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Abstract

In this paper we propose a new measure, to be called GENO, of the usefulness of statistical
models in terms of their relative ability to predict new data. It combines ideas from Erev,
Roth, Slonim, and Barron (2007), from the well-known AIC criterion for model selection,
and from cross-validation. GENO depends on the nature of the data and the given sample
size, reflecting the fact that the usefulness of a model depends on both the adequacy of
the model as a description the data generation process, and on our ability to estimate the
model’s parameters. Our research was motivated by the study of modeling decision making
processes based on data from experimental economics, and and we also provide a detailed
biological example.

1 Introduction

This paper presents a measure of usefulness of models in terms of their predictive power. Our
work was motivated by the study of models in experimental economics, an area that has wit-
nessed a surge of activity in the past several years. Game-theoretic experiments are conducted
in numerous labs, typically producing large amounts of data in each experiment. The goal is
to model learning processes and strategy choices in relatively simple games, and to assess the
predictions of game theory. Classical hypotheses testing usually results in rejecting any model
due to the large size of the data sets, demonstrating the first part of G. Box’s saying “All models

are wrong, but some are useful.”
When all models are wrong, model selection can be based on the classical Akaike information

criterion AIC (Akaike, 1974) and its variations. Akaike (1983) and others proposed various
functions of the AIC value of a given model relative to the best model as measures of the quality
of the given model. These measures include Akaike differences and Akaike weights; see, e.g.,
Burnham and Anderson (2002) and Claeskens and Hjort (2009). Such measures appear rarely
in application, whereas the AIC for model selection has been applied in numerous studies. This
is probably due to certain difficulties in interpreting these measures, to be discussed later.

Clearly, the quality of models depend on the sample size with which they are to be used.
For example, with a small sample, a complex model may be inappropriate due to overfitting,
and Box’s saying should be modified to “All models are wrong, but some models are useful

1 This is part of a research project in experimental game theory with Shmuel Zamir and Irit Nowik supported
by the Israel Science Foundation (grant no. 1474/10).
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for certain sample sizes, and other models for other sample sizes”. Indeed, the new measure
we propose, GENO, is a function of the sample size with which the model will be used. For
example, if model k stands for polynomial regression of a certain degree, or a M -step Markov
chain, GENO(n, k) provides information on the quality of the model in question as a function of
the sample size n, the model’s dimension, and its fit to the data. GENO is a relative measure,
and its value depends on the list of candidate models being considered. The fit to the data
is measured in terms of a penalized likelihood of the data under the model with parameters
estimated by maximum likelihood, akin to the AIC criterion. As shown later, this commonly
accepted criterion can sometimes make very reasonable models look very bad. Like other AIC-
related measures, GENO is a function of suitable AIC (Akaike) differences.

Our initial motivation in this work comes from experimental economics data and in particular
from Erev, Roth, Slonim, and Barron (2007), henceforth ERSB, where models are compared
according to a measure they called ENO (Equivalent Number of Observations), to be discussed
later. We use our new measure GENO to study and compare models for the data of ERSB.
A full description of the data set and the models we analyze is given in Section 5, and the
required formulation of GENO for decision processes is given in Section 4. Figure 1 plots 500
sequential choices of actions of one pair of players in a certain game. The choices are binary
and are smoothed by a moving average of window size 11. The smoothed data are compared
to smoothed decision probabilities made according to three of the decision models considered:
Nash equilibrium, Reinforcement Learning and a Markov model.
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Figure 1: Plots of a moving average (of window size 11) of 500 sequential binary choices of a pair of players
compared to three models: Nash equilibrium, reinforcement learning and a Markov model.

The Nash equilibrium assumes a constant known probability of choosing Action 1 out of two
possible actions during the repeated game and in the two other models the probability changes
based on previous actions and rewards. The Nash equilibrium does not provide good predictions
and the other models are better. For the row player, the Markov model seems to fit the observed
smoothed decidions better than reinforcement learning and for the column player, they seem
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to preform equally well. However, the Markov model has more parameters, and may not be a
good model due to overfitting. Our goal is to quantify such statements in a meaningful way,
and provide estimates and confidence intervals for this quantification.

As noted by ERSB, the Nash equilibrium model performs poorly in this data set, and this
is evident also by our new measure GENO. As this model has no parameters that should be
estimated, its GENO does not depend on the number of observations, that is, it is constant. A
variation on the model CAB-1 of Plonsky, Teodorescu and Erev (2015), which is also a model
with no parameters, performs better, and as a result the GENO value of Nash is zero. If CAB-1
is removed from consideration, then the estimated GENO of Nash is equal to 3, which means
that after only 3 observations, there is a model in our list of candidate models that outperforms
it. We found also that the Markov models have larger GENO than the reinforcement learning
models of ERSB and hence they are preferred according to our criterion. For example, our
estimates imply that a Markov model with only 32 observations can obtain the same expected
likelihood of future data as the best reinforcement model (RLS) with 50 observations. Therefore,
in this data set, the Markov models can obtain the same expected likelihood as the reinforcement
learning models with fewer observations, and hence are preferred according to GENO. Another
variation on CAB-1, called CAB-W, which is a one-parameter model, performs with only 14
observations as well as the RLS model with 50 observations. Therefore GENO of RLS with 50
observations is 14. As mentioned above, this is in tune with the AIC criterion, but the learning
models may turn out better by other criteria. For further details see Section 5 and in particular
Table 3.

ERSB’s measure ENO of the value or usefulness of models for strategies in repeated games
can be roughly described as follows. Consider two ways of predicting the proportion of playing
a certain strategy in a given experiment. The first is to model players’ behavior as a stochastic
process, estimate its parameters, and use the estimated model for prediction. The second way
consists of just using the empirical or sample proportion of playing each strategy. Assuming
the models considered are only approximations, their predictions are generally inconsistent, and
therefore the empirical estimator, being consistent under some mild assumptions, will be more
accurate for a sufficiently large sample of players. On the other hand, a simple parametric model
may provide a better predictor given a small sample. Consider a sample size m of players that
are used to determine the empirical proportions of playing certain strategies. A model’s ENO
is an estimate of the sample size m for which the empirical proportions yield equally accurate
predictions as the model. ENO does not depend on the sample size used for estimating the
model’s parameters, which is assumed to be large, and therefore it can be seen as quantifying
the value of a model if its parameters are known or estimated with a very large sample.

We briefly discuss AIC differences. The AIC value of a model for a given data set from some
source, is an estimate of the expected log-likelihood multiplied by -2 (a factor which we will not
use in our definitions in Section 2 and later) of new (future) independent data from the same
source, under the model with parameters estimated from the given data set. For a good model,
the likelihood of such new data should be large, and hence the AIC as defined above should be
small. Given a list of K candidate models, denote the AIC value of the kth model by AICk, and
let AICmin be the AIC of the model with the smallest AIC, that is, the model selected by the
AIC criterion. The AIC differences ∆k and weights wk are defined as follows:

∆k = AICk −AICmin and wk =
e−

1
2
∆k

∑K
i=1 e

− 1
2
∆i

. (1)
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It is hard to interpret the “raw” AIC differences. The AIC weights are sometimes interpreted
as probabilities of models conditioned on the data. With a uniform prior on the set of models
(which makes little sense) this interpretation could be meaningful if we believe that one of the
models is true. Otherwise, the weights are still informative, but their interpretation is less clear.
In our data, with models of different qualities and dimensions, some of the ∆is take large values,
making the weights numerically sensitive.

Our new measure of usefulness of a model is partly inspired by ENO and the developments
of AIC. We take the liberty of calling it GENO (Generalized ENO). The generalization goes in
several directions. ENO quantifies the value of a model for predicting proportions relative to
empirical proportions. In the spirit of AIC differences, we compare models relative to the best
model according to the AIC criterion, rather than just to empirical frequencies. Furthermore, we
generalize from just predicting proportions to prediction of the whole process. Our estimation
procedure is very different, and much simpler that that of ERSB. It is important to note that
unlike ENO, our measure depends on the sample size. This is natural since the predictive value
of a model depends not only on the underlying process generating the data, but also on the size
of the sample used in estimating the model’s parameters.

Our goal in defining GENO is to provide meaningful comparisons of different models with
different sample sizes. Also, we use it to quantify the value of a model using data from differ-
ent sources with different values of the model’s parameters. These properties and others are
demonstrated by our applications.

