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Abstract. For decades, national statistical agencies and other data cus-
todians have been publishing frequency tables based on census, survey,
and administrative data. In order to protect the confidentiality of in-
dividuals represented in the data, tables based on original data are
modified before release. Recently, in response to user demand for more
flexible and responsive table publication services, frequency table pub-
lication schemes have been augmented with on-line table generating
servers such as the US Census Bureau FactFinder and the Australian
Bureau of Statistics TableBuilder. These systems allow users to build
their own custom tables, and make use of automated perturbation rou-
tines to protect confidentiality. Motivated by the growing popularity
of table generating servers, in this paper we study confidentiality pro-
tection for perturbed frequency tables, including the trade-off with an-
alytical utility. Confidentiality protection is assessed in terms of the
differential privacy standard, and this paper can be used as a practical
introduction to differential privacy, to calculations related to its appli-
cation, and to the relationship between confidentiality protection and
utility.
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2 Y. RINOTT ET AL.

1. INTRODUCTION

Sharing data for statistical purposes is increasingly important. National statis-
tical agencies and other custodians collecting data from individuals are obliged
to keep such information strictly confidential to the agency, including not shar-
ing or releasing such data in an identifiable form. Therefore, a key constraint on
data sharing is the need to protect the confidentiality of the individuals or other
entities to which the data refer. A canonical confidentiality protection problem
can be formulated as follows. For given data, denoted D, how can we determine
a (possibly stochastic) transformationM(·), called a perturbation mechanism (or
simply mechanism), such that if M(D) is disseminated then confidentiality will
be protected and also the value of D for statistical analysis, called utility, will be
preserved in M(D)?

A key issue in the development of solutions to this problem is how to de-
fine confidentiality and utility. The basic idea of utility should be more familiar
territory to statisticians. If the data are being disseminated for statistical pur-
poses, for example for estimation of various parameters, then the reduction in
utility arising from releasing M(D) rather than D might be measured in terms
of increases in the bias and variance of the resulting estimators. The question of
how to measure confidentiality has historically been a more specialised topic in
statistics and has been considered mainly within the field of statistical disclosure
control (SDC), which has developed in association with a long tradition of data
dissemination practice by government statistical offices (see Duncan, Elliot and
Salazar-Gonzàlez, 2011; Hundepool et al., 2012; Willenborg and de Waal, 2001).

To protect the confidentiality of individuals in a data set D, de-identification,
that is, removing identifiers such as names, addresses, and identification num-
bers from D before its release, is standard. However, this may not prevent a
knowledgeable intruder from obtaining information about individuals in D, see
(O’Keefe and Chipperfield, 2013). Here is a simple example: let D represent a
t-way frequency table with counts of individuals having certain combinations of
t attributes in a certain population, or a sample from the population. Suppose
an intruder knows that there is an individual in the population with a given
combination of r of the attributes for some r < t, and that this individual is the
only one with this combination. If this individual is in D, and D is released, the
intruder can locate the individual on the basis of the r known attributes, and
then learn all other t− r attributes.

Although there are established measures of disclosure risk used widely in prac-
tice and studied in the SDC literature cited above and in references therein,
there is considerable interest in alternative ways of measuring confidentiality for
a number of reasons. Such reasons include that existing methods may be based
upon contestable assumptions about an intruders’ prior knowledge of the data
and type of confidentiality attacks which they might employ, and that the contin-
uing evolution of approaches to data dissemination requires flexible approaches
to confidentiality that can be applied in systematic ways.

In this paper we focus on differential privacy (Dwork et al., 2006) as a way
of defining confidentiality, measuring confidentiality protection, and comparing
perturbation mechanisms. Differential privacy has recently been attracting a lot
of attention in the computer science literature, see for example the recent book,
Dwork and Roth (2014), and its references. The idea has been introduced in
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CONFIDENTIALITY PROTECTION FOR FREQUENCY TABLES 3

a mathematically rigorous framework with the potential for wide application
and, by employing a ‘worst case’ approach, avoids strong assumptions about
which variables are sensitive to disclosure, and intruders’ prior knowledge and
attack scenarios, leading to a well-defined quantification of the confidentiality
protection guarantee. This worst case approach may be deemed overprotective of
confidentiality, however this is intentional as it is designed to protect against a
potentially sophisticated adversary who may take advantage of a rare weakness
of the release mechanism. Only time will tell whether differential privacy as a
risk measure, or some of its relaxations, will be applied by official agencies. In
any case, we find it very illuminating as a framework of thinking about SDC.

Our goal in this paper is to explore and describe the application of the notion
of differential privacy under a realistic and popular dissemination scenario and,
on the way, to provide a practical introduction to this notion for statisticians. We
shall focus on the dissemination of frequency tables in a government statistical
setting, where the underlying data D are cross-classified tables of frequencies.
Further, in order to keep our discussion realistic, where possible we shall model
our system requirements and objectives (but not our perturbation mechanism) on
the existing Australian Bureau of Statistics (ABS) TableBuilder system (Chip-
perfield, Gow and Loong, 2016). We shall derive the results from the theory of
differential privacy that are useful to us in the most direct ways, not trying to
present the theory in full generality, but trying to keep this paper almost self
contained.

Since increased confidentiality protection is generally traded off against reduced
utility, it is vital to know how alternative confidentiality protection methods af-
fect what utility can be achieved. The guarantee in differential privacy is defined
in terms of one or two parameters, allowing different perturbation schemes to
be compared by fixing these parameters, and comparing the utility of the per-
turbed data. The analytic impact of perturbation will depend heavily on the
kinds of analyses undertaken and these may be hard to anticipate at the time
the protection takes place, but see Karr et al. (2006) for a general framework
for evaluating utility. Even given a definition of utility, one perturbation scheme
may be preferable to another for some values of the parameters, and vice versa for
other values. We shall use differential privacy parameters to compare perturba-
tion mechanisms, but when we extend the comparison to also include utility, then
it will clearly depend on both the parameters and on how utility is measured,
and therefore it is not straightforward.

In order to help to put our work in its historical context, we now give a brief
review of disclosure risk assessment and confidentiality protection methods for
frequency tables, see Duncan et al. (2001); Hundepool et al. (2012); Shlomo
(2007). Disclosure risk assessment typically focuses on small cell counts and on
the possibility that information on one classifying variable can be learnt about an
individual for whom values of other classifying variables are known. This is usu-
ally called attribute disclosure (Shlomo, 2007), in contrast to identity disclosure
in which information in the data is associated with an individual. The occurrence
of counts of 1 in the table may be treated as a potential problem of identity dis-
closure in itself but can also magnify the threat of attribute disclosure if a second
table is available cross-classifying these variables with a further variable, leading
to what may be called residual disclosure (Fellegi, 1972).
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There are two main classes of confidentiality protection methods for frequency
tables, namely, pre-tabular methods that modify microdata before aggregation
into a table, and post-tabular methods that modify a table directly. Any method
for protecting confidentiality in microdata can be used as a pre-tabular confiden-
tiality protection method, including: rounding, suppression of variables or vari-
able values, variable recoding, sampling, data swapping, perturbation, and post-
randomisation methods similar to randomised response. Synthetic data (Little,
1993; Rubin, 1993) methods could also be used, see Drechsler (2011); Drechsler
and Reiter (2011). In this approach, the original process that generated the mi-
crodata is modelled, and synthetic microdata are generated from this model with
a view to preserving the statistical properties of the implied table. Post-tabular
methods are generally conducted in two steps. The first step is to identify whether
the release of the data in any table cell could lead to a disclosure, for example, if
the cell contains a very small count. The second step is to reduce the disclosure
risk associated with the identified cells, with a method such as table redesign, cell
suppression, rounding, or addition of noise. Table redesign typically refers to the
combining of categories of classifying variables but it also includes releasing only
marginal and conditional tables corresponding to subsets of the cross-classifying
variables (Fienberg and Slavković, 2008).

Recently, there has been a growing demand for flexible on-line table gener-
ating servers (Thompson, Broadfoot and Elazar, 2013; Shlomo, Antal and El-
liot, 2015). Typically such systems provide a menu-driven interface for producing
confidentiality-protected user-defined frequency tables of counts or quantiles. In-
stead of using the two-step confidentiality protection routine mentioned above,
such systems may add a random perturbation amount to each non-zero cell of
the table, not just to a subset of the cells.

In the differential privacy framework, a mechanismM(·) operating on datasets
is required to be stochastic, and it is this stochasticity that provides the confi-
dentiality protection, as we shall explain. From the utility perspective, a common
assumption is that statistical analysis will generally be conducted on M(D) as
if it were D itself, and so utility is often measured in terms of some kind of
discrepancy measure between D and M(D) (Wasserman and Zhou, 2010). Such
measures include the information-theoretic Hellinger’s distance, and the more in-
tuitive average absolute difference per cell (Gomatam and Karr, 2003; Shlomo,
2007).

It is a property of differential privacy that the confidentiality protection guar-
antee does not rely on hiding the parameters of the perturbation. This fact is
reminiscent of Kerckhoffs’ principle in cryptography, that a cryptosystem should
be secure even if everything about the system, except the key, is public knowledge
(Auguste, 1883) and Shannon’s maxim in information theory, that one ought to
design systems under the assumption that the enemy will immediately gain full
familiarity with them (Shannon, 1949). As a consequence, in contrast to common
practice in some government agencies, in the differential privacy framework the
full description of the mechanism M can be made available along with M(D).
This would include all details on the distributions of perturbations, but would,
of course, exclude their actual randomly drawn values, which would not be re-
vealed. The advantage of this practice is that knowledge of the mechanism allows
the user to take the perturbation into account in their analysis, thereby avoiding
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potentially misleading conclusions that might arise from ignoring the perturba-
tion.

Methods for correcting for perturbation have been considered for microdata on
both continuous and categorical variables (Fuller, 1993; van den Hout and van der
Heijden, 2002) but do not appear to have been considered for the dissemination
of frequency tables. A basic general idea is that the likelihood for a parametric
model for D may be naturally extended, in principle, to the likelihood forM(D)
and so valid likelihood-based inference could be conducted (Karwa, Kifer and
Slavković, 2015). This idea will be illustrated in Section 6.

