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Running Times

Table 1 summarizes the parameters and running times for some examples given in this article. The results may

depend on the starting permutation and several restarts are sometimes needed to find the global minimum. However,

one of the strengths of SPIN is that from a practical point of view, convergence to the global minimum is often

not necessary. In most cases the local minima reached by SPIN are almost as informative for extracting structural

information.

Proofs for the STS algorithm

Complexity

We prove that the STS problem is NP-Complete by finding a reduction from the STS problem to the well known,

NP-complete, problem of proving that a graph contains a clique of size k [Garey and Johnson, 1979].

Let G =< V, E > be an (undirected) graph on n vertices. Define D as follows:

Dij =





1 if i 6= j, (Vi, Vj) ∈ E,

2 if i 6= j, (Vi, Vj) /∈ E,

0 if i = j.

(1)

Clearly, D is non-negative, symmetric, and satisfies the triangle equality. Thus, D is a distance matrix.
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Data Size σ Iter. T(sec)

rod 500 100,10,1 3 1.3

Ring 500 50,20,10,1 4 1.9

Cell Cycle 500 50,20,10,5 4 1.9

Smiley 800 1.2 50 92

7rods 1400 0.3 50 960

Table 1: Details for several of the examples given in this work. Size refers to the number of points in the data. σ is

the width of the neighborhood (i.e. the running times were calculated using the Neighborhood algorithm. The STS

algorithm gives results of the same quality only for the rod data set, with the benefit of slightly reduced running

time). When using the ”annealing” procedure the widths are given in order of use. Iter. stands for the number

of iterations required to obtain the image presented in the article. T is the running time on an IBM with Intel(R)

Pentium(R) 4 Mobile CPU 1.6 Ghz. Since the results may depend on initial starting permutation, the number of

iterations may vary, and several restarts may be needed.

Fix now some k ∈ [1, n]. Define the vector X ∈ Rn by Xi = 1i≥n−k+1. Clearly, X is non-decreasing.

claim: G =< V, E > has a clique of size k if and only if minP∈Sn XT PDPT X = (k − 1)k.

proof: Let C ⊂ V be a k − clique on G =< V,E >, and let P̂ ∈ Sn be a permutation such that P̂ (i) ∈ C

∀ n − k + 1 ≤ i ≤ n. Thus, the bottom-right k × k sub-matrix of the permuted distance matrix, DP̂ = P̂DP̂T ,

corresponds to the k vertices composing C. Therefore, for every n − k + 1 ≤ i 6= j ≤ n, DP̂
ij = 1. Using the X

defined above to calculate F(P̂ ) one obtains:
∑n

i,j=1 XT
iD

P̂
ijXj =

∑n
i,j=n−k+1 DP̂

ij = (n− (n−k+1)+1)(n− (n−k+1)+1)− (n− (n−k+1)+1) = k(k−1).

But from definition :

DQ
ij ≥ DP̂

ij∀Q ∈ Sn, ∀n− k + 1 ≤ i, j ≤ n

Therefore:
∑n

i,j=1 XT
iD

Q
i,jXj =

∑n
i,j=n−k+1 DQ

i,j ≥ (n− (n−k +1)+1)(n− (n−k +1)+1)− (n− (n−k +1)+1) =

k(k − 1),

which yields: minP∈Sn XT PDPT X = (k − 1)k

Convergence

We now prove that convergence to a fixed point is guaranteed after a finite time. To do this we give the requirements

for the input matrix D and the weight vector X in mathematical terms:

Take n distinct points z1, . . . zn ∈ Rd, for some d ∈ N, and a real p ∈ (1, 2], such that :

Di,j = ||zi − zj ||p, 1 ≤ i, j ≤ n
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Let X be a strictly monotonically increasing vector, namely: Xi < Xj ⇐⇒ i < j.