We next describe GENO informally. Formal definitions will be given in Section 2 for indepen-
dent variables, and in Section 4 for Markov decision processes. We start with a comparison of two
models. Consider two parametric models, indexed by k and ℓ with parameters θ(k) ∈ Θ(k) ⊆ Rdk

and θ(ℓ) ∈ Θ(ℓ) ⊆ Rdℓ . For any n, the expected log-likelihood (henceforth we may just say like-
lihood) of future data under a given model, if its parameters were to be estimated on the basis
of past data (sample) of size n, is set as our criterion of the quality of the model for sample size
n. We estimate it for any n on the basis of a given sample of size N , where N need not equal
n. We proceed as follows: (a) For a given value of n we use our sample of size N to estimate
the expected likelihood of future data for model k if its parameters were estimated using a sam-
ple of size n. (b) We compute a value m such that the expected likelihood under future data
for model ℓ, if its parameters were estimated using a sample of size m, equals the likelihood
estimated in part (a). The resulting value of m is denoted by GENO(n, k, ℓ). Estimation here
means maximum likelihood estimation.

A comparison in terms of the sample size required by one model (or test, or estimator) to be
as good as another with a given sample size, is closely akin to the notion of Pitman efficiency,
see, e.g., Zacks (1975).

Note that if GENO(n, k, ℓ)> n, say, then model ℓ requires more observations than n in order
to have equal quality as model k with n observations, and therefore for sample size n model k
is preferable. This may happen, for example, if dk < dℓ, that is, model k has fewer parameters.
When n is small, model k may be better, however, when n is large, model ℓ may become the
better model, since a larger sample size allows estimation of more parameters without overfitting.

Given a list of K candidate models indexed by 1, . . . ,K, we define

GENO(n, k) = min
ℓ∈{1,...,K}

GENO(n, k, ℓ).

GENO(n, k) represents the sample size needed for the best competitor model to obtain the
same expected likelihood as model k with n observations. Clearly GENO(n, k, k) = n, implying
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GENO(n, k) ≤ n.
We believe that given a data set of size N , there is interest in comparing models not only

under the assumption that they will be implemented with this N . A statement such as: model
1 is better than model 2 for sample size ≤ 100, say, and then model 2 is better, may be generally
informative to someone having a sample of N = 200, say, and in particular further experiments
of the same kind with different sample sizes are planned.

In general, given data of size N generated by some process, our goal is to quantify and
compare the predictive quality of different models to be used with different sample sizes which
do not necessarily coincide with N . For a list of K candidate parametric models we define our
measure of the quality, GENO(n, k), of the kth model as a function of the sample size n and
discuss its estimation on the basis of the N observations. We first present GENO in the case of
iid samples, and apply it to study of usefulness of Hardy-Weinberg type models to DNA data.
We then extend it to Markov decision processes, which we apply to the analysis of data from
experimental game theory.

2 GENO for iid observations

2.1 Definitions

In this section we define GENO and its estimation formally. For simplicity we start with samples
of iid observations. Let Y1, Y2, . . . be iid random variables from a distribution having an unknown
density g to which we refer as the ‘true’ density. Throughout the paper we write expressions like
g(y)dy although the distribution need not be continuous, and g can be a density with respect to
any suitable measure. A list of parametric candidate models or families of densities for Yi are
considered: {fk} = {fk(y, θ(k))}θ(k)∈Θ(k) , where Θ(k) ⊆ Rdk , k = 1, . . . ,K. We do not assume
that g must be in any of these families, however, g and {fk} are assumed to be densities with
respect to a common measure. Given a sample Y1, . . . , Yn, let

θ̂(k)n := arg max
θ(k)∈Θ(k)

n∑

i=1

log fk(Yi, θ
(k))

be the maximum likelihood estimator (MLE) for the kth model based on n observations. Hence-
forth we consider only models and sample sizes for which MLEs exist uniquely. Moreover, the
AIC type approximations below require standard conditions on the models’ likelihood function
and their derivatives which, in particular, entail that the MLEs are asymptotically normally
distributed. See Conditions A1 - A6 in White (1982).

In general we are interested in studying ‘good’ models, and we assume that our candidate
models are adequate models, that is, they are reasonably close in the Kullback-Leibler sense to
the true g. The approximations in the following sections are valid under this assumption, which
is standard in the AIC literature.

Consider the models {fk} at the MLE θ̂
(k)
n based on a sample Y1, . . . , Yn from g, that is,

fk(·, θ̂(k)n ). In the spirit of Akaike’s AIC and cross validation, we imagine that a new independent
sample Y ∗

1 , . . . , Y
∗
n∗ from g is observed. The expected average log-likelihood of the new data,

(which in the normal case coincides with a sum of squares of deviations), is given by

1

n∗
E

n∗∑

i=1

log fk(Y
∗
i , θ̂

(k)
n ) = E

∫ ∞

−∞
g(y) log fk(y, θ̂

(k)
n )dy; (2)
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the expectation on the left is with respect to both the Y ∗
i ’s whose density is g and with respect

to the MLE θ̂
(k)
n , and the expectation on the right is only with respect to the latter. In view of

(2), the size, n∗, of the Y ∗’s sample, does not play any role and can be taken to be one. The
expression in (2) quantifies the quality of model k given n observations.

For two models fk and fℓ in our list of candidates, we define GENO(n, k, ℓ) in view of (2)
as the value m such that

GENO(n, k, ℓ) =

{
sup
m≥r

: E

∫ ∞

−∞
g(y) log fℓ(y, θ̂

(ℓ)
m )dy ≤ E

∫ ∞

−∞
g(y) log fk(y, θ̂

(k)
n )dy

}
, (3)

where r is the minimum number of observations for the MLE θ̂
(ℓ)
m to exists, and sup over the

empty set is taken to be r. In words, GENO(n, k, ℓ) = mmeans that model k with n observations
is equivalent, in terms of expected log-likelihood, to model ℓ with m observations. Note that
the larger GENO(n, k, ℓ), the better model k is relative to model ℓ. The inequality in (3) could
hold for all m ≥ r, in which case GENO(n, k, ℓ) is infinity, indicating that model k with n
observations is better than model ℓ with any number of observations.

We next discuss estimation. We estimate the quantities on the right and left-hand side in (3)
and solve for m that satisfies equality rather than inequality. Therefore our estimate of GENO
is generally not an integer; however, this is a natural way to go, rather than having to deal with
integer parts. We do this without further mention in other definitions, such as that of T̂ in
section 2.4.

Suppose we have N iid observations Y1, . . . , YN from the true g. Our goal is to estimate
GENO(n, k, ℓ) for any n. In the standard AIC approach one takes N = n in order to select the
best model for the sample size at hand. Thus, the standard approach in the AIC literature might
be to estimate only GENO(N, k, ℓ), that is, GENO for the given sample size. Our approach is to
compare models for all sample sizes, since GENO(n, k, ℓ) for other values of n can be informative,
telling us not only which model is better for N observations, but also providing the range of
sample sizes for which this happens, and quantifying the relative quality of the models in a
meaningful way, akin to Pitman efficiency.

We first estimate the quantity in (2) with N observations. A simple variation on standard
AIC type large sample approximations, and calculations as in Claeskens and Hjort (2009) yield
the estimator

AIC(n, k) =
1

N

N∑

i=1

log
[
fk(Yi, θ̂

(k)
N

]
− dk(

1

2n
+

1

2N
), (4)

which coincides with the usual AIC when N = n (if multiplied by the constant −2N , see e.g.,
Burnham and Anderson (2002) page 61). Applying this estimator to the quantities in (3) we
obtain

ĜENO(n, k, ℓ) :=
dℓ

2
N

∑N
i=1 log

[
fℓ(Yi, θ̂

(ℓ)
N )

/
fk(Yi, θ̂

(k)
N )

]
− dℓ−dk

N + dk
n

, (5)

where if the denominator is not positive, then ĜENO(n, k, ℓ) = ∞. When dℓ = 0 we define

ĜENO(n, k, ℓ) = ∞, n, or 0 when the denominator in (5) is negative, zero, or positive, respec-
tively.

For each model k and sample size n, we define

ℓ(n, k) = arg min
ℓ∈{1,...,K}

GENO(n, k, ℓ) and GENO(n, k) = GENO(n, k, ℓ(n, k)). (6)
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If the minimizer above is not unique then argmin above is a set, and any ℓ in it can be
chosen. Similarly, we define ℓ̂(n, k) = argmink∈{1,...,K} ĜENO(n, k, ℓ) and ĜENO(n, k) =

ĜENO(n, k, ℓ̂(n, k)) to be the estimators. Thus,

ĜENO(n, k) :=
d
ℓ̂(n,k)

2
N

∑N
i=1 log

[
fk(n)(Yi, θ̂

(ℓ̂(n,k))
N )

/
fk(Yi, θ̂

(k)
N )

]
− d

ℓ̂(n,k)
−dk

N + dk
n

, (7)

estimates the minimal number of observations required by the best competing model to achieve
the same expected likelihood as model k with sample size n.

