp-Demtroder
et al., 2002) and EPLIN (Maul and Chang, 1999). A plausible hypo-
thesis is that these genes are associated with colon functions, and
that the SPIN-permutation highlights a gradual loss of differenti-
ation in the transformed tissue. Perhaps the percentage of cells that
still keep their colon functions is steadily reduced with the progres-
sion of the disease. To conclude, supervised tests were employed to
answer a specific question—e.g. differential expression in sick versus
healthy tissue—while the analysis in SPIN revealed that some of the
implicated genes answer a very different question, i.e. which samples
contain the highest proportion of muscle and connective tissue.

Metastasis associated signal
The analysis of the colon cancer data demonstrates a situation where
SPIN can be used to assign new labels to samples, and employ this
knowledge to improve the application of supervised methods. Meta-
stasis samples, for example, can be marked according to the degree
of surrounding normal tissue inadvertently included in the sample’s
preparation. One way of gaining this information is in the context
of the liver-specific cluster, where the expression of sample profiles
can be viewed as the result of a gradual mixing process, starting with
samples extracted from the colon, that contain no liver tissue, and
continuing with the metastasis samples that vary in the amount of
liver contamination. The degree of liver mixture in each sample is
reflected by the SPIN ordering, as can be seen in Figure 4e. The least
contaminated metastasis samples can be distinguished by their place-
ment next to the cluster of primary tumors, and labeled as clean. A
clustering algorithm, such as average linkage, although clearly sep-
arating between normal liver and primary tumors, does not produce
such meaningful ordering of the metastasis samples. Therefore, SPIN
is especially useful in this situation since it can be used to perform
a type of electronic micro-dissection, allowing identification of the
cleanest metastasis samples. A similar procedure can be performed
for the lung metastasis samples by using the normal lung samples.
It is then possible to proceed by focusing on the ‘clean’ metastasis
samples (from both liver and lung) to uncover genes relevant to the
metastatic process. The resulting list included several known onco-
genes [such as VEGF, CSE1L (Behrens et al., 2003), TGIF2 and
UBE2C]; some, in particular, are located on chromosomal arm 20q, a
region which has been previously shown to be amplified in metastatic
colon cancer (Platzer et al., 2002). In SPIN one can further observe
that this group of genes exhibits a gradual elevation in expression
which is coupled with the progression of the cancer—from normal
tissue, through polyps, increasing in primary tumors and culminating
in the ‘clean’ metastasis samples.

SUMMARY AND DISCUSSION
The emphasis of SPIN is on providing an informative image of
the data, one that facilitates extraction of meaningful characterist-
ics. The distance matrix ordered by SPIN can reveal the fingerprint
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of objects (e.g. regions with high density of data points) of vari-
ous shapes that are embedded in a high-dimensional representation
of the data. We demonstrated this for objects of fairly general
shapes, including an elongated rod, associated with a continuous
variable and for a curve that closes upon itself indicating a cycle,
as well as for gene-expression data on cell-cycle and differenti-
ation.1 Furthermore, the reordered distance matrix is also able to
identify multiple objects, where the main linear variation of each
entity is followed sequentially, and for which the interobject rela-
tionships, such as their relative placement, can be also identified.
The concept of presenting an organized distance matrix is not new,
but the SPIN-permuted matrix is shown to be more informative than
images produced by popular methods. SPIN was used to resolve
the problem of tissue mixtures in colon cancer expression data,
and consequently to allow a clear identification of a set of genes
implicated in the gradual loss of differentiation of the transformed
tissue.

We presented two different search heuristics for exploring
permutation-space: STS generates a distance matrix that preferen-
tially places red-colored elements (which denote large distances)
near the top-right (and bottom-left) corners. Thus points that are
placed far apart in the linear ordering are also distant in the full
high-dimensional space. Neighborhood, on the other hand, tries to
make sure that elements located near the main diagonal are blue-
colored, i.e. neighboring points in the linear ordering are also close
to each other in the high-dimensional space. This subtle distinction
in emphasis may lead to a substantial difference in the results, as
different energy functions reveal alternative aspects of the data, thus
enabling the study of diverse properties. From a practical point of
view, the STS algorithm is faster, while the Neighborhood algorithm
produces better results for complex data, especially containing com-
pound objects. Therefore, a user could start by applying STS, which
would generate an image that visually manifests the major elonga-
tion in the data, and proceed by utilizing Neighborhood to study the
more intricate objects.

The important advantages of SPIN are: (1) the simplicity of
the underlying algorithm, which makes it easily implementable,
accessible and clear to a wide range of users. (2) Running time
of O(n2) − O(n3) gives almost instant feedback for datasets of
reasonable size (see Table 1 in Supplementary material). (3) A
fingerprint of an elongated structure in the sorted distance matrix
invariably implies an elongation in the data. This follows from the
fact that SPIN permutes the distance matrix with no distortions. (4)
Synergy with other exploratory analysis techniques. For example,
SPIN can be used to order within and between predefined clusters
obtained with most standard clustering algorithms. It was also shown
that SPIN can enhance dimensionality reduction analysis, as exem-
plified in Figure 3 where the color coded ordering significantly
clarifies the PCA image. Furthermore, the colon cancer application
demonstrates a biologically important scenario where the lack of
sufficient labels prevents the exclusive employment of supervised
statistical methods, while the continuous nature of the underlying
biological process makes SPIN an especially appropriate exploration
methodology.

1In order to show that SPIN does not find structures that do not exist, we per-
formed a random-permutation test on expression data. Results are presented
in the Supplementary material, in the section ‘Loss of structure in randomized
expression data’.
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