
A Domain Independent Environment for Creating Information
Extraction Modules

Ronen Feldman, Yonatan Yair Libetzon, Kfir Ankori Jonathan Schler, Benjamin
Aumann Rosenfeld

ClearForest Corporation ClearForest Corporation ClearForest Corporation
1 World Trade Center 1 World Trade Center 1 World Trade Center

NY, NY NY, NY NY, NY
212-432-1515 212-432-1515 212-432-1515

ronen@clearForest.com yair@cleafforest.com jonathan@clearforest.com

ABSTRACT
Text-Mining is a growing area of interest within the field of Data
Mining and Knowledge Discovery. Given a collection of text
documents, most approaches to Text Mining perform knowledge-
discovery operations either on external tags associated with each
document, or on the set of all words within each document. Both
approaches suffer from limitations. This paper focuses on an
intermediate approach, one that we call text mining via
information extraction, in which knowledge discovery takes place
on focused, relevant terms, phrases and facts, as extracted from
the documents.

Categories and Subject Descriptors
Text Mining

General Terms
Visualizations, Development Environments, Information
Extraction.

1. INTRODUCTION
Data Mining and Knowledge Discovery seek to turn the vast
amounts of data available in digital format into useful knowledge.
Classic Data Mining concentrates on structured data, stored in
relational databases or in flat files. However, it is now clear that
only a small portion of the available information is in structured
format. It is estimated that up to 80% of the data available in
digital format is non-structured data. Most notably, much of
information is available in textual form, with little or no
formatting. Hence the growing interest in Text Mining, which is
the area within Data Mining that focuses on Data Mining from
textual sources.

The first issue to address when performing Data Mining on a
collection of unstructured text is to determine the underlying

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
C’IKA4’01, November 5-10,2001, Atlanta. Georgia, USA.
Copyright 2001 ACM I-581 13-436-3/01/001 l...$S.OO.

information on which the Data Mining operations are applied. A
straightforward approach is to use the entire set of words in the
documents as inputs to the Data Mining algorithms. However, the
results of the mining process in this approach are often
rediscoveries of compound nouns (such as that “Wall” and
“Street” or that “Ronald” and “Reagan” often co-occur), or of
patterns that are at too low a level to be significant (such as that
“shares” and “securities” co-occur).

A second approach ([2,3]) is to use tags associated with the
documents, and to perform the Data Mining operations on the
tags. However, to be effective this requires:
. Manual tagging - which is unfeasible for large
collections; or
. Automated tagging - using any one of the many
automated categorization algorithms. This approach suffers from
two drawbacks. First, the number of distinct categories that such
algorithms can effectively handle is relatively small, thus limiting
the broadness of the mining process. More importantly, the
process of automated categorization requires defining the
categories a priori, thus defeating the purpose of discovery within
the actual text.

In this paper we focus on a third approach, which we call text
mining via information extraction, whereby we first perform
information extraction on each document to find events, facts and
entities that are likely to have meaning in the given domain, and
then perform the data mining operations on the extracted
information. A possible “Event” may be that a company has
entered a joint venture, or has executed a management change.
The extracted information provides much more concise and
precise data for the mining process, than in a word-based
approach, and tends to represent more meaningful concepts and
relationships in the document’s domain. On the other hand, in
contrast to the tagging approach, the information-extraction
method allows for mining of the actual information present within
the text, rather than the limited set of tags associated to the
documents. Using the information extraction process, the number
of different relevant entities, Events and facts on which the data
mining is performed is unbounded, typically thousands or even
millions, far beyond the number of tags which any automated
tagging system could handle.

586

While on a basic level one can rely on generic proper name
recognition that is mostly domain-independent, the power of this
text mining approach is most apparent when coupled with
extraction specific to the domain of interest. Thus, for example,
when mining a collection of financial news articles, we would
want to extract pertinent information on companies, industries and
technologies - information such as mergers, acquisitions,
management positions etc.

In this paper we present ClearStudio, an integrated platform for
developing the modules for information extraction in Text Mining
applications. It provides an extensive language for defining the
extraction process, by defining the types of information to be
extracted, as well as how to how to identify this information. This
is achieved by defining a set of rules for the information
extraction engine. A set of rules for any given domain constitutes
a rulebook. ClearStudio also includes a complete development
environment for developing, compiling, testing, and debugging
the extraction modules. This allows for easy creation and
manipulation of information extraction rules. In this paper we will
focus on the architecture that enables us to achieve a precision
and recall that exceeds 90% for more than 120 different Event
types.