The differential privacy literature distinguishes between what are called inter-
active and non-interactive data dissemination settings. In the interactive setting,
the data custodian agency provides a system interface, typically on-line, through
which users may pose a series of queries say f1, f2, . . . about a dataset D and re-
ceive a series of confidentiality-protected responses M1(f1(D)), M2(f2(D)), . . ..
The system monitors the queries, and decides based on the outputs already re-
leased, whether to stop dissemination altogether, whether to answer the par-
ticular query, and if so then the amount of perturbation to be applied. In the
non-interactive setting, for a dataset D, the whole data set is perturbed off-line
to produce a confidentiality-protected datasetM(D). The protected dataset can
be released as a whole, or functions of it are provided as responses to queries
that can be answered with M(D). If only parts of the data are requested then
it may be possible and efficient for the agency to perturb only those parts. In
this paper, we consider only the non-interactive setting, which is closer to the
model table generating systems of interest to us. If the frequency table data D is
treated simply as a set of frequency counts in disjoint cells then this is analogous
to a histogram with disjoint bins and is a core field of application of differential
privacy methodology (Dwork et al., 2006; Dwork and Roth, 2014; Wasserman
and Zhou, 2010). Barak et al. (2007) extended this core methodology to handle
the case where D also includes table margins, consisting of sums of cell counts,
and where perturbed margins are released which are arithmetically consistent
with the perturbed cell counts. Fienberg, Rinaldo and Yang (2010) explore this
approach in the context of a number of examples. They express doubt about the
suitability of this methodology for the type of large sparse tables often produced
by statistics agencies.

The rest of the paper is structured as follows. Section 2 presents some features
of perturbations for a table generating server, which bear some resemblance to
those recommended by the ABS TableBuilder system, with an example table
presented in Section 3. Section 4 introduces some aspects of differential privacy
theory for the dissemination of frequency tables. In Section 5 we define and
compare different perturbation mechanisms and present some results illustrating
the trade-off between disclosure risk and data utility on the example table from
Section 3 and other simulated tables. In Section 6 we demonstrate how to carry
out correct statistical inference when the perturbation mechanism is known to
the analyst. In Section 7 we address the issue of overlapping cells and marginal
counts in frequency tables and conclude with Section 8.
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2. PERTURBATION OF FREQUENCY TABLES

As a starting point for this exploration of perturbation mechanisms and dif-
ferential privacy, we have chosen to focus on the problem of dissemination of
frequency tables. We suppose in this paper that such tables contain population
counts, from a census or administrative sources. Government agencies also pro-
duce tables of estimated population counts based on sample survey data, where
an estimated cell count is typically the sum of survey weights across the sample
units in the cell. There are somewhat different considerations in the potential
application of differential privacy ideas to such survey-based tables and we shall
only return to comment on this possible extension in the final section of the
paper.

Frequency tables are important data products in government statistical set-
tings, and recently various dissemination schemes in addition to the publica-
tion of pre-specified collections of confidentiality-protected tables have appeared.
One flexible on-line table generating system is the ABS TableBuilder (Chipper-
field, Gow and Loong, 2016; Fraser and Wooton, 2005; Thompson, Broadfoot
and Elazar, 2013). This system has attracted interest from other agencies in the
context of the protection of census outputs (Andersson, Jansson and Kraft, 2015;
Jansson, 2012; Longhurst et al., 2007). While we refer to the requirements and
objectives of the TableBuilder system to motivate our assumptions, we do not
attempt to replicate its properties exactly nor do we seek to replicate its confi-
dentiality protection methods.

2.1 Some Terminology and Notation

In this section we introduce some terminology and notation. First, we make
a remark about our use of the terms confidentiality and privacy. This paper
deals with the confidentiality of data held by a national statistical agency or
other custodian, as in the statistical disclosure control literature, and we use the
term confidentiality in that context. In the computer science literature the term
differential privacy is used to mean a particular way of defining a standard of
confidentiality protection, and the term privacy is used in association with that.
To be consistent with that literature, we will use the term privacy in the context
of the differential privacy theory.

Consider a data set in the form of a frequency table or a set of tables, where
each cell is defined by values of a given fixed set of attributes. We assume that
the given data set belongs to a universe of possible data sets that could have
been realised, denoted by U . An agency may decide to release the data or parts
of it. The collection of all frequencies that could be released is arranged in a
list a = (a1, . . . , aK) consisting of K cells in some order, where ak denote the
frequency in cell k, that is, the number of individuals taking the attribute values
corresponding to the cell, for k = 1, . . . ,K. The list a will be released after
undergoing a perturbation in order to preserve confidentiality. If, for example, the
data consists of a 10-way table, the list may include all interior cells, and also some
marginal tables, or only some marginal tables. Marginal tables are computed by
aggregating interior cells, and we shall see later why both marginals and interior
cells may be included in the list. It is thus possible that different cells in a list
might refer to overlapping subsets of individuals, that is, some individuals may
appear in more than one cell, and that different cell frequencies might correspond
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to the same set of individuals. A typical situation is that an agency holds a 10-
way table, say, but will release only perturbed versions of 3-way marginals, and
the cells of these marginals (unperturbed) will comprise the list.

The set A of possible lists a = (a1, . . . , aK) is called the list-space. We shall
suppose that all elements of lists in A are non-negative integers. The list-space is
determined by the agency’s decision on which parts of the data are to be released,
thus determining the structure of a, and on the universe U of potential data sets
that could have been realised, that is, A is the set of lists with a given structure
that could arise from all data sets in U .

We consider a mechanism M(·) on a list-space A that replaces the list a =
(a1, . . . , aK) by the perturbed list to be published M(a) = b = (b1, . . . , bK) con-
taining perturbed frequencies bk. In this paper we consider mechanisms that are
random functions. The mechanism can be represented by a conditional probabil-
ity distribution, denoted p(a, b), where for cell k = 1, . . . ,K, the perturbed cell
frequency bk takes a value b with probability p(a, b), when ak = a. Thus p(a, b)
defines the conditional probability distribution of bk given ak and we assume that
the same distribution applies to all cells k with a given value a of ak. In general
we shall assume that different cells are perturbed independently.

2.2 Some Properties of the ABS TableBuilder

The ABS TableBuilder, which we use as a model for table generating servers,
has been evolving and its description varies in different papers. Chipperfield,
Gow and Loong (2016) describe a list as above, and in principle all perturbations
could be applied in advance, however for efficiency’s sake they are applied when
users submit queries, using a lookup table whose random values are drawn in
advance. According to Fraser and Wooton (2005) different cells are perturbed
independently, unless the cell counts are associated with the same underlying
set of individuals. If two cell counts do in fact correspond to the same group of
individuals, then the ABS TableBuilder requires that the perturbed value is also
the same. In this method, this ‘same-participants-same-perturbation’ property is
implemented in a straightforward manner by attaching a random key drawn from
some continuous distribution to each individual in the population underlying the
data, and a cell’s key being the sum of the keys of its members. This cell key is
used as a seed for the random perturbation mechanism and two cells based on
the same group of individuals will be perturbed by the same seed to the same
value.

The ‘same-participants-same-perturbation’ property is aimed at preventing re-
peated queries on the same group with independent perturbations, which can be
averaged to reduce the noise and thus leak information. However, as we shall see,
the ‘same-participants-same-perturbation’ property will have to be abandoned
if differential privacy is adopted. We explain it here informally by demonstrat-
ing a scenario of confidentiality breach that results from this principle. As often
happens, the scenario below may seem contrived, but it can be made to seem
more realistic easily. Suppose our data D is about a given group, say workers
in a factory, and an intruder wishes to obtain information about the salary of a
particular person, say Bob, the only worker hired today. Suppose the following
two queries are allowed: 1, the frequency of workers whose salary exceeds s, and
2, the frequency of workers whose salary exceeds s, and who have been working
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for more than one day. Suppose the responses (with perturbation) to the two
queries are different. Under the ‘same-participants-same-perturbation’ principle
Bob’s salary must exceed s, and thus new information was obtained due to Bob’s
participation in D. Once differential privacy will be defined, it is an easy task to
translate this scenario to a breach of differential privacy. Note that in the above
scenario we obtained the information only because the two groups defined by 1
and 2 above could have been the same (which was not the case in the above
realisation). This shows that the universe U must be taken into account, and not
just identical groups in the realised data or list.

This breach can be avoided if two queries with different descriptions as shown in
1 and 2 above are perturbed independently, and the principle is modified to ‘same-
participants and description-same-perturbation’. A similar scenario appears in
Chipperfield, Gow and Loong (2016), leading them to the above modification
of the principle. However this modification opens the possibility of submitting
queries for the same group in different ways, and averaging to cancel the pertur-
bation noise. It may perhaps be possible to circumvent the whole problem, and
in particular such an averaging attack, by setting rules on the structure of the
list a and queries’ formulations which prevent the possibility of referring to the
same group in different ways. An example of such a rule is a restriction on the
structure with respect to sparsity, e.g., the number of zeros (and sometimes also
ones and twos) that may cause a margin to equal an internal cell.

Some additional properties of a protection method for a frequency table dis-
semination server that are similar to those of the ABS TableBuilder are set out
below. The first three properties address disclosure risk concerns, via either re-
moving concerns with small cells, such as counts of one, and setting a criterion
to minimize risk for given utility. The remaining five properties address utility
concerns, via being broadly concerned with either preserving important features
of the original table or reducing differences between the original and perturbed
tables.

1. The perturbation does not produce values below a specified threshold, that
is p(ak, bk) = 0 if bk ≤ c for a specified value c > 0, for any value of ak.

2. The distribution of bk given ak has maximal entropy subject to constraints
on the range and variance of the perturbation.