It is easy to calculate that

ĜENO(n, k, ℓ) =

{
1

2dℓ
[AIC(n, ℓ)−AIC(n, k)] +

1

n

}−1

, (8)

showing the relation between GENO and AIC differences. In Appendix A we show that (8)

implies that ĜENO(n, k) agrees with the AIC ranking, that is,

Proposition 2.1. ĜENO(n, k) > ĜENO(n, k′) ⇔ AIC(n, k) > AIC(n, k′).

2.2 GENO for many experiments with a common model

In the ERSB’s experimental games data we analyzed, there is a sample of 180 players, each
playing repeatedly one of 10 games all having the same nature, with varying payoffs chosen at
random. When studying the way subjects play such games, ERSB assumed a common model
with the same parameters for all players; however, since the games and players vary, we assume
that different players may have different parameters. A similar remark applies to the DNA
data. In this case, we model a large number of SNPs using the same models for all of them,
allowing different parameters. We want to understand the quality of the HW model using
GENO, assuming a common model for all SNPs. Deviations from HW are generally due to
common reasons for all SNPs, such as recent migration, lack of random mating, and strong
selection. Other examples may arise when one wants to construct a common regression model
for different data sets, such as economic data from different countries, in order to compare the
coefficients between different countries, when one wants to compare the influence of covariates
on survival in different hospitals, etc.

We consider a collection of J experiments or data sets, possibly of different sizes Nj , that
are to be analyzed together with a common model, allowing distinct parameters. Note that it
is possible to compute ĜENO(n, k) by (7) on each experiment separately, and choose a model
for each experiment, but here the emphasis is on choosing a common model for all of them.

Let Y1,j , . . . , YNj ,j be Nj iid observations having density gj in the jth experiment, j =

1, . . . , J . For the jth experiment, the density at the MLE of the kth model is fk(y, θ̂
(k)
Nj ,j

) and

we assume a common k for all experiments. Similar to (2) the expected average log-likelihood
for model k with n observations of new data is

E
J∑

j=1

∫ ∞

−∞
gj(y) log fk(y, θ̂

(k)
n,j)dy. (9)
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We define in analogy to (3)

GENO(n, k, ℓ) =



sup

m≥r
: E

J∑

j=1

∫ ∞

−∞
gj(y) log fℓ(y, θ̂

(ℓ)
m,j)dy ≤ E

J∑

j=1

∫ ∞

−∞
gj(y) log fk(y, θ̂

(k)
n,j)dy



 .

(10)
The expectation (9) is estimated in analogy to (4) by

AIC(n, k) =
J∑

j=1

1

Nj

Nj∑

i=1

log
[
fk(Yi,j , θ̂

(k)
Nj ,j

)
]
−

J∑

j=1

dk(
1

2n
+

1

2Nj
), (11)

which leads as in (5) to

ĜENO(n, k, ℓ) :=
dℓ

1
J

∑J
j=1

2
Nj

∑Nj

i=1 log
[
fℓ(Yi,j , θ̂

(ℓ)
Nj ,j

)
/
fk(Yi,j , θ̂

(k)
Nj ,j

)
]
− 1

J

∑J
j=1

dℓ−dk
Nj

+ dk
n

,

(12)
and in analogy to (7),

ĜENO(n, k) :=
d
ℓ̂(n,k)

1
J

∑J
j=1

2
Nj

∑Nj

i=1 log
[
f
ℓ̂(n,k)

(Yi,j , θ̂
(ℓ̂(n,k))
Nj ,j

)
/
fk(Yi,j , θ̂

(k)
Nj ,j

)
]
− 1

J

∑J
j=1

d
ℓ̂(n,k)

−dk

Nj
+ dk

n

.

(13)

2.3 A bootstrap confidence interval for GENO

We now discuss the construction of confidence intervals for GENO. It would possible to estimate
the variance of the sum in the numerator of (7) using standard jackknife or bootstrap methods
if the Yi’s were iid observations. One could then use the delta method to compute the variance
of GENO, and use the asymptotic normality of the sum for a confidence interval. The same

could be applied for each of the terms Zj := 2
Nj

∑Nj

i=1 log
[
f
ℓ̂(n,k)

(Yi,j , θ̂
(ℓ̂(n,k))
Nj ,j

)
/
fk(Yi,j , θ̂

(k)
Nj ,j

)
]

in (13) in order to construct a confidence interval under the assumption that Y1,j , . . . , YNj ,j are
iid for each j.

In our motivating example one cannot assume that actions in repeated games are chosen
independently. Therefore, we are interested in the case of many experiments for non-independent
data, and we consider another approach. Assume that the different experiments are independent.
Then the above Zj ’s are independent but not identically distributed. The theory of bootstrap in
this case was developed in Liu (1998), who showed that if the Zj ’s have asymptotically a common

mean then the distribution of 1
J

∑J
j=1 Zj and its bootstrap distribution are asymptotically (in

J) the same. Therefore, an asymptotic, (1 − α)% confidence interval for GENO(n, k), under
suitable homogeneity assumptions, is


 d

ℓ̂(n,k)

F̃−1
J (α/2)− 1

J

∑J
j=1

d
ℓ̂(n,k)

−dk

Nj
+ dk

n

,
d
ℓ̂(n,k)

F̃−1
J (1− α/2)− 1

J

∑J
j=1

d
ℓ̂(n,k)

−dk

Nj
+ dk

n


 , (14)

where F̃J is the bootstrap distribution of 1
J

∑J
j=1 Zj . Such a confidence intervals informs us of the

variability or potential range of values of ĜENO(n, k) around the observed value. This confidence
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interval neglects the variability that comes from the estimation of ℓ(n, k). A confidence interval
for GENO(n, k, ℓ) can be constructed in the same way.

This approach is tested in Section B.3. The results indicate that this method works well for
large J , even if the means of the Zj ’s are not exactly the same, and in this case the confidence
intervals are slightly conservative. Indeed, a careful examination of the proof of Theorem 1 in
Liu (1998) shows that when the J summands in the denominator of (13) do not have the same
means, that is, the µi’s are different (in Liu’s notation), the confidence intervals are conservative.

2.4 A tie of two models

Let T̂ = T̂ (k, ℓ) (T for tie) denote that value of n such that ĜENO(n, k, ℓ) = n, that is, the
sample size for which the two models are considered equally good. Assuming dℓ > dk is it easy
to obtain from (13) that

T̂ (n, k, ℓ) :=
dℓ − dk

1
J

∑J
j=1

2
Nj

∑Nj

i=1 log
[
fℓ(Yi,j , θ̂

(ℓ)
Nj ,j

)
/
fk(Yi,j , θ̂

(k)
Nj ,j

)
]
− 1

J

∑J
j=1

dℓ−dk
Nj

. (15)

A bootstrap confidence interval for T̂ can be constructed as in (14), mutatis mutandis.

3 The multinomial distribution and Hardy-Weinberg model

Before getting to our motivating application in Sections 4 and 5, we provide a simpler application,
which we think is potentially useful. In this section we discuss GENO for multinomial data and
the Hardy-Weinberg model, which is of great importance in population biology. This example
can easily be extended to any models for multinomial data, and to model selection using goodness
of fit statistics.

Let X1, . . . , Xn be observations taking L possible values, say, a1, . . . , aL with P (Xi = aℓ) =
pℓ, and set Yℓ = #{i : Xi = aℓ}, ℓ = 1, . . . , L. We assume here that the true model g is multi-
nomial with a given parameter p = (p1, . . . , pL) so that Y = (Y1, . . . , YL) ∼ Multinomial(n,p).
In fact, the true model g is multinomial if the Xi’s are independent and if the pℓ’s are fixed
throughout the experiment, an assumption that is often made, at least approximately. We
compare different models p = p(θ), θ ∈ Θ ⊆ Rd.