2. RULEBOOK DEVELOPMENT
Developing a rulebook for a new domain can be very tedious and
time consuming. To speed up the process we have created an
environment with a range of productivity tools. It also provides
tools for checking the quality of the rulebooks by examining its
output on documents streams.

2.1 Debugging Tools
The DIAL environment includes a variety of tools for monitoring
the integrity and performance of the rule base during its
development. The tools available reflect the many types of
problems that may arise, ranging from simple syntax errors that
prevent the code’s compilation (e.g. omitting a vital punctuation
mark or misspelling the name of a predicate or word class), to
inefficiencies in the rules themselves that lead to inaccuracies in
the results (e.g. Bank of England as a company), or Events that
are missed altogether. The user can then make modifications to
the rule and re-run the code to ensure that the problem has been
fixed or the accuracy improved.

Central to all these operations is the Interpreter, which is able to
act upon the code line by line without pre-compilation. This is
used to check the code for syntactical integrity before it is used for
any information extraction. The offending line is highlighted,
usually with an accompanying comment in the Output pane,
allowing the user to zoom in on the problem.

Once the code has passed the compilation test, it is tried out on a
number of sample texts. The following debugging tools are
available:

Reviewing Event tables for rapid spotting of erroneous Events.
These can then be double-clicked to highlight the text
fragment in the source text that caused the problem. This is
usually enough to alert the user to the nature of the special

case that caused the erroneous output, and to make
adjustments to the rule to prevent such occurrences in future.

Right-clicking Events. This allows the user to go directly to the
relevant predicate behind the Event - and specifically to the
culprit definition in the code - and amend it as necessary.

Match Features: This is used to monitor the incidence of recall
errors - Events that should have been caught but were not.
A relevant rule is applied to specific text in question. The
success or failure of each component of the rule is then
clearly shown in a report, featuring green checkmarks
(success), red crosses (failure), and blue question marks
(unchecked section). Appropriate action can then be taken as
necessary to improve the relevant rule(s).

Event Diff: This utility that allows you to assess the comparative
effectiveness of incremental changes to the rules, by
comparing the list of events extracted using the new and the
old versions. Typically, this is done soon or immediately
after changing or adding any number of predicates.

Profiler. This tool analyzes the rule file’s performance:
specifically, how long each predicate took to process a given
document collection, and which in particular need tweaking,
revising, or even complete removal in order to streamline the
IE process. Its report is created as part of the compilation
process, and thus the tool is typically applied at the end of
the development process. Enabling the closest scrutiny of
rulebooks is the low-level debugging tool integral to the IDE
itself. It is similar to Match Features in that it tests the code
against a sample text of the user’s choosing, but more
comprehensive as it examines the processing by the entire
rule tile up to a breakpoint of their choosing, and all aspects
of the process may be subsequently examined: from the ml1
list of predicates and functions in the rule file , to the word
classes and other resources actually loaded, the active
windows and variables. Stepinto, Stepover and Stepout tools
allow one to examine each rule call by call individually
within the same stack frame or outside it.

3. DIAL (DECLARATIVE INFORMATION
ANALYSIS LANGUAGE)

The rules are written in a language called DIAL (Declarative
Information Analysis Language). DIAL is a language designed
specifically for writing IE rules ([1,4]). The complete syntax of
DIAL is beyond the scope of this paper. Here we describe the
basic elements of the language.

3.1 Basic Elements
The basic elements of the language are syntactic and semantic
elements of the text, and sequences and patterns thereof. Among
these elements the language can identify:

. Predefined strings - e.g., “merger”

. Word class element: a phrase from a predefined set of
phrases that share a common semantic meaning - e.g.,
WC-Countries, a list of countries.

. Scanner feature (basic characteristic of a token) e.g.,
@Capital or @HtmlTag

5 8 7

. Compound feature: a phrase comprising several basic
features. Thus, Match(@Capital & WCCountries), for
example, will match a phrase that both belongs to the
word class WCCountries and starts with a capital letter.

. Part-of-speech tag - e.g., noun or adjective

. Recursive Predicate Call - e.g., Company(C)

3.2 Constraints
Constraints carry out on-the-fly Boolean checks for specific
attributes. These can be applied fragments of the original text, or
to results obtained during processing extraction process.