3. Sparse tables according to given thresholds are not published.
4. The perturbed frequencies are non-negative integers, that is, bk ≥ 0.
5. Structural zeros, that is, counts of attribute combinations that are impos-

sible to observe in the population, are not perturbed.
6. The perturbations are unbiased, that is, the expected value of bk given ak

equals ak.
7. The variance of bk given ak is constrained not to exceed a given value.
8. The distribution of bk given ak is truncated by imposing a bound on |bk−ak|,

the absolute difference between the perturbed and original values.

We remark that these properties are not all consistent, for example, properties
4 and 6 are generally contradictory. As discussed later, some of these properties,
such as 1, 2 and 4 above, may not be advantageous under the differential privacy
framework. They may well be justifiable if other risk measures are considered.
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Table 1
Typical user-specified sub-table of a larger frequency table (interior cells only) for NUTS2

Region = 1 and Country of birth = rest of Europe. The variables of interest are Age in banded
5-year groups from 15 to 74, and Occupation classified as one of A,. . .,K.

Age group Occupation

A B C D E F G H I J K
15-19 2 2 8 7 31 0 7 2 20 0 80
20-24 55 68 110 54 134 0 23 13 138 2 129
25-29 115 147 132 78 83 0 19 15 45 0 18
30-34 191 129 127 89 68 0 18 8 33 4 10
35-39 153 113 119 74 49 1 34 15 44 4 9
40-44 102 70 78 70 43 1 20 21 24 3 8
45-49 94 65 55 72 47 2 29 16 36 4 14
50-54 92 81 75 80 65 1 43 17 36 1 8
55-59 74 51 56 64 72 2 49 21 67 2 13
60-64 63 41 40 70 53 3 22 22 56 4 59
65-69 12 5 7 3 12 0 6 4 8 2 287
70-74 4 4 1 5 4 0 2 1 4 0 307

3. EXAMPLE OF FREQUENCY TABLE

In order to provide a realistic example, we selected the following variables used
in data from the 2001 census in the United Kingdom (UK):

• NUTS2 Region - 11 regions
• Gender - 2 categories
• Age in banded 5 year age groups - 21 categories
• Current Employment Status - 5 categories
• Occupation - 12 categories
• Educational attainment - 9 categories
• Country of birth - 5 categories

Here the NUTS (Nomenclature of Territorial Units for Statistics) is a hierarchical
system for dividing up the economic territory of the European Union and NUTS2
comprises basic regions for the application of regional policies, defined for the
purpose of socio-economic analyses. We generated a 7-way frequency table by
multiplying each of the UK 2001 census proportions by N = 1, 500, 000, to obtain
a table that mimics a real population of size N .

In Table 1 we present a realistic example of a sub-table of the 7-way frequency
table that might be requested by a user. The sub-table is defined by fixing NUTS2
Region = 1 and Country of birth = rest of Europe, and requesting a 2-way
frequency table of counts for occupation and age groups from 15 to 74.

Table 1 has some small cells, that normally have high associated disclosure
risks. We will use this table (in addition to some simulated tables) later , in order
to illustrate the implementation of our confidentiality protection approach.

4. DIFFERENTIAL PRIVACY FOR FREQUENCY TABLES

4.1 Basic Ideas and Definitions

As indicated in Section 1, privacy loss occurs when an intruder can learn from
the perturbed list M(a) about an individual contributing to the original list a.
We consider a randomized mechanism M(a) that produces a random value b,
the perturbed value of a, with probability P(M(a) = b) depending only on the
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mechanism M. We denote the range of the perturbation of a ∈ A by B(a), that
is, B(a) = {b : P(M(a) = b) > 0}. Then B(a) ⊆ B, the range of M, and when
B(a) does not depend on a, we have B(a) = B. Sometimes A = B is assumed.
For lists a, a′, we write a ∼ a′ and refer to a and a′ as neighbours, if a′ can be
obtained from a by adding or removing exactly one individual.

As explained below, we may measure how much can be learnt about individuals
by the likelihood ratios P(M(a) = b)/P(M(a′) = b) for a ∼ a′. It is the ratio of
the intruder’s likelihoods for observed b under a or a′ considered as parameters.
(Recall that we assume that the nature ofM(·) is released together withM(a).)
The likelihood ratio could alternatively be viewed as a posterior odds ratio, or
Bayes factor, from a Bayesian perspective.

Placing a bound on this likelihood ratio motivates the definition of ε-differential
privacy, which we denote by DP(ε). We specialise the definition to lists as follows.

Definition 1. (Dwork et al., 2006) A mechanism M satisfies ε-differential
privacy if for all neighbouring lists a,a′ in A, and all subsets S ⊆ Range(M) =
B, we have:

(4.1) P(M(a) ∈ S) ≤ eεP(M(a′) ∈ S).

Since in our setting Range(M) is discrete, we can use the simpler condition
that M satisfies ε-differential privacy if for all neighbouring lists a,a′, and all
lists b we have:

(4.2) P(M(a) = b) ≤ eεP(M(a′) = b).

As the neighbourhood relation is symmetric, we can equivalently say that the
mechanismM satisfies ε-differential privacy if for all perturbed lists b and neigh-
bouring a and a′

(4.3) e−ε ≤ P(M(a) = b)
/
P(M(a′) = b) ≤ eε.

If there is a very large or small value of the ratio P(M(a) = b)
/
P(M(a′) = b)

for given a ∼ a′ and some observed b, then a typical scenario for a confidentiality
breach is the following: suppose an intruder knows the whole original unperturbed
list apart from the cell where one targeted individual belongs. Suppose the in-
truder wants to know whether the targeted individual is in the data set D, and
if so, in which cell. Denoting the list without the target by a′, say, the intruder
computes the ratio for all a where the target is added into one cell. Under DP(ε)
with a small ε all these ratios will be close to 1, and inference on whether the
target is in D is impossible. But otherwise, a large likelihood ratio will suggests
the inference that the targeted individual is in D and in which cell, according to
the a that yielded that high likelihood ratio. One can describe such a scenario in
a way that does not require the intruder to know too much. However, some prior
information is needed.

Note that ‘all S’ in the DP(ε) definition refers to all possible subsets S of B.
Thus, the definition does not only refer to the realised list a and its neighbours
and the outcome b observed by the intruder but rather to all potential lists in A,
and all possible outcomes of the perturbation. In this sense DP(ε) can be viewed
as a ‘worst case’ requirement, and the definition refers to the mechanism and not
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CONFIDENTIALITY PROTECTION FOR FREQUENCY TABLES 11

to the perturbed data, and is applicable at the stage of designing the mechanism
before the perturbation has taken place.

As we shall discuss, a key challenge with the differential privacy requirement is
the possible effect on utility. We introduce two relaxations of differential privacy
that seek to reduce confidentiality protection in a controlled way, in order to gain
utility. Both of these relaxations will be used later in the paper.

The most widely known relaxation of the definition of differential privacy for
M, which may result in enhanced utility, is (ε, δ)-differential privacy, or DP(ε, δ)
(Dwork and Roth, 2014, Definition 2.4), under which

(4.4) P(M(a) ∈ S) ≤ eεP(M(a′) ∈ S) + δ

for all subsets S of the range of M and neighbouring a and a′. The parameter δ
adds flexibility by allowing the randomly perturbed list to have a probability of
δ of having an undesirable likelihood ratio with associated higher disclosure risk.

An alternative relaxation of DP(ε) requires the likelihood ratio to be bounded
by eε, as in (4.1), across a set of possible outcomes with probability at least 1−δ.
As a definition, (ε, δ)-probabilistic differential privacy is satisfied if P

(
M(a) ∈

G(a,a′)
)
> 1− δ for all a ∼ a′ ∈ A, where

(4.5) G = G(a,a′) = {b ∈ B(a) : P(M(a) = b)/P(M(a′) = b) ≤ eε},

and 0/0=0. Closely related definitions can be found in Gotz et al. (2012); Machanava-
jjhala et al. (2008).

Lemma 1. (Gotz et al., 2012) If a mechanism M satisfies (ε, δ)-probabilistic
differential privacy then it also satisfies DP(ε, δ).

Proof. SupposeM satisfies (ε, δ)-probabilistic differential privacy, and let C
denote the complement of G in B(a). For a subset S of the range of M and for
neighbouring lists a ∼ a′, we have:

P(M(a) ∈ S) =
∑

b∈S∩G
P(M(a) = b) +

∑
b∈S∩C

P(M(a) = b)

≤
∑

b∈S∩G
eεP(M(a′) = b) +

∑
b∈S∩C

P(M(a) = b)

≤ eεP(M(a′) ∈ S) + δ,

where the first inequality follows from the definition of the set G and the second
from the definition of (ε, δ)-probabilistic differential privacy.

Recall that two lists a and a′ in A are neighbours if a′ can be obtained from
a by adding or removing a single individual. Given a list-space A, let d denote
the maximum number of cells in which two neighbours, a and a′ can differ. If
each individual appears only in a single cell, then d = 1, as one cell frequency
decreases by one when an individual is removed from the cell, and increases by
one if an individual is added to the cell. The number d will play a role in utility
computation, see Section 7, with a larger d leading to smaller utility. Other than
in Section 7 we assume throughout that d = 1, which occurs, for example, if the
data to be released consist of the interior cells of a standard frequency table.
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12 Y. RINOTT ET AL.

Given two original, unperturbed lists that differ in a single individual, the
differential privacy condition involves quantification of the difference between
the distributions of the corresponding released perturbed lists. For small ε and
δ, DP(ε, δ) means that an individual’s participation in the original data set is
likely to have a small influence on the released data. An individual considering
participation in a census, for example, is assured that by doing so the risk of a
confidentiality breach rises only in a limited way: to be precise, only with (small)
probability δ, the presence of the individual in a given cell may be inferred by a
likelihood ratio that exceeds eε. Moreover, since the very presence of an individual
in a data set is unlikely to be inferred, participation in any past or future data set
is unlikely to increase the individual’s risk. In other words, the data environment
in which the perturbed data set is released is irrelevant to the confidentiality
guarantees under differentially privacy release with small parameters. On the
other hand, if an intruder can learn certain attributes of an individual with high
probability, he can later try to use these attributes to find the individual in
other data sets and obtain further information about them. In this case the
environment may matter, and if individuals in the data set appear in other data
sets, past or future, the risk may increase. If the differential privacy parameters
of different perturbation schemes are not small, and they are used for comparing
confidentiality protection in different data sets, one has to take the environments
into account, and compare only files which have similar environments. In this
paper we focus on using the parameters of differential privacy to compare different
perturbation mechanisms operating on the same file, thus avoiding this additional
issue.