The proof is based on showing that every STS iteration reduces the cost function, F = XtT
DXt, utilizing the

following lemma:

Lemma

1. Xt+1T
DXt ≤ (QX0)T DXt, ∀Q ∈ Sn, t ≥ 0

2. Xt+1 6= Xt ⇒ Xt+1T
DXt < XtT

DXt.

Proof

1. Note that :

Xt+1T
DXt = (P tT

X0)T DXt =

= X0T
P tDXt ≡ X0T

U t (2)

(QX0)T DXt = X0T
QT DXt =

= X0T
QT (P t)−1P tDXt ≡ XQT

U t (3)

And XQ is some permutation of X0, for any Q ∈ Sn. But, U t is a non-increasing vector, while X0 is a

strictly increasing vector. Thus, according to a theorem by Hardy, LittleWood and Polya [Hardy et al., 1959]

X0U t ≤ Q(X0)U t, ∀Q ∈ Sn, so X0U t ≤ XQU t, as desired.

2. From 1 we get Xt+1T
DXt ≤ XtT

DXt. Assume negatively that equality holds. Then, we get : X0T
P t−1DXt =

XtT
DXt = Xt+1T

DXt = X0T
P tDXt. But X0 is increasing, P tDXt is decreasing and P t−1DXt is a

permutation of it. Therefore P t−1DXt = P tDXt, and thus P t−1DXt is non-increasing, and since we have

started from it, we get P t = P t−1 and Xt+1 = Xt, which is a contradiction.

claim: The STS algorithm converges to a fixed point after a finite number of iterations.

Proof :

According to Thm. 2.11 in [Baxter, 1991], D is Almost Negative Definite. That is,
∑n

i=1 Vi = 0 ⇒ V T DV ≤ 0, ∀V ∈
Rn. Since Xt is a permutation of X it follows that

(Xt+1 −Xt)T D(Xt+1 −Xt) ≤ 0 (4)

Since D is symmetric it follows that

Xt+1T
DXt+1 + XtT

DXt ≤ 2Xt+1T
DXt ⇒
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Xt+1T
DXt+1 −XtT

DXt ≤ 2(Xt+1T
DXt −XtT

DXt), (5)

But the algorithm never stays at the same point for more than one iteration (step 4), namely Xt+1 6= Xt and

therefore, according to the previous lemma:

Xt+1T
DXt+1 −XtT

DXt < 0

To conclude, the energy function F(t) = XtT
DXt is a strictly decreasing function of t. Therefore the algorithm

terminates after a finite number of steps.

This proves that for Lp norms with p ∈ (1, 2], STS converges to a local minimum. For other norms, STS might

converge to a cycle, however the cycle can be viewed as local minima, since it still minimizes F(Xt, Xt+1) (All the

cycle has the same F .) Convergence to a global minimum of FX is not guaranteed.

Relationship between STS and PCA

We now give a heuristic argument showing that the permutation outputted by the STS algorithm, is likely to be

similar to ordering the points according to their projection on the first PCA. Nevertheless, as will be demonstrated

later, in some cases the two permutations are different, and the STS ordering may be more useful. Let D be the

genes’ distance matrix, we first prove that for normalized genes, the genes’ projections on the first PCA are given

by the components of the eigenvector of D that corresponds to the most negative eigenvalue. Consider the SVD

representation of the expression matrix E as E = USV T . Here Un×n and Vm×m are unitary matrices, and Sn×m

is a diagonal matrix whose diagonal elements are the singular values of E. We denote by V1(U1) the eigenvector

of EET (ET E) corresponding to the largest eigenvalue λ1. Assuming that the expression matrix is centered and

normalized, the distance matrix D is given by D = 2(I −EET ). Thus D has the same eigenvectors as EET , and its

eigenvalues are given by 2(1 − λi), i = 1, . . . , n. Using the unitarity of V we write the projection of E on the first

PCA as :

EV1 = USV T V1 = US1 = λ1U1,

where S1 is the first column of S. But U1 is also an eigenvector of D, specifically corresponding to its smallest

eigenvalue (2(1− λ1)).