3.1 Hardy–Weinberg model

We focus on a classical model that plays a prominent role in genetics, the Hardy–Weinberg (HW)
model. For a single diploid locus with two possible alleles A,G say, let (Y1, Y2, Y3) denote the
frequencies of the three genotypes, AA, AG, GG. Under the multinomial model the likelihood
of (Y1, Y2, Y3) is proportional to

∏3
ℓ=1 p

Yℓ

ℓ . Denoting the probabilities of A and G by θ, 1 − θ,

the HW model specifies pHW (θ) =
(
θ2, 2θ(1 − θ), (1 − θ)2

)
, and the MLE is θ̂

(HW )
n = 2Y1+Y2

2n .

Higher-dimensional HW type models are discussed in Appendix B. GENO for HW models for
SNPs in human DNA data are given in 3.3.

3.2 A numerical example

As a simple (artificial) first example, consider a specific true multinomial distribution and a HW
model whose probabilities are presented in Table 1. The Kullback-Leibler projection of p on
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the HW model is pHW (θ0), where θ0 is computed similarly to the MLE with Yℓ/n replaced by
pℓ of the true multinomial model, that is, θ0 = 2p1 + p2.

Table 1: Probabilities of the true and HW models.

Genotype AA AG GG

True model p 0.185 0.455 0.36
Nearest pHW (θ0) 0.1701 0.4847 0.3452

We consider only two models, the HW and the full multinomial models, referring to the
latter as Full, and denote their probability functions by fHW and f , respectively. Figure 2
presents the expected log-likelihood of (2) in this case. Here the true model is assumed known,
and the expectations and GENO values are computed from the true model by simulation. For

example, for n = 200 the expected likelihood is E
{
log fHW

(
Y ∗, θ̂

(HW )
n

)}
= −1.043. The

value of m, for which E {log f (Y ∗, p̂m)} = −1.043 is 233, where p̂m is the MLE of p under the
multinomial model f with m observations, which is the vector of sample proportions. Therefore,
GENO(200, HW,Full) = 233. Since for n = 233 the HW has the higher log-likelihood, then
GENO(233, Full) = 200 and GENO(233, HW ) = 233. Figure 2 also shows the expected log-
likelihood under the two models as a function of n. When n < 255, the expected log-likelihood
of HW is larger, and otherwise, that of the full multinomial model is larger. Therefore T = 255
(see Section 2.4). The HW model is better for samples smaller than 255, and with more data
the full multinomial is better. An extensive simulation study of different HW models is given
in Appendix B, where we investigate the performance of the estimates of GENO (13) and the
confidence interval (14).
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Figure 2: The computation of GENO(n,HW,Full) based on the expected log-likelihoods

E{log fHW (Y ∗, θ̂
(HW )
n )} and E{log f(Y ∗, p̂n)}.
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3.3 Analysis of DNA

We now compute GENO of the HW model with a data set from the international HapMap
project (Gibbs et al., 2003). We consider data on SNPs in two genetically distinct populations.
In our context, a SNP is a diploid DNA site which can exhibit one of three versions, as in
Section 3.1. In the HapMap data, SNPs that are far from HW equilibrium were excluded since
a significant deviation from HW is typically attributed to errors. Given a sample of J SNPs, an
estimate of GENO is

ĜENO(n,HW,Full) =
2

1
J

∑J
j=1 2

∑3
ℓ=1 p̂j,ℓ log

[
p̂j,ℓ/{pHW (θ̂j)}ℓ

]
− 1

J

∑J
j=1

1
Nj

+ 1
n

,

where for each SNP j, the sample size is Nj , the multinomial parameters are estimated by the

jth sample proportions of the genotypes (p̂j,1, p̂j,2, p̂j,3), and θ̂j = 2p̂j,1 + p̂j,2.
The first data set we consider is a sample of 53 individuals, taken from a population with

African ancestry in Southwest USA (ASW), and the second is a sample of 113 Utah residents
with northern and western European ancestry (CEU). The ASW (CEW, respectively) data
set contains information on about million (two million, respectively) SNPs where the minor
allele frequency is at least 0.1. GENO for chromosome X was computed separately (see Table
6), however, for reasons explained below it is very different from the other chromosomes, and
therefore it was excluded from the calculations of GENO for the two populations. We sampled
J = 56, 694 SNPs from ASE, and J = 98, 081 SNPs from CEU, which are 5% of the total number
of SNPs, at inter-SNP distances that allow us to consider the SNPs as independent. A plot of
ĜENO(n,HW,Full) is given in Figure 3; a 95% bootstrap confidence intervals is also computed.
Notice that although the sample size for each SNP is relatively small, we can infer GENO for
large n’s. This is due to the large number of SNPs whose information is used in estimating the
combined GENO.

Let T̂ = T̂ (HW,Full) defined in (15) denote the value of n for which the two models are
equally good. Our calculations yield T̂=332.4 for ASW and T̂=591.4 for CEU; a 95% bootstrap
confidence interval is (307.7,362.8) and (544.6,647.2), respectively. We calculated T̂ for each
chromosome based on a sample of size Nc/20, where Nc is the number of SNPs in chromosome
c. We did not perform this calculation for chromosome Y, since there are only a few hundreds
such SNPs. The results are given in Table 6 of Appendix C. Chromosome X is clearly different
since the estimated T̂ s are about 8 and 5 for the two populations, and for the other chromosomes
it is a few hundreds.

While the HW model does not apply to Chromosome X, it can be used to explain its fre-
quencies as follows. Males have a single chromosome X and outside of the pseudoautosomal
region they are hemizygous; that is, in the above example, their genotype is either A or G but
not AG. This requires a modification of HW for non-pseudoautosomal X chromosome SNPs
(Hartwig, 2014). In order to assess the effect of this on GENO, consider a certain SNP where
in women the proportion of the three genotypes follow HW

(
θ2, 2θ(1− θ), (1− θ)2

)
and in men

the proportion is (θ, 0, 1− θ). Assuming that half of the population are women, the proportion
in the population is

p :=
(
(θ2 + θ)/2, θ(1− θ), {(1− θ)2 + 1− θ}/2

)
.

With p as above, we have θ0 = 2p1 + p2 = θ and pHW (θ0) =
(
θ2, 2θ(1− θ), (1− θ)2

)
. In this

case, by (15), T̂ = 1
/
2
∑3

ℓ=1 p̂ℓ log
[
p̂ℓ/{pHW (θ̂)}ℓ

]
. Here we consider θ̂ ∈ [0.1, 0.9] for which
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T̂ varies between 4 and 6.5, close to the estimated T̂ of chromosome X in the data. All other
chromosomes, that is, the autosomal chromosomes, the Hardy-Weinberg is a good model and
the full multinomial is better only when the sample size consists of more than several hundreds
individuals. The fact that T̂ is consistently larger for the CEU population (Table 6) means
that the HW models fits this population better, and may be explained by the fact that this
population was less subject to recent migration, and may be more homogeneous than the ASW
population.

0 100 200 300 400 500

0
10

0
20

0
30

0
40

0

n

ha
t{

G
E

N
O

}(
n,

H
W

,F
ul

l)

(a) ASW

0 200 400 600 800 1000

0
20

0
40

0
60

0
80

0

n

ha
t{

G
E

N
O

}(
n,

H
W

,F
ul

l)

(b) CEU

Figure 3: Plots of ĜENO(n,HW,Full) for ASW and CEU. A 95% bootstrap confidence interval is plotted in
the dotted lines. The line n = n is also drawn.

4 GENO for decision processes

The initial impetus for this paper comes from work on data analysis in experimental game
theory, and from Erev, Roth, Slonim, and Barron (2007), whose data, to be described in detail
in Section 5, is reanalyzed below. It involves actions in repeated games that are not independent,
and we next adapt GENO to this situation. We start with more general decision processes, and
later specialize to our motivating problem.

4.1 The decision process set-up

For a given decision process, or game for short, let Z1, . . . , Zn be actions taken at times 1, . . . , n
with values in some finite space Z, the decision space, and let V1, . . . , Vn denote the corresponding
rewards. At stage t of the process the decision maker (player) bases the current decision on the
information in

Dt−1 := (Z1, . . . , Zt−1, V1, . . . , Vt−1). (16)



Usefulness of models 13

Decision are determined by a mixed strategy having probability pDt−1(zt) = P (Zt = zt | Dt−1)
of making the decision zt at time t on the basis of Dt−1 for t = 1, 2, . . . . This decision model,
where actions are based on past actions and rewards, is often called ‘reinforcement learning’. We
assume that the (random) reward Vt at time t depends only on the action Zt, through a known
conditional probability (or density) function p(vt | zt) that depends on the game. Under these
assumptions, a simple calculation shows that the likelihood of the player’s sequence of actions
z1, . . . , zn and rewards v1, . . . , vn is

L(z1, . . . , zn; v1, . . . , vn) =
n∏

t=1

[p(vt | zt)pDt−1(zt)].