In the differential privacy literature it is stated that δ should be smaller than
1/N where N is the total number of individuals in the protected data (Dwork
and Roth, 2014). The reason is that if δ = 1/N then a mechanism that chooses
one individual at random and just releases her data without any perturbation,
would satisfy DP(ε, δ) for any ε. Releasing the data of a single individual is indeed
inappropriate, but a realistic perturbation algorithm, even with δ > 1/N , would
not really do that. Indeed, δ > 1/N means that the probability that the likelihood
ratio of (4.3) will be outside the defined desirable interval is larger than 1/N . If
this happens then testing whether the data set in question is a or a neighbouring
a′ may have a higher power than we would like, but that does not necessarily
amount to releasing the unperturbed data of some individual.

4.2 Utility/loss Functions and the Exponential Mechanism

As mentioned above, differential privacy is defined as a property of a mech-
anism. Various candidates for differentially private mechanisms M(·) have been
proposed in the literature, see for example Dwork and Roth (2014). We shall
consider some alternative choices that might be suitable for implementation in
table-generating servers, specifically those that are cases of the general ‘expo-
nential mechanism’ (McSherry and Talwar, 2007). Informally, the exponential
mechanism is defined with respect to some utility function u which assigns a
utility score to possible perturbed values so that the mechanism is more likely to
produce values with higher utility scores (see Dwork and Roth, 2014).

The exponential mechanism includes the class of perturbation mechanisms
which we shall apply in different versions in the remainder of this paper. The
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approach starts by specifying a utility function u(a,b), measuring the utility
of the perturbed list b given the original list a. Following (Dwork and Roth,
2014), we shall generally consider additive utility functions of the form u(a,b) =∑K

k=1 v(ak, bk). As we shall see, this additive form enables us to specify a mech-
anism which ensures that the K cells in the list are perturbed independently.
Statisticians are familiar with loss functions, so we start with examples of those,
and then transform them to utilities by a sign change. The loss functions we shall
use are:

`1 = `1(a,b) =
K∑
k=1

|ak − bk|

`2 = `2(a,b) =
K∑
k=1

(ak − bk)2,

`3 = `3(a,b) =

K∑
k=1

|
√
ak −

√
bk|.

The utility functions considered in this paper are ui = −`i for i = 1, 2, 3.
As loss functions, `1 and `2 are natural and standard. The loss `3 is reminiscent

of Hellinger distance. It has the intuitively appealing property that the loss varies
with the size of the perturbed cell: for example, the same loss of 2 is incurred by
perturbing 0 to 4, 100 to 144 and 10000 to 10404. This is in contrast to `1 for which
the perturbation from 10000 to 10404 has a much higher loss than perturbing 100
to 144 or 0 to 4. Although as a loss function `3 seems very reasonable, and we use
it to demonstrate some points, we shall see that it does not turn out to be very
useful in practice when using the exponential mechanism for protecting frequency
tables. Note that the Hellinger distance, (

∑K
k=1(
√
ak −

√
bk)

2)1/2, proposed as a
loss function in Shlomo (2007) is not of an additive form.

To describe the exponential mechanism, consider mechanisms where the range
of b, denoted by B as before, does not depend on a, that is, every b ∈ B
satisfies P(M(a) = b) > 0 for all a. This assumption will be modified later. The
exponential mechanism is defined by

(4.6) given a choose b ∈ B with probability proportional to eηu(a,b)/∆u,

where η is a specified value, depending on the differential privacy parameter ε,
and the scale factor ∆u is

(4.7) ∆u = max
b∈B

max
a∼a′∈A

|u(a,b)− u(a′,b)|.

It is easy to see that this mechanism attaches higher probability to perturbed
lists which have higher utility. For any additive utility function of the form
u(a,b) =

∑K
k=1 v(ak, bk), the K cells in the list are perturbed independently

and the probability that list a is perturbed to b is

P (a,b) =
K∏
k=1

p(ak, bk) ∝
K∏
k=1

eηv(ak,bk)/∆u,

where p(ak, bk) is the probability of a cell of size ak being perturbed to bk. In-
dependent perturbations are simple to apply and to analyse, however in theory
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14 Y. RINOTT ET AL.

they may lead to an undesirable result. For example, suppose one cell represents
a subset of the set of individuals contributing to another cell. Under independent
perturbations, the perturbed count of the cell with the subset may be larger than
the perturbed count of the original cell. As another example, if one cell in the list
to be perturbed consists of a marginal count, that is, the sum of some other cells,
then this additive relationship need not hold after independent perturbations
have been applied.

A key property of the exponential mechanism is that DP(ε) holds for a suitable
η depending on ε in a simple way. The following result is Theorem 3.10 in Dwork
and Roth (2014), where a proof is given. In fact, the result is a special case of
our Theorem 4.2 below. We mention again that in Theorem 4.1 we assume that
the range of M(a), denoted by B, does not depend on a. This result shows that
we obtain DP(ε) by choosing η = ε/2.

Theorem 4.1. Let u be a utility function and M a perturbation mechanism
such that P(M(a) = b) is proportional to eεu(a,b)/2∆u for all possible lists a ∈ A
and perturbed lists b ∈ B. Then M is DP(ε).

Proof. For a,a′ ∈ A and b ∈ B we have

P(M(a) = b)

P(M(a′) = b)
=

{
eεu(a,b)/2∆u∑

b∈B e
εu(a,b)/2∆u

}/{
eεu(a′,b)/2∆u∑

b∈B e
εu(a′,b)/2∆u

}

=

{
eεu(a,b)/2∆u

eεu(a′,b)/2∆u

}{∑
b∈B e

εu(a′,b)/2∆u∑
b∈B e

εu(a,b)/2∆u

}
≤ eε.

Using |u(a,b)−u(a′,b)| ≤ ∆u, it is easy to see that each of the two terms in the
latter product is bounded by eε/2, and the result follows.

4.3 Truncated Cell Perturbations

Recall from Section 2.2 that it can be desirable in terms of increased utility to
truncate cell perturbations by bounding the perturbation according to |ak−bk| ≤
m for some m, for all k. In particular, the range of M(a), denoted by B(a), will
depend on a. Theorem 4.2, a variant of Theorem 4.1, demonstrates that the
increased utility provided by the truncation is achieved at the cost of relaxing
DP(ε) to DP(ε, δ) with δ > 0 depending on the truncation bound m and the
utility function u. Note that in contrast to Theorem 4.1, in Theorem 4.2 the
exponent is not divided by 2 (η = ε rather than ε/2 above), which implies a
smaller spread of the perturbation in addition to the truncation by m. Consistent
with these adjustments, the definition (4.7) is replaced by

(4.8) ∆u = ∆u(a) = max
b∈B(a′)

max
a∼a′∈A

|u(a,b)− u(a′,b)|.

Note that (4.7) is a special case of (4.8) where for all a we have B(a) = B.

Theorem 4.2. Let u be a utility function of the form u(a,b) = g(a− b) for
some g, andM a perturbation mechanism such that P(M(a) = b) is proportional
to eεu(a,b)/∆u for all possible lists a ∈ A and perturbed lists b such that |ak−bk| ≤
m for all k, and otherwise P(M(a) = b) = 0, and ∆u is given in (4.8). Assume
also that for all a ∼ a′, P(M(a′) = b) = 0 implies P(M(a) = b) < δ. Then M
is DP(ε, δ).

imsart-sts ver. 2014/10/16 file: "TB DP_Dec_28_final".tex date: December 28, 2016



CONFIDENTIALITY PROTECTION FOR FREQUENCY TABLES 15

Proof. Let a ∼ a′ be neighbouring lists and let b ∈ Range(M). Clearly, we
can assume b ∈ B(a) as otherwise P(M(a) = b) = 0 and (4.9) holds trivially. If
P(M(a′) = b) = 0 then P(M(a) = b) < δ so that P(M(a) = b) ≤ eεP(M(a′) =
b) + δ as required. If P(M(a′) = b) > 0 then

P(M(a) = b)

P(M(a′) = b)
=

{
eεu(a,b)/∆u∑
b e

εu(a,b)/∆u

}/{
eεu(a′,b)/∆u∑
b e

εu(a′,b)/∆u

}
(4.9)

=
eεu(a,b)/∆u

eεu(a′,b)/∆u
≤ eε,

where the second equality follows from the fact that the two sums in the denom-
inators cancel since

∑
b:|b−a|≤m e

cg(b−a) =
∑m

z=−m e
cg(z) does not depend on a,

and the last inequality follows from |u(a,b)− u(a′,b)| ≤ ∆u. Thus M(a) = b ∈
G(a,a′), where G(a,a′) is defined in (4.5). It follows that P(M(a) ∈ G(a,a′)) >
1− δ, and the result follows from Lemma 1.

We now demonstrate the calculation of the value δ when applying Theorem
4.2. Suppose we wish to impose a bound m on |b − a|, the difference between
the perturbed and original value. In other words, we assume p(a, b) = 0 for
|b− a| > m. Here and in all our applications we assume also that p(a, b) > 0 for
|b − a| ≤ m. For neighbouring a,a′, P(M(a′) = b) = 0 and P(M(a) = b) > 0
occurs only when the value in a particular cell, say j, of a is a + 1 and that of
a′ is a, and all other cells of a,a′ are equal. We have p(a + 1, a + 1 + m) > 0
and p(a, a + 1 + m) = 0 and therefore, if cell j of b has the value a + 1 + m
then P(M(a′) = b) = 0. With a similar argument for p(a, a−m), we claim that
the exponential mechanism of Theorem 4.2 is DP(ε, δ), with

(4.10) δ = max{max
a

p(a+ 1, a+ 1 +m),max
a

p(a, a−m)}.