As a conclusion, we get that if P is a permutation such that U
(P )
1 ≡ PU1 is a monotonically decreasing vector,

permuting D according to P gives the ordering according to the projection on the first PCA. Thus, PDPT U
(P )
1 =

λ1U
(P )
1 which is a monotonically decreasing vector. Now represent X as a linear combination X =

∑n
i=1 αiU

(P )
i , to

get PDPT X =
∑n

i=1 αiλiU
(P )
i . Note that λ1 is the largest absolute value eigenvector, and also, since U

(P )
1 and X

are both increasing, we expect α1 to be large. Therefore, PDPT X gets a large contribution from the component

α1λ1U
(P )
1 , thus it is likely to be approximately also decreasing. This explains why, in the majority of examined
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cases, P , or a permutation very close to it, was a fixed point of the STS iteration, yielding a final STS ordering

which is indeed similar to ordering according to the first PCA.

Figure 1 provides a toy example where the STS permutation and the PCA progression produce different results.

The three compact spheres that are embedded in the data can not be clearly distinguished by using PCA projection

(fig. 1a-b). The STS-permuted distance matrix (fig. 1c-d), on the other hand, can be used for visual identification

of the three distinct objects, and for determining that they are all compact spheres.
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Figure 1: Toy data set of 600 points in 2D that comprise three distinct spheres. (a) A scatter plot of the points in the first and second PCA

plane. The coloring of points indicates their relative placement in the ordering according to projection on to the first PCA, going from dark blue

to dark red. (b) The correspondingly permuted distance matrix, i.e. the point that is colored the darkest blue in a. is represented by the first

row, etc. Note that the direction of the first PCA is highly affected by the right-most sphere, to the degree that the two spheres on the left are

not distinguished. (c)-(d) The corresponding figures, permuted according to STS, which clearly separates all three objects.

Loss of structure in randomized expression data

In order to show that SPIN does not find structures that do not exist, we performed a random-permutation test

with the following outcome (see fig. 2). This question is interesting since SPIN will always try to locate the most

informative permutation with regard to the given data’s structure. The same colon cancer expression data that was

analyzed in the article is also used here, with the addition of one initial pre-processing step, consisting of random

permuting of the values in the expression matrix. All other analysis stages remaind the same as described in section

Application to colon cancer, and the results of SPIN -sorting the 1, 000 highest variance genes of the randomized

expression data are given in fig. 2.

As expected, the randomization process destroys the structure of the expression data; instead of containing

objects of various shapes the conformation is in that of a rather uniform sphere (see fig. 2a). The image of the

SPIN-sorted distance matrix for randomized data is extremely different from that of the original expression data
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(compare fig. 4b-c in the article to fig. 2b-c), conveying to the user that the randomized data does not contain any

structured objects. The observation that SPIN does not generate false positives (i.e. the appearance of a signature

of elongation in a SPIN -sorted matrix necessarily indicates an elongated conformation of data points) follows from

the fact that in a SPIN analysis the distance matrix is only permuted and not distorted in any way.
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Figure 2: SPIN analysis of randomized expression data. (a) Projection of the samples onto the first (x-axis) and second (y-axis) principal

components, calculated in gene-space. (b) SPIN -permuted distance matrix for the samples. Colors depict dissimilarity levels between samples,

with red (blue) indicating large (small) distances. Note that this rather uniform spherical cluster, which has no significant elongation, manifests

in a diffuse texture in the SPIN-sorted distance matrix. As a rule, the smoothness of the texture in the image of the distance matrix is a function

of the elongation of the cluster.(c) Genes SPIN -permuted distance matrix. (d) Two-way sorted expression matrix. Here colors depict relative

expression intensities, where red (blue) denotes relatively high (low) expression. The colored bar below the matrix provides the tissues’ clinical

identity, using the same color scheme as in fig. 4.
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