As
∏n

t=1 p(vt | zt) does not depend on the decision model and its parameters, it can be regarded
as a constant and ignored. Therefore we now write the likelihood as

L(z1, . . . , zn; v1, . . . , vn) =
n∏

t=1

pDt−1(zt). (17)

A given player has a true strategy g, that is, pDt−1(zt) = g(zt | Dt−1). Having experimental
data, the goal is to approximate this unknown strategy by different models, and we use GENO
to quantify the predictive value of such models.

Consider K candidate models for such a mixed strategy, where for k = 1, . . . ,K, pDt−1(zt)

is modeled by a function fk,t(zt | Dt−1, θ
(k)), with θ(k) ∈ Θ(k) ⊆ Rdk . As usual, we do not

assume that players really play according to any of these models, but we do assume that with
suitable values of the parameters for different players, these models can be useful for analysis
and prediction of players’ behavior. We shall focus on stationary Markov decision processes or
games, where the distribution of the action of Zt at time t depends only on St−1, the state of
the process at time t− 1, and not on the time t, and therefore fk,t will be replaced by fk. If, for
example, the kth model assumes that the decision is based on the last Mk actions and rewards,

then S
(k)
t−1 = (Zt−Mk

, . . . , Zt−1, Vt−Mk
, . . . , Vt−1). For ERSB’s learning models discussed below

we have St−1 = (Qt−1, Vt−1, Zt−1), where the so-called propensity Qt is updated according to a
formula of the type Qt = κ(Qt−1, Vt−1, Zt−1) for a suitable function κ to be discussed in Section
5.1 equation (22), and the distribution of Zt at time t depends only on Qt. Such models are
Markov with respect to the state space as defined. We assume that the true strategy g and all
our candidate models are M -step Markov decision processes for some M ≥ 1. In particular,

under the kth model the mixed strategy is given by fk(zt | S(k)
t−1, θ

(k)).

Under the Markov assumption on the true process, the process (Zt, S
(k)
t−1) possesses a sta-

tionary distribution under well-known ergodicity conditions that are assumed. We denote this

stationary distribution by qk(z, s), with s in a suitable space where S
(k)
t−1 takes values. Integrals

ds should be interpreted with s in the latter space.
By (17), the log-likelihood under the kth model for a given player becomes

n∑

t=1

log fk(Zt | S(k)
t−1, θ

(k)). (18)

Let θ̂
(k)
n be the MLE, i.e., the maximizer of (18), based on n observations, and let the projection

parameter θ
(k)
0 is defined as

θ
(k)
0 := arg max

θ∈Θ(k)

∑

z∈Z

∫
qk(z, s) log fk

(
z | s, θ(k)

)
ds. (19)
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Extending the AIC type expansions requires that
√
n(θ̂

(k)
n − θ

(k)
0 ) converges to normal in dis-

tribution. This holds for finite Markov chains under simple ergodicity conditions. Results of
this type for (more general) Markov chains can be found in Billingsley (1961a,b), and Roussas
(1968). There is a large body of literature on related results for more general stationary ergodic
processes which is beyond the scope of this paper.

In the spirit of GENO described above, imagine that a new player is playing the same game

n∗ times, with the same strategy g; let (Z∗
t , S

∗(k)
t ) be the new decision, and state according to the

kth model at time t for t = 1, . . . , n∗. As before, we want to consider the expected log-likelihood

of the new hypothetical data under the model, if the MLE θ̂
(k)
n is based on the given data with

sample size n. The expected log-likelihood is

1

n∗
E

n∗∑

t=1

log fk(Z
∗
t | S∗(k)

t−1 , θ̂
(k)
n ) = E

∑

z∈Z

∫
qk(z, s) log fk

(
z | s, θ̂(k)n

)
ds,

where the expectation on the left is with respect to all the starred variables under the true model

g and with respect to the MLE θ̂
(k)
n , and the expectation on the right is only with respect to the

latter.

4.2 GENO for decision processes

Similar to the iid case, we define

GENO(n, k, ℓ) :=
{
max
m≥r

:
∑

z∈Z

E

∫
q(z, s) log fℓ

(
z | s, θ̂(ℓ)m

)
ds

≤
∑

z∈Z

E

∫
qk(z, s) log fk

(
z | s, θ̂(k)n

)
ds

}
, (20)

where r is the minimum number of observations required for θ̂
(ℓ)
m to exist. As in the iid case,

AIC type approximations and some calculations for Markov chains, as in Ogata (1980) and
Tong (1975), lead to estimation of the quantities in (20), and in analogy with (5) we obtain the
estimator

ĜENO(n, k, ℓ) :=
dℓ

2
N

∑N
t=1 log

{
fℓ(Zt|S(ℓ)

t−1, θ̂
(ℓ)
N )

/
fk(Zt|S(k)

t−1, θ̂
(k)
N )

}
− dℓ−dk

N + dk
n

. (21)

The above represents GENO for a single player. When the data come from J players, this is
generalized as in Section 2.2, equations (12) where a sum over the J experiment is added. The
notion of GENO(n, k) and its estimator are defined as in (6) and (13). We will not repeat the
details.

5 Game theory experiments: analysis of the motivating data

We now apply our approach to part of the data of ERSB. In their experiment 180 subjects are
arranged in 90 fixed pairs. There are 10 different games, and every game is played by 9 of these
pairs, 500 times each. In every two-player game, each player chooses one action out of two; these
choices determine the probabilities of winning a fixed amount or zero. The winning probabilities
of the two players for each profile of actions add up to one, so in expectation this is a fixed-sum
game.
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5.1 The models

Following ERSB we consider models of strategies having the same parametric form for all players;
however, we allow different values of parameters for different players. Therefore, it is enough
to describe the modeled strategy for a single player. The rewards depend on both players in a
pair, however, from the point of view of the first player, his reward is a random function of his
action as in Section 4.1.

For the first three models, k = 1, 2, 3, we have Qt =
(
Qt(0), Qt(1)

)
, where Qt(i) is referred

to as the propensity to select action i. The propensities are updated at each stage according to

Qt(i) =

{
(1− α)Qt−1(i) + αVt−1 if Zt−1 = i

Qt−1(i) if Zt−1 6= i
, i = 0, 1, (22)

where 0 < α < 1 is a parameter of the model. Initially Q1(0) and Q1(1) are equal to the player’s
expected payoff when both players choose each strategy with equal probability. The following
models are considered:

1. Reinforcement learning (RL): action 1 at round t is chosen with probability

pDt−1(1) =
Qt(1)

Qt(1) +Qt(0)
.

2. Reinforcement learning lambda (RLL): action 1 at round t is chosen with probability

pDt−1(1) =
λ+Qt(1)

2λ+Qt(1) +Qt(0)
,

where λ > 0 is an unknown parameter. When λ is large, pDt−1(1) ≈ 1
2 , and the propensities

are weighted down.

3. Reinforcement learning stickiness (RLS): action 1 at round t is chosen with probability

pDt−1(1) = (1− ξ)
Qt(1)

Qt(1) +Qt(0)
+ ξZt−1,

0 < ξ < 1 is a “stickiness” parameter; when ξ is close to 1 the player repeats his choice
with high probability.

4. Toss: at each round, action 1 is chosen with probability p independently of previous rounds.

5. Nash: at each round, action 1 is chosen with probability predicted by Nash equilibrium.
This model has no free parameters.

6. M -step Markov: the probability of choosing action 1 at stage t is based on the last M
actions, i.e., Zt−M , . . . , Zt−1 and the last reward Vt−1. There are 2M+1 possible sequences
of M past decisions and the last reward. Therefore the model has 2M+1 parameters for
each player, consisting of the probability of choosing action 1 for each such sequence. We
consider M = 1, 2, 3 and denote them by 1-M, 2-M, 3-M. We also consider a two-actions
two-rewards (denoted by 2a2r) model, with action at stage t is based on Zt−2, Zt−1 and
Vt−2, Vt−1.
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7. CAB-WM For t > K, let xt := (Zt−K , . . . , Zt−1, Vt−K , . . . , Vt−1). For each x ∈ {0, 1}2K
and t ≤ K define N1(x; t) = 0, N0(x; t) = 0 and for t > K define recursively

NZt(x; t) =

{
NZt(x; t− 1) + Vt x = xt

NZt(x; t− 1) x 6= xt
, N1−Zt(x; t) =

{
N1−Zt(x; t− 1) + α(1− Vt) x = xt

N1−Zt(x; t− 1) x 6= xt
.

where α ≥ 0 is a parameter. For small α, the strategy puts more weight on a gain than
on a loss. Set

pDt−1(1) =
N1(xt, t− 1)β + 1/2

N1(xt, t− 1)β +N0(xt, t− 1)β + 1
.

for β ≥ 0, a parameter. When β is large then pDt−1(1) is close to 1 or 0, depending whether
N1(xt, t− 1) is larger than N0(xt, t− 1) or not.