In fact, in the above case, if a,a′ differ as above in cell j, and bj = aj + m + 1,
then

(4.11) P (a,b) ≤ δ
∏
k 6=j

p(ak, bk) ≤ δ.

Thus for any such b we have P(M(a) = b) < δ as required in the theorem.
Note that there may be a considerable slack in the second inequality of (4.11),
implying that the δ parameter in the differential privacy could be much better,
that is, smaller than stated.

4.4 Post-Processing and Negative Perturbed Values

In general, agencies will be reluctant to disseminate perturbed tables with
negative frequencies. However, as our brief discussion below shows, this policy
should be reconsidered if differential privacy is to be adopted. Our proofs of DP
allow negative values, but as we shall see, the same DP level continues to hold
if all negative values are replaced by zeros. We show below that negative values
may be useful and informative in various ways and that information may be lost
by replacing negative values with zero.

If the perturbations are unbounded, as in Theorem 4.1, then M(a) may have
negative cells for any a depending on the utility u. This is the case for u1 and
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u2. If the perturbations are truncated by m as in Theorem 4.2, then cells with
a < m may be perturbed to a negative b. Negative values are required to achieve
unbiasedness of the perturbed data. In the exponential mechanism with u1 or
u2, which are our main examples, the perturbing distribution is symmetric and
negative values of the perturbed data may occur. Unbiasedness is clearly desirable
on its own, and when computing marginals as sums of perturbed interior cells,
unbiasedness implies that the perturbation would cancel rather than accumulate.
Therefore, it seems reasonable to allow release of negative values, and advise users
to replace them by zeros at a suitable stage of their analysis, e.g., after computing
marginals or merged cells from interior cells.

However, if publishing data with negative perturbed frequencies is not accept-
able for some reason, the data releasing agency can just report all negative values
as zeros. This will effectively replace the perturbed value b by a value closer to
the original a since a ≥ 0. More generally, if for some reason an agency wishes
the released entries of the list to satisfy some constraints such as b ≥ c for some
c, it can replace all smaller values by c. Such post-processing preserves differential
privacy, see Proposition 2.1 in Dwork and Roth (2014). To see this in the current
context, letM(·) be a DP(ε, δ) mechanism and let f be any function not depend-
ing on the unperturbed data, such as the function that maps negative values to
zero. Then f(M(·)) is DP(ε, δ), since

P(f(M(a)) ∈ S) = P(M(a) ∈ f−1(S)) ≤ eεP(M(a′) ∈ f−1(S)) + δ

= eεP(f(M(a′)) ∈ S) + δ.

Another common post-processing step performed on perturbed tables is the
application of an algorithm to ensure that each marginal cell value equals the sum
of the corresponding cell values. Such post-processing after a DP perturbation
would not affect the differential privacy property of the table.

4.5 Zero Cells

Structural zeros, that is, cells representing combinations of attributes that are
known to be impossible, need not be published since their value, zero, is known
a priori. Therefore, there is no need to publish a structural zero, and no need
to perturb it if published. We shall simply assume that our lists do not contain
structural zeros.

In the case of non-structural zeros, there may be an impression that such
zero cells do not constitute a disclosure risk, since an empty cell cannot reveal
information about anyone. However, consider the following scenario: suppose the
intruder wishes to know the health status of a targeted individual, who lives in
a certain area and is in a known age group. Suppose the intruder knows that
excluding the targeted individual, there is no individual having the given disease
in this area and age group. If non-structural zeros are not perturbed, and if the
targeted individual does not have the disease then the corresponding cell would
be empty in the released data. Observing a zero in this cell, the intruder can
conclude that the targeted individual does not have the disease. This is reflected
in differential privacy as follows. Consider only the cell in question, as if this is
the whole list. Then P(M(0) = 1) = 0 while P(M(1) = 1) > 0. Taking S = {1} in
(4.4) we can have P(M(1) = 1) ≤ eεP(M(0) = 1)+δ only with δ = P(M(1) = 1),
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and in general there is no reason for this value to be small. Note that neighbouring
lists can differ in the above way in a given cell.

Therefore we conclude that non-structural zeros should be perturbed. However,
constraining the perturbed values to be non-negative can introduce statistical
bias. Unless p(0, 0) = 1, there is a positive bias, and p(0, 0) = 1 implies p(0, 1) = 0.
It is straightforward to verify that DP(ε) cannot be satisfied if p(0, 1) = 0 and
p(1, 1) > 0. On the other hand, if we relax to DP(ε, δ) then we need a condition
such as p(1, 1) ≤ δ which seems very undesirable for small δ. Thus differential
privacy and unbiasedness are contradictory, unless release of negative values is
allowed.

5. EXAMPLES OF EXPONENTIAL PERTURBATION MECHANISMS

In this section, we study in more detail three special cases of the general expo-
nential mechanism introduced in Section 4.2. We discuss the nature of these mech-
anisms, compare their differential privacy properties and illustrate numerically
the utility consequences of the different choices of differential privacy parameters.

5.1 Laplace Perturbations

Corresponding to `1 in Section 4.2, we have the utility function u1 = u1(a,b) =
−
∑K

k=1 |ak−bk|. We first consider perturbation without truncation. To construct
an exponential mechanism as in Equation (4.6), we need to determine ∆u1. As-
sume for now that each individual appears in the list only in one cell and therefore
when one individual is removed or added relative to the list, only one cell count
changes by 1. This assumption will be removed later. In terms of d defined above
as the maximal number of cells in which two neighbours, a and a′ can differ, we
have d = 1. It follows readily that ∆u1 = 1. We remark that the maximum value
of ∆u as in (4.7) is attained for all a, a′, b so here the worst case is typical. This
is one explanation why the exponential mechanism constructed from u1 is very
efficient for frequency tables.

Under this choice of utility function, the exponential mechanism becomes a
discretised Laplace perturbation distribution, or a symmetric geometric distri-
bution having probability p(a, b) of perturbing a cell count a to b given by the
proportionality relation

(5.1) p(a, b) =
1

C
e−ε|b−a|, a = 0, 1, . . . , b = 0,±1,±2, . . . .

where the normalizing constant is C =
∑∞

k=−∞ e
−εk = 1 + 2e−ε/(1− e−ε). The-

orem 4.1 implies DP(ε). Clearly one can view this perturbation as adding to a
cell count a a random variable X satisfying P(X = x) = 1

C e
−ε|x| for all integers

x. As always, one can replace negative perturbed frequencies by zero.
We can impose truncation of the type |ak−bk| ≤ m as above to improve utility,

and the conditions of Theorem 4.2 hold. In this case we have

(5.2) p(a, b) =
1

Cm
e−ε|b−a| for b satisfying −m ≤ |b− a| ≤ m,

where Cm =
∑m

k=−m e
−ε|k| = 1 + 2(e−ε − e−(m+1)ε)/(1− e−ε), obtained by using

the geometric series formula. In this case, it follows from the formula of Section
4.5, that δ = e−εm/Cm and by Theorem 4.2 we obtain DP(ε, δ). Again, negative
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perturbed values can be replaced by zero, maintaining the same level of differen-
tial privacy. For ε = 1 and m = 10 we obtain δ = 0.00002. It is readily seen that
δ decreases in m for each ε, so in terms of the differential privacy parameters the
larger m the better.

A strong universal optimality property of the discrete Laplace (two-sided ge-
ometric) perturbation for the case of perturbing a single cell appears in Ghosh,
Roughgarden and Sundararajan (2012). They show that without truncation, the
Laplace perturbation of a single cell is optimal relative to a wide class of loss func-
tions that includes the ones we consider, provided some post processing of the kind
we do, e.g., replacing negative outputs by zero, is performed. More specifically,
they show that Laplace with DP(ε) minimizes Eb[

∑
a `(a, b)] =

∑
a

∑
b P(M(a =

b)`(a, b) among all DP(ε) mechanisms having the same range, provided `(a, b) is
non-negative and non-decreasing in |a − b| for all a, the frequency in the single
cell. This was followed by Brenner and Nissim (2010) where it is shown such uni-
versality does not extend beyond a single cell, and therefore does not apply for
tables as in this paper. Still, the Laplace perturbation seems like a very efficient
choice.

5.2 Normal Perturbations

As a further example of the exponential mechanism, consider the utility func-
tion u2. We show below that without truncation we have ∆u2 = ∞. Therefore,
in order to determine a finite ∆u2 , we truncate the perturbations by m so that
|ak − bk| ≤ m for all k. This forces us to consider DP(ε, δ) with δ > 0.

Making the same assumption as in the previous section that d = 1, we have
∆u2 = 2m + 1, since in cells that differ between neighbouring lists we have
(a+ 1− b)2− (a− b)2 = 2(a− b) + 1 and likewise if +1 is replaced by -1. Clearly
∆u2 can be finite only if m is finite. The probability p(a, b) is now given by the
proportionality relation

(5.3) p(a, b) =
1

Dm
e−ε(b−a)2/(2m+1), for b satisfying |b− a| ≤ m

whereDm =
∑m

k=−m e
−εk2/(2m+1). This is a discretised and truncated normal nor-

mal distribution. Theorem 4.2 guarantees DP(ε, δ) with δ = e−εm
2/(2m+1)/Dm.

For ε = 1 and m = 10 we have δ = 0.001.

5.3 Maximum Entropy Perturbation

One of the desiderata of frequency table dissemination mechanisms noted in
Section 2.2 is that the distribution of the perturbations has maximum entropy,
subject to the range and first two moments (see Andersson, Jansson and Kraft,
2015; Marley and Leaver, 2011). This may be intuitively appealing, and if one
takes the variance of the perturbation as being indicative of its confidentiality
protection performance, then maximum entropy subject to variance makes sense,
although we are not aware of a formal statement regarding its advantage.