The marker for a Constraint is the word verify, followed by
parentheses containing a specific function, which governs what it
is checking for. For example:

verify (StartNotInPredicate (c , @PersonName))

ensures that no prefix of the string assigned to variable c is a
match for the predicate PersonName.

3.3 IE Rule Bases
The rule base is can be viewed as a logic program. Thus, a rule
base, I-, is a conjunction of definite clauses Ci: Hi t Bi where Ci
is a clause tag, Hi (called the head) is a literal and Bi = {Bil
Bi2....} = Pi u Ni (called the body) is a set of literals, where Pi =
{pij} is a set of Pattern Matching Elements and Ni = {nij} is a
set of constraints operating on Pi. The clause Ci: Hit Bi
represents the assertion that Hi is implied by the conjunction of
the literals in Pi while satisfying all the constraints in Ni.

An example of a DIAL rule is the following rule, which is one of
ten rules to identify a merger between two companies:

FMergerCCM(C 1, C2) :-

Company(Compl) OptCompanyDetails “and”
skip(Company(x), SkipFail, 10) Company(Comp2)
OptCompanyDetails skip(WCMergerVerbs,
SkipFailComp, 20) WCMergerVerbs skip(WCMerger,
SkipFail, 20) WCMerger

verify(WholeNotInPredicate(Comp1, @PersonName))

verify(WholeNotInPredicate(Comp2, @PersonName))

@“h@!

{Cl =Compl;C2=Comp2};

The rule looks for a company name (carried out by the predicate
Company, which returns the parameter Compl) followed by an
optional phrase describing the company, and then the word “and”.
The system then skips up to ten tokens (within the same sentence,
and while not encountering any phrase prescribed by the predicate
SkipFail) until it finds another company, followed by an optional
company description clause. The system then skips up to 20
tokens until it finds a phrase of the word class WCMergerVerbs.
(This may be something like “approved”, “announced” etc.).
Finally, the system skips up to ten tokens scanning for a phrase of

the word class WCMerger. In addition, the rule contains two
constraints ensuring that the company names are not names of
people.

Each rulebook can contain any number of rules that are used to
extract knowledge from documents in a certain domain.

4. SUMMARY
Due to the abundance of available textual data, there is a growing
need for efftcient tools for Text Mining. Unlike structured data,
where the data mining algorithms can be performed directly on
the underlying data, textual data requires some preprocessing
before the data mining algorithm can be successfully applied.
Information Extraction has proved to be an efficient method for
this first preprocessing phase.

We presented the ClearStudio environment, which is an integrated
environment to develop Information Extraction modules for
efficient Text Mining. At the core, ClearStudio provides an
extensive declarative rule language for defining the extraction
process, and an execution module for executing these rules. In
addition, ClearStudio provides a wide range of productivity tools,
which facilitate efficient and rapid rule development, including:
rule interpreter, debugger, profiler, and more. Also, ClearStudio
provides a complete QA environment, with automatic feedback to
the rule development process. ClearStudio was successfully used
to develop a number of rulebooks, in diverse domains (e.g.
financial news, patent analysis), several of which contain
thousands of rules, and cover an entire rich domain. ClearStudio
is used both within ClearForest, and by third party vendors
developing rules for different domains. It has proved a robust, rich
and diverse environment, providing a firm basis for text Mining.

5. ACKNOWLEDGMENTS
Our thanks to Michal Finkelstein, Yizhar Regev and Eyal
Horovitz for helpful comments of drafts of this paper.

6.
VI

PI

[31

[41

REFERENCES
Appelt, Douglas E., Jerry R. Hobbs, John Bear, David Israel,
Megumi Kameyama, and Mabry Tyson, 1993a. “The SRI
MUC-5 JV-FASTUS Information Extraction System”,
Proceedings, Fifth Message Understanding Conference
(MUC-5), Baltimore, Maryland, August 1993.

Feldman R., and Hirsh H., 1996. Exploiting Background
Information in Knowledge Discovery from Text. Journal of
Intelligent Information Systems. 1996.

Feldman R. and Dagan I., 1995. KDT - Knowledge
Discovery in Texts. In Proceedings of the First International
Conference on Knowledge Discovery, KDD-95.

D. Fisher, S. Soderland, J. McCarthy, F. Feng and W.
Lehnert, “Description of the UMass Systems as Used for
MUC-6,” in Proceedings of the 6th Message Understanding
Conference, November, 1995, pp. 127-140.

588