8. CAB-W is CAB-WM with β = 1, and CAB-M is CAB-WM with α = 1. CAB-K is
CAB-WM with α = β = 1. We consider only the case K=1.

Models 1–3 are variations on the reinforcement model (Erev and Roth, 1998), 4 and 5 are
standard. Models 3 and 6 have not been studied previously in this context, to the best of
our knowledge. The MLE in models 1–3 and 7–8 is computed by numerical maximization of
the log-likelihood, and estimation in models 4 and 6 is straightforward. The CAB models are
variations on a the model CAB-K of Plonsky, Teodorescu and Erev (2015). This model decides
by a majority rule without randomization, and works very well on the data in the latter article.
When applying a likelihood criterion as we do, non-randomized strategies are ruled out because
a single deviation in the data from the deterministic rule makes the likelihood vanish. This
may happen to good models, with data that deviate only rarely from the model’s strategy.
Our version is randomized. Note that a large β in these models make them closer to being
deterministic. Our estimates in the ERSB data show that most α’s are close to 0, and almost all
are between 0 and 0.4, showing that gains weigh more than losses in the decision. The estimates
of β, when we set α = 0, are close to 1 (80% are between 0.5 and 1.5), indicating that players
usually do not decide in a deterministic fashion.

We first computed AIC(Nj , k) for each of the J = 90 pairs and the models, as defined in
(11), where Nj = 500, the number of games played by each pair. Under the proposed models,
considering a pair of players as a single player, with J = 90, or as two players, with J = 180
amounts to the same AIC and GENO. The averages and standard deviations are given in Table
2. These numbers should be adjusted by the common additive (negative) value which was
neglected as in (17).

Table 2 shows AIC(n, k) for different models where the CAB model have K=1, since larger
values of K did not yield improved models. CAB-W is the best when n < 55; for 56 ≤ n ≤ 61
CAB-WM is preferred and for larger n’s the Markov models have the largest values of AIC and
therefore are preferred according to the AIC criterion for the given sample sizes. For n smaller
than 162, 1-step Markov is the best model and for larger n, smaller than 511, 2-step Markov is
preferred. For larger n, 3-step Markov is the best among our candidate models. It is interesting
to note that 3-step Markov has a somewhat larger AIC value than 2-actions 2-rewards for all n,
and the same number of parameters, so 3-M will be preferred over 2a2r. This suggests that the
third previous action is somewhat more informative (in AIC sense) than the second previous
reward.

The computations we performed differ from a recent similar calculation in Marchiori and
Warglien (2008) in several ways: we use the MLE estimates for each model, rather than first
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Table 2: Average (SD) over the 90 pairs of AIC(n, k) for different n’s and k’s. Models with the
largest AIC(n, k) are in bold face.

Model k AIC(50, k) AIC(125, k) AIC(250, k)

RL -1.25 ( 0.136 ) -1.238 ( 0.136 ) -1.235 ( 0.136 )
RLL -1.218 ( 0.147 ) -1.194 ( 0.147 ) -1.188 ( 0.147 )
RLS -1.051 ( 0.268 ) -1.027 ( 0.268 ) -1.021 ( 0.268 )
Toss -1.156 ( 0.243 ) -1.144 ( 0.243 ) -1.141 ( 0.243 )
Nash -1.443 ( 0.369 ) -1.443 ( 0.369 ) -1.443 ( 0.369 )
1-M -1.007 ( 0.253 ) -0.959 ( 0.253 ) -0.947 ( 0.253 )
2-M -1.063 ( 0.253 ) -0.967 ( 0.253 ) -0.943 ( 0.253 )
3-M -1.207 ( 0.249 ) -1.015 ( 0.249 ) -0.967 ( 0.249 )
2a2r -1.209 ( 0.248 ) -1.017 ( 0.248 ) -0.969 ( 0.248 )

CAB-1 -1.359 ( 0.143 ) -1.359 ( 0.143 ) -1.359 ( 0.143 )
CAB-M -1.221 ( 0.193 ) -1.209 ( 0.193 ) -1.206 ( 0.193 )
CAB-W -0.998 ( 0.249 ) -0.986 ( 0.249 ) -0.983 ( 0.249 )
CAB-WM -1 ( 0.25 ) -0.976 ( 0.25 ) -0.97 ( 0.25 )

Model k AIC(300, k) AIC(500, k) AIC(700, k)

RL -1.233 ( 0.136 ) -1.232 ( 0.136 ) -1.231 ( 0.136 )
RLL -1.185 ( 0.147 ) -1.182 ( 0.147 ) -1.181 ( 0.147 )
RLS -1.017 ( 0.268 ) -1.015 ( 0.268 ) -1.013 ( 0.268 )
Toss -1.139 ( 0.243 ) -1.138 ( 0.243 ) -1.137 ( 0.243 )
Nash -1.443 ( 0.369 ) -1.443 ( 0.369 ) -1.443 ( 0.369 )
1-M -0.941 ( 0.253 ) -0.935 ( 0.253 ) -0.933 ( 0.253 )
2-M -0.929 ( 0.253 ) -0.919 ( 0.253 ) -0.914 ( 0.253 )
3-M -0.94 ( 0.249 ) -0.919 ( 0.249 ) -0.91 ( 0.249 )
2a2r -0.943 ( 0.248 ) -0.921 ( 0.248 ) -0.912 ( 0.248 )

CAB-1 -1.359 ( 0.143 ) -1.359 ( 0.143 ) -1.359 ( 0.143 )
CAB-M -1.204 ( 0.193 ) -1.203 ( 0.193 ) -1.202 ( 0.193 )
CAB-W -0.981 ( 0.249 ) -0.98 ( 0.249 ) -0.979 ( 0.249 )
CAB-WM -0.967 ( 0.25 ) -0.964 ( 0.25 ) -0.963 ( 0.25 )

moments which in the presence of dependence are not sufficient statistics, we consider the
likelihood function itself and not just the prediction of the model on the average choice, and
unlike Marchiori and Warglien (2008) and ERSB, we do not assume that all players have common
parameters. We found that allowing individual parameters leads to smaller AIC numbers and
therefore are preferred. For example, if we consider a common parameter for all players the
average AIC(500, k), where k is the RL model, is -1.312, whereas the corresponding number
when individual parameters are allowed is -1.232.

5.2 GENO: results

Tables 3 and Figure 4 show ĜENO(n, k) for different n’s and for the models mentioned in the
previous section along with confidence intervals at the 95% level based on (14). The models’
ℓ̂(n, k) is also given. The model in boldface is the best for the given n. For example, for n = 200,
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the 2-M model is best, ĜENO(200,1-M)=179 and ℓ̂(n,1-M)=2-M. This means that using 1-M
rather than 2-M with n = 200, amounts to a loss of 200−179, or about 20 observations. Having
quantified the loss, the user can now decide between 1-M and 2-M according to considerations
such as simplicity of the model, or prior preferences. The model CAB-W is best for n = 50
observations. However when n = 200 its performance is comparable to 1-M with only 72
observations, meaning that for n = 200 one can do much better than CAB-W which incurs a
loss of about 130 observations.

Since players within a pair cannot be considered independent as requited for the Bootstrap
confidence intervals, we considered each pair of players as a single player, making a pair of
decisions simultaneously, when constructing the confidence intervals. For n = 500, the sample
size of each experiment in the data, the best model is 2-step Markov, and 3-step Markov is a
close second, and becomes best for n larger than approximately 510.

By our criterion, learning models 1-3 do not perform well. One should keep in mind that
ERSB used them for a different goal: predicting proportions of actions played, and not for
prediction of the process or the whole likelihood. Nash’s model has no free parameters that
need to be estimated and, therefore, its GENO does not depend on n and is 0 since CAB-1 with
no parameters is better. Thus, we find that the learning models are more useful than the Nash
model, as did ERSB, using their measure ENO. The GENO of the Markov models are higher
than the learning models and therefore, by our measure, the Markov models are more useful.
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Figure 4: Plot of ĜENO(n, k), where k is one of the models mentioned in Section 5.1 (only models with large
GENO are plotted) and n = 50, . . . , 700.
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Table 3: Estimates (95% confidence intervals) of GENO(n, k) and ℓ̂(n, k) for different n’s and
for chosen model k’s. The best models are in boldface.