The normal distribution is well known to have maximum entropy subject to
a given variance and range on the real line. Numerical calculations show that a
discretised version as used above has approximately maximum entropy. An exact
calculation of the discrete maximum entropy perturbation distribution subject to
variance and range constraint requires a calculation using Lagrange multipliers.
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The Laplace distribution has a similar characterization, if the range and expec-
tations are prescribed. In fact, the principle of maximum entropy in statistics
goes back to Laplace. Again the discrete version inherits an approximate max-
imum entropy property. As the tables above and results given later on testing
independence suggest, Laplace perturbations perform better than Normal, sug-
gesting that the principle of maximum entropy subject to variance should be
reconsidered.

5.4 Hellinger-type Perturbations

Turning to the utility function u3 = u3(a,b) = −
∑K

k=1 |
√
ak −

√
bk|, easy

calculations show that ∆u3 = 1, assuming again that d = 1. However, in this
case the maximum in (4.7) is attained in the extreme case of small a, a′ due
to the concavity of

√
x, so here the worst case is not typical unless all cells

are very small. In other words, for large cells, the value of ∆u in the exponential
mechanism is too large, making the inequalities in the proof of Theorem 4.1 crude,
and therefore leading to over-perturbation and loss of utility. For the exponential
mechanism with u3 we have

(5.4) p(a, b) ∝ e−ε|
√
b−
√
a|/2, a, b = 0, 1, . . . .

and Theorem 4.1 implies DP(ε).
Although the loss function `3 that corresponds to u3 has very attractive proper-

ties, the worst case aspect explained above implies that as a perturbation mecha-
nism the scheme defined in (5.4) performs very poorly in terms of data utility. We
believe that it is a somewhat interesting lesson that a loss function that appears
so natural leads to a poor mechanism.

5.5 Comparisons of Perturbation Mechanisms

In Table 2 we calculate the probability of obtaining a perturbed value in an
interval range of ± 0 to ± 4 of the original value, when the original values are 0 to
5 and over, ε = 1.5 and ε = 0.5 for both the Laplace and Normal perturbations,
and negative values are replaced by zero. In order to compare the two perturbation
mechanisms we fix the value of δ for each ε. For ε = 1.5 and δ = 0.00002, Laplace
perturbations are truncated at m = 7 and Normal perturbations are truncated
at m = 12. For ε = 0.5 and δ = 0.008, Laplace perturbations are truncated at
m = 7 and Normal perturbations are truncated at m = 10.

From Table 2, it is clear that the Laplace perturbations have higher utility
under differential privacy with given ε and δ. All perturbed values are within ±3
for ε = 1.5 and δ = 0.00002 and over 92% of the perturbed values are within
±4 for ε = 0.5 and δ = 0.008. The corresponding probabilities for the normal
perturbations are between 6% and 25% lower. Note that replacing all negative
perturbed values by zero impacts on the perturbation ranges when a zero is
included in the interval.

A similar calculation for Hellinger-type perturbations shows that they are con-
siderably worse than the other perturbation mechanisms, and the probabilities
are very small compared to those in Table 2. Therefore, we will not include the
Hellinger-type perturbations in further analyses.
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Table 2
Probability of range for Laplace and Normal perturbations with negative values replaced by zero

Original Value
Range for ε = 1.5 and δ = 0.00002 Range for ε = 0.5 and δ = 0.008
± 0 ± 1 ± 2 ± 3 ± 4 ± 0 ±1 ± 2 ± 3 ± 4

Laplace m = 7 Laplace m = 7
0 0.82 0.96 0.99 1.00 1.00 0.63 0.78 0.87 0.93 0.96
1 0.64 0.96 0.99 1.00 1.00 0.25 0.78 0.87 0.93 0.96
2 0.64 0.92 0.99 1.00 1.00 0.25 0.55 0.87 0.93 0.96
3 0.64 0.92 0.98 1.00 1.00 0.25 0.55 0.74 0.93 0.96
4 0.64 0.92 0.98 1.00 1.00 0.25 0.55 0.74 0.85 0.96
≥5 0.64 0.92 0.98 1.00 1.00 0.25 0.55 0.74 0.85 0.92

Normal m = 12 Normal m = 10
0 0.57 0.70 0.81 0.89 0.94 0.54 0.63 0.71 0.78 0.84
1 0.14 0.70 0.81 0.89 0.94 0.09 0.63 0.71 0.78 0.84
2 0.14 0.40 0.81 0.89 0.94 0.09 0.26 0.71 0.78 0.84
3 0.14 0.40 0.62 0.89 0.94 0.09 0.26 0.42 0.78 0.84
4 0.14 0.40 0.62 0.78 0.94 0.09 0.26 0.42 0.57 0.84
≥5 0.14 0.40 0.62 0.78 0.88 0.09 0.26 0.42 0.57 0.69

5.6 Risk-Utility Analysis

5.6.1 Utility of the Laplace and Normal Perturbations We begin by presenting
some expressions for the expected loss under these mechanisms. Beginning with
Laplace perturbation and setting α = e−ε we have

E(|b− a|) =
m∑

k=−m
|m|e−εk = 2α(mα(m+1) − (m+ 1)αm + 1)/Cm(α− 1)2,

where Cm is defined in (5.2). Letting m→∞ we obtain for the untruncated case,
E(|b−a|) = e−ε/C(e−ε− 1)2 with C = 1 + 2e−ε/(1− e−ε). If we replace negative
outputs by zero, the loss improves.

Turning to normal perturbations, we have

E(|b− a|2) =

m∑
k=−m

|m|2e−εk2/(2m+1)/Dm,

where Dm is defined after (5.3). Again, if we replace negative outputs by zero,
this utility improves.

5.6.2 Risk-Utility Plots In this section, we shall present risk-utility plots for
the real Table 1 and for additional two-way tables that were generated assuming
independence of the two attributes, in order to assess the impact of the perturba-
tion mechanisms on statistical inference. Risk is measured in terms of the value
of ε, from ε = 0.1 to ε = 3.0, for both the Laplace and Normal perturbations.
The truncation of m is fixed at m = 7 for the Laplace perturbations and allowed
to vary for the Normal perturbations to ensure the same value of δ for each ε.
For ε = 0.1, 0.5, 1.0, 1.5, 2.0, 3.0 the corresponding values of m for the Normal
perturbations are 8, 10, 12, 12, 13, 14, respectively. Utility is measured using the
loss functions `1, `2, and `3 defined in Section 4.2 as well as by the accuracy of
the Cramer’s V statistic and the associated p-value for the Chi-square test for
independence.

Figure 1 presents results of applying perturbations to Table 1. For each ε, the
table was perturbed 100 times in order to produce the box plots. The real table is
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Fig 1. Values of Cramer’s V and three loss functions over 100 perturbation repetitions for each
ε for Table 1
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highly dependent and hence p-values (not shown) for testing independence were
close to zero for the original table and all perturbations and the inference did not
change. The true value of Cramer’s V is represented by the horizontal line and we
can see that under both perturbation mechanisms, the inter-quartile range of the
statistic is less than 0.005. The three loss functions are also included in Figure 1
where the smaller the value, the higher the utility. It is clear that utility improves
as ε increases. In all cases, the Laplace perturbations show higher utility and in
fact out-performs the Normal perturbations even for the `2 loss function which
defines the exponential mechanism for Normal perturbations.

In order to assess the impact of the perturbations on statistical inference when
testing for independence on the perturbed data as if they were true data, we
generated two tables having two independent attributes, both with a population
size of N = 10, 000, a large table with 1,000 cells (average cell size of 10) and a
small table with 100 cells (average cell size of 100). The marginal probabilities
of the tables were generated by the Dirichlet distribution. From the marginal
probabilities, we define the internal probabilities under the assumption of inde-
pendence pij = pi.p.j . Finally, we generated the counts in the table by random
draws from Mult(N, pij). We carried out 100 perturbations on each table and
under each ε for the Laplace and Normal perturbations using the same settings
of m as described above to ensure equal δ.

Figures 2 and 3 show the risk-utility plots for the two table. The horizontal
lines for the p-value and Cramer’s V statistic show the true values obtained from
the original tables. We see that utility improves as ε increases and the Laplace
perturbations out-perform the Normal perturbations as expected. Under both
perturbation mechanisms we rarely change the inference from independence to
dependence for the small table (with large counts) but this is not the case for the
large table (with small counts). For the latter table under the Normal perturba-
tions, we are unable to obtain correct inference for any of the ε whilst under the
Laplace perturbations we would need ε over 2.0 in order not to reject indepen-
dence. For the Cramer’s V statistic the Normal perturbations in the large table
show greater discrepancies than the small table, and compared to the Laplace
perturbations. The three loss functions are also shown in the figures for compar-
ison.

6. DATA ANALYSIS TAKING THE PERTURBATIONS INTO ACCOUNT

In Section 5 we compared the properties of the alternative mechanisms and
generally found that Laplace perturbations led to higher utility for a given value
of ε. Nevertheless, in absolute terms, the distortion of analyses arising from even
Laplace perturbations was non-negligible for values of ε of, say, 0.5 or 1.0. Thus,
for such values of ε, we see in Figures 2 and 3 clear evidence of bias in the
estimation of the Cramer’s V parameter and evidence that p-values for testing
independence are often very different to the p-value in the original table. Fienberg,
Rinaldo and Yang (2010) and Wang, Lee and Kifer (2015) have also discussed
how such perturbations can lead to unreliable conclusions in the analysis of tables
if their presence is ignored. As a result, it is of interest to consider approaches
to analysis of the perturbed table which take account of the perturbation mech-
anism.

As mentioned in the Introduction, the standard assumption in differential pri-

imsart-sts ver. 2014/10/16 file: "TB DP_Dec_28_final".tex date: December 28, 2016



CONFIDENTIALITY PROTECTION FOR FREQUENCY TABLES 23

 

 

 

Laplace Perturbations  Normal Perturbations  
P-Value 

  
Cramer’s V 

  
l1 Loss Function 

  
l2 Loss Function 

  
l3 Loss Function 

  

0.1 0.5 1 1.5 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Epsilon

P
-v
al
ue

0.1 0.5 1 1.5 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Epsilon

P
-v
al
ue

0.1 0.5 1 1.5 2 3

0.
02

0
0
.0
25

0.
03

0
0.
03

5
0.
04

0

Epsilon

C
ra
m
e
r's

 V

0.1 0.5 1 1.5 2 3

0.
02

0
0
.0
25

0.
03

0
0.
03

5
0.
04

0

Epsilon

C
ra
m
e
r's

 V

0.1 0.5 1 1.5 2 3

0
1

2
3

4
5

Epsilon

l1
 L
os

s

0.1 0.5 1 1.5 2 3

0
1

2
3

4
5

Epsilon

l1
 L
os

s

0.1 0.5 1 1.5 2 3

0
5

1
0

15
20

2
5

Epsilon

l2
 L
os

s

0.1 0.5 1 1.5 2 3

0
5

1
0

15
20

2
5

Epsilon

l2
 L
os

s

0.1 0.5 1 1.5 2 3

0.
0
0

0.
05

0.
10

0.
1
5

0.
20

0.
25

0.
3
0

Epsilon

l3
 L
os

s

0.1 0.5 1 1.5 2 3

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Epsilon

l3
 L
os

s

Fig 2. p-values, Cramer’s V, and three loss functions over 100 perturbation repetitions for each
ε for the small independent table (average cell size=100)
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Fig 3. p-values, Cramer’s V, and three loss functionsover 100 perturbation repetitions for each
ε for the large independent table (average cell size=10)
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vacy is that the perturbation distribution should be known to data users analysing
the perturbed data. Our goal in this section is to show that if the perturbation
distribution is known, it can be taken it into account when estimating or testing
hypotheses on parameters of models pertaining to the unperturbed data. This is
demonstrated here very briefly by a simple toy example. The likelihood-based ap-
proach we present generalizes in theory to more complex models and hypotheses,
however, with heavier computations. Karwa, Kifer and Slavković (2015) consider
that in most cases the likelihood is intractable and that approximate computa-
tional methods are needed. Other methods of improving the performance of tests
of independence in two-way tables under such perturbation have been proposed
by Uhler, Slavković and Fienberg (2013) and Wang, Lee and Kifer (2015) .

Consider a list of two cells, a = (a1, a2), where a1 is a random variable, and a1 ∼
Binomial(N, p) is assumed, and a2 = N − a1. If a1 is the number of individuals
having a certain property, then clearly ∆u1 = 1. The perturbed data to be
released is X = a1 + L, where L has the Laplace perturbation defined in (5.1).
The likelihood of an observation X is a function of p (we consider N known, as
usual):

Lx(p) = P (X = x) = P (a1 = x− L)

=

min{x,m}∑
`=max{−m,x−N}

(
N

x− `

)
px−`(1− p)N−x+` e−ε|`|∑m

k=−m e
−ε|k| .

The likelihood ratio statistic for the goodness of fit of the parameter value p0

given X = x is
max
p
Lx(p)/Lx(p0),

and we reject H0 : p = p0 if the statistic is large.
Figure 4 shows histograms of 500 values of 2 log(likelihood ratio statistic) ob-

tained by simulation when the data comes from p = 0.5 and we test H0 : p = 0.5
and H0 : p = 0.7, with N = 80 and for the perturbation we have ε = 0.5 and
m = 5. In this case the formulas around (5.2) show that δ = 0.02 so we have
DP(0.5, 0.02). The plot on the left of Figure 4 shows that for p = 0.5 the statistic
values are mostly small, and when testing p = 0.7, the plot on the right shows
that most values of the statistic are large, and H0 : p = 0.5 is rejected. For
numerical reasons, if twice the likelihood ratio exceeded 50, it was set as 50.

Of the 500 values for testing H0 : p = 0.5, 95% are below the (empirical)
critical point of c = 3.36. This should be compared with the critical value of 3.84
for the Chi-square with df=1 asymptotic distribution. For testing H0 : p = 0.7,
the proportion of statistics out of the simulated 500 that are above c = 3.36 is
0.95. Thus the power of our test, at level of significance α = 0.05 is 0.95, whereas
the power of the same test without the Laplace noise is 0.96. The added noise
did not reduce the power by much in the present case. If one uses the asymptotic
critical value of 3.84, rather than the empirical 3.36, the empirical power and
level of significance change very little, implying that the asymptotic theory of the
likelihood ratio statistic applies at this sample size.

For m = 10 with other parameters as above we obtain c = 3.82, the empirical
power for testing H0 : p = 0.7 with α = 0.05 is 0.92, and δ = 0.00166 as can be
seen from Table 2. Thus, allowing a larger perturbation range, that is ±10 rather
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Fig 4. Histogram of 500 2 log(likelihood ratio) tests when N = 80, p = 0.5, ε = 0.5, and
H0 : p = 0.5 (left), and H0 : p = 0.7 (right) is tested

than ±5, improves (reduces) δ, at the cost of some reduction in the power of the
test.

From the histograms (for m = 5) one can obtain the power of the test for any
given significance level by choosing a point on the x-axis and looking at the per-
centage of values below the point in the left histogram (level of significance) and
above in the right one (power). A comparison to the case of no noise shows that
the loss of power is not very significant, and the left histogram quite resembles a
Chi-square1 distribution, to which it converges with N .

7. COMPLEX LISTS WITH OVERLAPPING CELLS

In this section we deal with lists in which an individual may appear in more
than one cell. This arises, in particular, if the list includes margins as well as
interior cells in a multi-way frequency table. Margins (perturbed) can be com-
puted by summing perturbed interior cells, however, such aggregation results in
a standard deviation (SD) that becomes larger with the number of summands. If
some marginals are of special interest, the agency can release them with their own
perturbation, which may have a smaller SD than that obtained by aggregation.

Overlapping cells affect the number d of cells in which two neighbouring lists
can differ. For example, if the list consists of a t-way table and all its marginals
except for the total which is almost always known, then it is easy to see that each
individual appears in 2t − 1 cells, and therefore two neighbouring lists can differ
in d = 2t − 1 cells.

Focusing now on the Laplace exponential mechanism, we now have ∆u1 = d.
The exponential mechanism will now perturb according to p(a, b) ∝ e−ε|b−a|/d,
which is equivalent to replacing ε by ε/d, in order to obtain DP(ε). For d large
this results in large perturbations and reduced utility. In fact, the discrete Laplace
perturbation distribution of (5.1) with ε replaced by ε/d has SD approximately√

2d/ε, which will apply to all released cells. Note that if we perturb interior cells
and marginals independently, then the released table will be inconsistent in the
sense that perturbed marginals are unlikely to coincide with the relevant sums of
the perturbed interior cells, though they will generally be close.
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Consider a t-way table where each of its t attributes has C categories, say, and
the user computes marginals by summing over interior cells. In this case consis-
tency of interior cells and marginals is obvious and each cell in a k−dimensional
marginal table is obtained as the sum of Ct−k frequencies. If each cell is per-
turbed with a SD proportional to

√
2/ε and only interior cells are released, then

d = 1 and we obtain DP(ε), and the standard deviation of the sum of the per-
turbations in a k−dimensional marginal table will be proportional to

√
2Ct−k/ε.

In a 4-way table with C = 10, for example, if only interior cells are perturbed,
the SD of the perturbation for each cell of a 2-dimensional marginal is propor-
tional to

√
2C2/ε =

√
2 · 102/ε ≈ 14/ε, and if all marginals are perturbed the

SD is approximately to
√

2d/ε =
√

2(24 − 1)/ε ≈ 21/ε so for such marginals
the scheme that perturbs only interior cells is preferable in the sense of having a
smaller SD. For the interior cells themselves the situation is of course even better
because if only interior cells are perturbed then d = 1 and the perturbation SD
is
√

2/ε rather than
√

2d/ε, which is 15 times larger in the above example. When
considering the release of a table, the importance of some marginals relative to
others and interior cells should be considered when deciding on the perturbation
scheme, and in many situations, perturbing only interior cells, and letting users
compute marginals from those perturbed cells, is efficient.

It may also be useful to perturb interior cells and different marginal tables with
different values of ε, depending on the importance of these marginals. We can
allow smaller perturbation for some marginals and compensate by larger pertur-
bations in others. In this case we consider several mechanismsMi for i = 1, . . . k
and apply them on the same data. This is known in the differential privacy liter-
ature as composition. To assess whether such schemes satisfy differential privacy,
the composition Theorem 3.16 in Dwork and Roth (2014) is relevant. We bring
a proof in order to keep the paper as self contained as possible.

Theorem 7.1. LetMi be independent DP(εi, δi) mechanisms for i = 1, . . . k.
Then (M1 . . . ,Mk) is DP(

∑k
i=1 εi,

∑k
i=1 δi).