Model k ĜENO(50, k) ℓ̂(50, k) ĜENO(125, k) ℓ̂(125, k) ĜENO(200, k) ℓ̂(200, k)
RL 4 ( 3 , 4 ) CAB-W 4 ( 3 , 5 ) CAB-W 4 ( 3 , 5 ) CAB-W
RLL 4 ( 4 , 5 ) CAB-W 5 ( 4 , 6 ) CAB-W 5 ( 4 , 6 ) CAB-W
RLS 14 ( 11 , 18 ) CAB-W 21 ( 15 , 31 ) CAB-W 23 ( 17 , 39 ) CAB-W
Toss 6 ( 5 , 7 ) CAB-W 6 ( 5 , 8 ) CAB-W 6 ( 5 , 8 ) CAB-W
Nash 0 ( 0 , 0 ) CAB-1 0 ( 0 , 0 ) CAB-1 0 ( 0 , 0 ) CAB-1
1-M 34 ( 26 , 51 ) CAB-W 125 ( 125 , 125 ) 1-M 179 ( 156 , 205 ) 2-M
2-M 12 ( 11 , 13 ) CAB-W 102 ( 90 , 122 ) 1-M 200 ( 200 , 200 ) 2-M
3-M 4 ( 4 , 5 ) CAB-W 27 ( 21 , 38 ) CAB-W 101 ( 84 , 130 ) 1-M
2a2r 4 ( 4 , 5 ) CAB-W 25 ( 21 , 34 ) CAB-W 96 ( 83 , 115 ) 1-M

CAB-1 3 ( 2 , 3 ) CAB-W 3 ( 2 , 3 ) CAB-W 3 ( 2 , 3 ) CAB-W
CAB-M 4 ( 4 , 5 ) CAB-W 4 ( 4 , 5 ) CAB-W 4 ( 4 , 5 ) CAB-W
CAB-W 50 ( 50 , 50 ) CAB-W 68 ( 59 , 80 ) 1-M 72 ( 61 , 85 ) 1-M
CAB-WM 45 ( 35 , 66 ) CAB-W 82 ( 71 , 96 ) 1-M 94 ( 80 , 112 ) 1-M

Model k ĜENO(300, k) ℓ̂(300, k) ĜENO(500, k) ℓ̂(500, k) ĜENO(700, k) ℓ̂(700, k)
RL 4 ( 3 , 5 ) CAB-W 4 ( 3 , 5 ) CAB-W 4 ( 3 , 5 ) CAB-W
RLL 5 ( 4 , 6 ) CAB-W 5 ( 4 , 6 ) CAB-W 5 ( 4 , 6 ) CAB-W
RLS 25 ( 18 , 44 ) CAB-W 27 ( 18 , 49 ) CAB-W 28 ( 19 , 53 ) CAB-W
Toss 6 ( 5 , 8 ) CAB-W 6 ( 5 , 8 ) CAB-W 6 ( 5 , 8 ) CAB-W
Nash 0 ( 0 , 0 ) CAB-1 0 ( 0 , 0 ) CAB-1 0 ( 0 , 0 ) CAB-1
1-M 210 ( 180 , 245 ) 2-M 244 ( 204 , 296 ) 2-M 262 ( 216 , 323 ) 2-M
2-M 300 ( 300 , 300 ) 2-M 500 ( 500 , 500 ) 2-M 590 ( 499 , 696 ) 3-M
3-M 212 ( 191 , 244 ) 2-M 490 ( 391 , 710 ) 2-M 700 ( 700 , 700 ) 3-M
2a2r 200 ( 187 , 216 ) 2-M 429 ( 372 , 509 ) 2-M 635 ( 520 , 798 ) 3-M

CAB-1 3 ( 2 , 3 ) CAB-W 3 ( 2 , 3 ) CAB-W 3 ( 2 , 3 ) CAB-W
CAB-M 4 ( 4 , 5 ) CAB-W 4 ( 4 , 5 ) CAB-W 4 ( 4 , 5 ) CAB-W
CAB-W 74 ( 63 , 88 ) 1-M 76 ( 64 , 91 ) 1-M 77 ( 65 , 92 ) 1-M
CAB-WM 102 ( 86 , 123 ) 1-M 109 ( 90 , 134 ) 1-M 113 ( 93 , 140 ) 1-M
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Appendices

A Proof of Proposition 2.1

We show that

ĜENO(n, k) > ĜENO(n, k′) ⇔ AIC(n, k) > AIC(n, k′).

Proof: If AIC(n, k) > AIC(n, k′) then for all ℓ ∈ {1, . . . ,K}
1

2dℓ
[AIC(n, ℓ)−AIC(n, k)] <

1

2dℓ
[AIC(n, ℓ)−AIC(n, k′)]

and hence using (8) we obtain

ĜENO(n, k) = min
ℓ∈{1,...,K}

{
1

2dℓ
[AIC(n, ℓ)−AIC(n, k)] +

1

n

}−1

> min
ℓ∈{1,...,K}

{
1

2dℓ
[AIC(n, ℓ)−AIC(n, k′)] +

1

n

}−1

= ĜENO(n, k′).

Conversely, if ĜENO(n, k) > ĜENO(n, k′) then,

max
ℓ∈{1,...,K}

1

2dℓ
[AIC(n, ℓ)−AIC(n, k)] < max

ℓ∈{1,...,K}

1

2dℓ
[AIC(n, ℓ)−AIC(n, k′)].

The maximum of the right hand-side is obtained at ℓ̂(n, k′). Then,

max
ℓ∈{1,...,K}

1

2dℓ
[AIC(n, ℓ)−AIC(n, k)] <

1

2dℓ̂(n,k′)
[AIC(n, ℓ̂(n, k′))−AIC(n, k′)].

The last inequality holds for all ℓ ∈ {1, . . . ,K} and in particular for ℓ̂(n, k′). Hence,

1

2dℓ̂(n,k′)
[AIC(n, ℓ̂(n, k′))−AIC(n, k)] <

1

2dℓ̂(n,k′)
[AIC(n, ℓ̂(n, k′))−AIC(n, k′)],

implying AIC(n, k) > AIC(n, k′).

B A numerical study of GENO for extended Hardy-Weinberg

models

In this section we present an example of a more complex HW type model, and explain the
computations and estimation for a particular case in Sections B.1 - B.2. In Section B.3 we
demonstrate the results by a simulation study.

Consider Hardy-Weinberg models for a single diploid locus with three (rather than two as
in previous sections) possible alleles a,b,c, appearing with probabilities θ1, θ2, θ3 = 1 − (θ1 +
θ2), respectively. This leads to a two-dimensional model. Alternatively, we consider a one-
dimensional model with θ1 = θ2 = η. The model with η is called Model 1 and the bigger model
with θ = (θ1, θ2) is called Model 2. The probabilities of the different genotypes, according to
Models 1 and 2, are presented in Table 4.
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Table 4: The probabilities according to the model.

Genotype aa ab bb bc ac cc

Probability - Model 1 η2 2η2 η2 2η(1− 2η) 2η(1− 2η) (1− 2η)2

Probability - Model 2 θ21 2θ1θ2 θ22 2θ2θ3 2θ1θ3 θ23

We have

θ̂1 =
2Y1 + Y2 + Y5

2n
, θ̂2 =

Y2 + 2Y3 + Y4
2n

; η̂ =
2(Y1 + Y2 + Y3) + Y4 + Y5

4n
. (23)

The likelihood of (Y1, . . . , Y6) is proportional to
∏6

ℓ=1 p
Yℓ

ℓ . The pℓ’s are the components of

p(1) = p(1)(η) =
(
η2, 2η2, η2, 2η(1− 2η), 2η(1− 2η), (1− 2η)2

)
or p(2) = p(2)(θ)

=
(
θ21, 2θ1θ2, θ

2
2, 2θ2θ3, 2θ1θ3, θ

2
3

)
under Model 1 or Model 2, respectively.

B.1 A numerical example

We consider a specific multinomial distribution. The probability vector p under the full multi-
nomial model with 6 cells (denoted by Full, with dimension = 5), and the resulting probabilities
under Models i are presented in Table 5, where η0 and θ0 minimize the Kullback-Leibler diver-
gence D(Full||Model i), i = 1, 2. Here p was chosen only to provide a numerical example in
which the two candidate models are reasonable but not close to perfect, so that the resulting
GENOs are not trivial.