Proof It suffices to consider k = 2, and then proceed by induction. Let the
ranges of Mi be Bi for i = 1, 2 and S = S1 × S2 ⊆ B := B1 × B2 and denote
S1(s2) = {s1 : (s1, s2) ∈ S}. Below, the first inequality uses the differential
privacy property of M1 and the second uses (c + δ) ∧ 1 ≤ c ∧ 1 + δ. The third
inequality uses the differential privacy property of M2 and the last one and the
first equality are obvious. We have

P((M1(a),M2(a)) ∈ S) =
∑
s2∈S2

P(M1(a) ∈ S1(s2))P(M2(a) = s2)

≤
∑
s2∈S2

[{eε1P(M1(a′) ∈ S1(s2)) + δ1} ∧ 1]P(M2(a) = s2)

≤
∑
s2∈S2

[{eεP(M1(a′) ∈ S1(s2))} ∧ 1]P(M2(a) = s2) + δ1

≤
∑
s2∈S2

[{eε1P(M1(a′) ∈ S1(s2))} ∧ 1][eε2P(M2(a′) = s2) + δ2] + δ1

≤ eε1+ε2P((M1(a′),M2(a′)) ∈ S) + δ1 + δ2.
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Theorem 3.20 in Dwork and Roth (2014) provides a more advanced composition
result, where instead of obtaining DP(kε) when composing k mechanisms with
DP(ε), as in Theorem 7.1, a composition with DP(ε′, δ) is obtained with ε′ of
order

√
kε but with constants depending on δ that make it useful only for rather

large values of k. We shall not present or use this result.
As an example consider now a 3-way table {Xijk}, and suppose we wish to

perturb independently all interior cells and marginals. In this case, the list a
consists of 7 tables:

a =
(
{Xijk}, {

∑
i

Xijk}, {
∑
j

Xijk}, {
∑
k

Xijk}, {
∑
ij

Xijk}, {
∑
ik

Xijk}, {
∑
jk

Xijk}
)
.

For the whole list a we have d = 23 − 1 = 7, and we can apply (5.1) with ε
replaced by ε/7 to obtain DP(ε). Alternatively, we can apply Theorem 7.1. Each
of the above 7 tables has d = 1, and if we apply a Laplace perturbation with ε/7
for each of the 7 tables of the above a, we obtain again DP(ε).

More generally one can release the rth table of a with DP(εr), r = 1, . . . , 7,
using the corresponding Laplace perturbation, and by Theorem 7.1, the whole list
will be released with DP(

∑7
i=1 εi). Suppose we expect users to be more interested

in 2-dimensional tables, and less in others. For example, if the attributes are
Income, Education, and Ethnicity, then it may be that the releasing agency or
the data users consider Ethnicity to be of lesser importance, and the important
table might be Income by Education, and the table of interior cells, so that
one can see the Income by Education table for each fixed Ethnicity. In this case
{Xijk} and {

∑
kXijk} could be released with DP(ε/3), say, and the other 5 tables

with DP(ε/15). The latter tables may be quite perturbed, much more than the
important ones, and the whole release will satisfy DP(ε).

The above discussion provide tools that can help the data releasing agency
decide on the construction of the list and the amount of perturbations of different
parts according to the number of categories of the attributes, the expected interest
in particular marginals (which are often more relevant than interior cells), and
the dimension of the table and the marginals of interest.

8. CONCLUSIONS

In this paper we have considered modern perturbation schemes that resem-
ble ones used by some official agencies when releasing frequency tables, with the
goal of assessing how random perturbations protect confidentiality in terms of
differential privacy. We have seen how this approach can highlight specific issues,
such as the effect of truncation. We have studied some alternative perturbation
mechanisms and found that Laplace perturbation has clear advantages in terms
of the utility of the resulting tables for a given level of confidentiality protection.
Maximum entropy perturbations, subject to variance constraints is one existing
criterion for selecting perturbations in disclosure control, but the implied approx-
imately normal perturbations did not perform well in our assessment. We found
that insisting on releasing only nonnegative perturbed frequencies may result in
loss of utility, without a well defined gain in confidentiality protection.

We have studied the trade off between different values of the two parameters
ε and δ governing differential privacy and the utility of the resulting tables, and
seen how compromises in the former values can make a considerable difference
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to the level of utility. We have noted that there are many desiderata that have
been proposed for perturbation, for example that perturbed frequencies be non-
negative, that they be unbiased for the true frequencies and that perturbations be
truncated by a specified bound. We have also seen that some compromises of these
criteria may be desirable. To what extent perturbation will damage the value of
the tables for analysis will depend on user needs and it is hard to draw any general
conclusion. Nevertheless, our examples suggest that Laplace perturbations may
guarantee differential privacy with what we consider to be acceptable parameters,
and preserve a fair amount of utility.

We have noted the desirability of making the nature and parameters of the
perturbation mechanism available to users and the possibility that users could
take account of this knowledge when analysing the data. Thus, in principle, given
a specified model for the data and a perturbation mechanism, it is feasible to
determine a likelihood function for the perturbed data, and make inference on
the parameters of the data model. We demonstrated this procedure in a simple
example. In practice, the computational challenges are severe for the kinds of
tables released by national statistical agencies. But this is an area for further
research.

Another area needing further research relates to tables based on sample data
rather than on population counts, on which we focused in this paper. The cells in
tables based on sample data may contain sample-based estimated counts, consist-
ing of sums of survey weights. In this case, adding or removing a sample unit from
the dataset will change the estimated count by the value of the corresponding sur-
vey weight. If d = 1 and w is the maximal possible weight then ∆u1 = w, and the
earlier differential privacy methodology applies. In this paper we did not pursue
this direction, the practicality of which seems to be worthwhile of investigation.
Confidentiality considerations for sample-based tables may also take account of
the potential confidentiality protection afforded by sampling, when sample mem-
bership can be assumed unknown (e.g. Chaudhuri and Mishra, 2006). Further
protection may arise from the fact that sampling error considerations often lead
government agencies to design tables that do not include cell estimates based on
small numbers of sample units.

This paper focused on the non-interactive setting, where the list and all per-
turbations are prepared in advance to satisfy a given level of DP (although the
perturbations can be applied only to the data actually requested). If some cells
in the list are never requested, then their contribution to d or ε (and δ) can
be seen as overprotection. The differential privacy literature proposes interactive
query submission and monitoring for all users on line, responding to queries with
a certain level of DP which accumulates as in Theorem 7.1, and allocating a
“budget” of a certain εj to user j so that the total of all ε’s (and δ’s) achieves
the required DP level. Such monitoring is quite demanding of the agencies, but
could hopefully be automated. Further research on interactive dissemination by
official agencies and its implications seems to be needed.

REFERENCES

Andersson, K., Jansson, I. and Kraft, K. (2015). Protection of frequency tables - current
work at Statistics Sweden. Joint UNECE/Eurostat work session on statistical data confiden-
tiality (Helsinki, Finland, 5-7 October). 20pp.

Auguste, K. (1883). La cryptographie militaire. Journal des sciences militaires 9 538.

imsart-sts ver. 2014/10/16 file: "TB DP_Dec_28_final".tex date: December 28, 2016



30 Y. RINOTT ET AL.

Barak, B., Chaudhuri, K., Dwork, C., Kale, S., McSherry, F. and Talwar., K. (2007).
Privacy, accuracy, and consistency too: a holistic solution to contingency table release. In Pro-
ceedings of the 26th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems (PODS) 273–282.

Brenner, H. and Nissim, K. (2010). Impossibility of differentially private universally optimal
mechanisms. In Foundations of Computer Science (FOCS), 2010 51st Annual IEEE Sympo-
sium on 71–80. IEEE.

Chaudhuri, K. and Mishra, N. (2006). When random sampling preserves privacy. In Proceed-
ings of the 26th Annual International Conference on Advances in Cryptology: CRYPTO 2006
(C. Dwork, ed.). LNCS 4117 198–213. Springer-Verlag, Berlin.

Chipperfield, J., Gow, D. and Loong, B. (2016). The Australian Bureau of Statistics and
releasing frequency tables via a remote server. Statistical Journal of the IAOS 32 53–64.

Drechsler, J. (2011). New data dissemination approaches in old Europe - synthetic datasets
for a German establishment survey. J Appl Stat 39 243–265.

Drechsler, J. and Reiter, J. P. (2011). An empirical evaluation of easily implemented,
nonparametric methods for generating synthetic datasets. Computational Statistics and Data
Analysis 55 3232-3243.
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Karwa, V., Kifer, D. and Slavković, A. B. (2015). Private Posterior distributions from

imsart-sts ver. 2014/10/16 file: "TB DP_Dec_28_final".tex date: December 28, 2016



CONFIDENTIALITY PROTECTION FOR FREQUENCY TABLES 31

Variational approximations. arXiv preprint arXiv:1511.07896.
Little, R. (1993). Statistical Analysis of Masked Data. Journal of Official Statistics 9 407–426.
Longhurst, J., Tromans, N., Young, C. and Miller, C. (2007). Statistical disclosure con-

trol for the 2011 UK census. In Joint UNECE/Eurostat conference on Statistical Disclosure
Control, Manchester 17–19.

Machanavajjhala, A., Kifer, D., Abowd, J., Gehrke, J. and Vilhuber, L. (2008). Privacy:
Theory meets Practice on the Map. In Proceedings of the IEEE 24th International Conference
on Data Engineering ICDE 277 -286.

Marley, J. K. and Leaver, V. L. (2011). A Method for Confidentialising User-Defined Tables:
Statistical Properties and a Risk-Utility Analysis. Proc 58th Congress of the International
Statistical Institute, ISI 2011, 21–26 August.

McSherry, F. and Talwar, K. (2007). Mechanism design via differential privacy. In Foun-
dations of Computer Science, 2007. FOCS’07. 48th Annual IEEE Symposium on 94–103.
IEEE.

O’Keefe, C. M. and Chipperfield, J. O. (2013). A Summary of Attack Methods and Protec-
tive Measures for Fully Automated Remote Analysis Systems. International Statistical Review
81 426–455.

Rubin, D. B. (1993). Discussion: Statistical disclosure limitation. Journal of Official Statistics
9 462–468.

Shannon, C. E. (1949). Communication theory of secrecy systems. Bell system technical journal
28 656–715.

Shlomo, N. (2007). Statistical Disclosure Control Methods for Census Frequency Tables. In-
ternational Statistical Review 75 199–217.

Shlomo, N., Antal, L. and Elliot, M. (2015). Measuring disclosure risk and data utility for
flexible table generators. Journal of Official Statistics 31 305–324.

Thompson, G., Broadfoot, S. and Elazar, D. (2013). Methodology for automatic confiden-
tialisation of statistical outputs from remote servers at the Australian Bureau of Statistics.
Joint UNECE/Eurostat work session on statistical data confidentiality (Ottawa, Canada,
28-30 October 2013). 37pp.
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