Table 5: The probabilities under Models 1 and 2 and under the full model.

1 2 3 4 5 6

Full model p 0.0700 0.2120 0.0824 0.2632 0.2080 0.1644

p(1)(η0) 0.09 0.18 0.09 0.24 0.24 0.16

p(2)(θ0) 0.0784 0.1792 0.1024 0.2560 0.2240 0.1600

In this example we assume that the Full Model is also the true model. In this case, the

components p
(1)
ℓ (η0) and p

(2)
ℓ (θ0) of p(1)(η0) and p(2)(θ0), respectively, are computed similarly

to (23), with Yℓ/n replaced by the multinomial cell probabilities pℓ.
Figure 5 compares the function GENO(n, k, Full) for k = 1, 2, computed according to (3) by

numerical calculation of the expectations involved. For small n the small Model 1 has the largest
GENO and, hence, it is preferred. For example, GENO(70, 1, Full) ≈ 160 ≈ GENO(90, 2, Full),
that is, Model 1 with 70 observations is equivalent to the full multinomial model with 160
observation, and also equivalent to Model 2 with 90 observations. When n is larger than about
170 and smaller than about 250, Model 2 is better, while for larger n’s the full multinomial
model is preferred.
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Figure 5: Plots of GENO(n, k, Full) for k = 1, 2 and for n = 1, . . . , 600.

B.2 Estimation

We now consider the estimator (5) and study its behavior for different values of N . For a sample
(Y1, · · · , Y6) ∼ Multinomial(N, p), (5) reads as

ĜENO(n, 1, Full) =
5/2

∑6
ℓ=1 p̂ℓ log[p̂ℓ/p

(1)
ℓ (η̂)]− 5−1

2N + 1
2n

, and

ĜENO(n, 2, Full) =
5/2

∑6
ℓ=1 p̂ℓ log[p̂ℓ/p

(2)
ℓ (θ̂)]− 5−2

2N + 2
2n

,

where the MLE estimators are given by (23) and p̂ is the empirical mean.

Figure 6 plots the region where 95% of the estimates ĜENO(n, 1, Full), ĜENO(n, 2, Full)
fall, based on the 0.025,0.975 quantiles of 10000 simulations of

∑6
ℓ=1 p̂ℓ log[p̂ℓ/{p(1)(η̂)}ℓ] for

Model 1 and
∑6

ℓ=1 p̂ℓ log[p̂ℓ/{p(2)(θ̂)}ℓ] for Model 2. For small N , the confidence intervals
of GENO(n, 1, Full) and GENO(n, 2, Full) are quite wide and they overlap. For example,
for n=300, GENO(300, 1, Full) = 244, while the confidence intervals are (189,312), (202,286),
(214,267), (221,259) for N =10,000, 20,000, 50,000, 100,000, respectively. Thus, in this example
N needs to be quite large in order to obtain good estimates.
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(b) N =20,000
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(c) N =50,000
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Figure 6: Plots of estimates of GENO(n, 1, Full) (black) and GENO(n, 2, Full) (gray). The dashed lines are

bounds based on the 0.025,0.975 quantiles of the 10000 simulations of
∑6

j=1 p̂j log[p̂j/p
(1)
j (η̂)] for Model 1 or

∑6
j=1 p̂j log[p̂j/p

(2)
j (θ̂)] for Model 2.

B.3 Many experiments

In this Section we perform simulations to assess the estimates of GENO under the scenario of
Sections 2.2 and 3.3, namely, that there are many experiments, each of which has a different
p, with models as in Section B.1. Based on these experiments we would like to estimate the
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common GENO as in (13) and to compare it to the true value. We consider the case where all
Nj ’s are equal to some N . This scenario is quite standard when we have a sample of DNA of
N organisms of some species and we consider allele frequencies in different loci, which can be
assumed independent; that is, there is no linkage disequilibrium.

We conducted simulations of a scenario having the above flavor. The description of the
simulation is somewhat involved. We performed 1000 simulations of J = 500 experiments, each
of size N = 200. In terms of the DNA example of Section 3.3, this corresponds to analyz-
ing 500 SNPs on the basis of a sample of 200 DNA sequences. These numbers are somewhat
in between the values of the DNA data of Section 3.3 (where N ≈ 50 and J ≈ 50, 000) and
the experimental economics data of Section 5 (where N = 500 and J = 180). We start by
fixing a limiting value of GENO for each j = 1, . . . , J and then computing corresponding prob-
ability vectors. More specifically, for each of the J experiments we first chose a value for
limn→∞GENO(n, 1, Full). These values, denoted by G(j), j = 1, . . . , 200, were chosen by sam-
pling from the Normal distributionN

(
100, 252

)
, so that we have 200 GENOs that are roughly of

the same order. We then chose, by solving a non-linear equation, p(j), using the approximation
limn→∞GENO(n, 1, Full) ≈ 5/2

∑6
ℓ=1 pℓ log[pℓ/p

(1)
ℓ

(η0)]
, such that limn→∞GENO(n, 1, Full) = G(j)

and limn→∞GENO(n, 2, Full) = 1.5G(j). In other words, in the j-th experiment, the first
model with infinitely many observations (that is, a large number) is equivalent to the full model
with G(j) observations, and the second is equivalent to the full model with 1.5G(j) observations.
The factor 1.5 was chosen since it is close to the numbers 407.1/283.8=1.43 of Section B.1.

We computed 95% bootstrap confidence intervals by (14) and compared them to the true
distribution. The way the above GENO’s were generated is, of course, arbitrary, and we repeated
the whole experiment four times, generating GENOs from the N

(
100r, (25r)2

)
distribution with

r = 1 (the case above) and also r = 2, 3, 4.

Figure 7 plots E{ĜENO(n, k, Full)} (estimated by simulations), and the mean bounds of
the bootstrap confidence intervals compared to the true bounds computed from the simulation
quantiles. The bootstrap confidence intervals are (very) slightly conservative, as expected.
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(b) r = 2
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(c) r = 3
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Figure 7: Plots of estimates of E{ĜENO(n, k, Full)}, k = 1, 2 for many experiments. The green and yellow

lines are the mean bounds of the bootstrap 95% confidence interval of ĜENO(n, k, Full), k = 1, 2 respectively,
where the mean is over the 1000 simulations, and the dashed lines are bounds based on quantiles of the 1000
repetitions of the GENO estimates.
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C T̂ for the DNA data

Table 6: T̂ = T̂ (HW,Full) for the different chromosomes for the populations ASW, CEU.
ASW CEU

Chromosome T̂ CI Nc J = Nc

20
T̂ CI Nc J = Nc

20

Chromosome 1 282.7 (226.4,365) 92929 4646 947.5 (643.8,1713.1) 149620 7481
Chromosome 2 273.5 (221.9,355.4) 95916 4796 683.5 (516.6,1000.9) 169373 8469
Chromosome 3 420.5 (299.5,683) 79350 3968 436.4 (350.6,576.4) 138785 6939
Chromosome 4 272.9 (213.8,380.7) 72049 3602 487.8 (382.1,678.8) 125677 6284
Chromosome 5 406.1 (289.8,658.9) 71898 3595 582.2 (442.7,835.6) 130933 6547
Chromosome 6 278.7 (216.8,381.4) 73943 3697 445.9 (359.1,587.5) 139229 6961
Chromosome 7 233.5 (184.5,314.2) 62170 3108 443.2 (344.8,617.3) 111532 5577
Chromosome 8 388.6 (275.1,659.3) 62755 3138 969.3 (629.1,2060.9) 113614 5681
Chromosome 9 249.9 (191.7,352.3) 52507 2625 949.2 (598.1,2168.5) 94208 4710
Chromosome 10 326.4 (241.9,492.4) 59495 2975 388.3 (313.7,502.9) 103347 5167
Chromosome 11 303.8 (228.7,448.3) 57809 2890 783.9 (527.9,1478.2) 100706 5035
Chromosome 12 392.1 (265.6,711.3) 55002 2750 646.5 (453.9,1109.4) 94978 4749
Chromosome 13 337.2 (227.9,622.1) 42386 2119 463.3 (344.3,686.4) 77526 3876
Chromosome 14 246.6 (183,368.5) 37043 1852 774.6 (481.9,1800.4) 63702 3185
Chromosome 15 460.3 (287.9,1132.5) 34474 1724 505.2 (355.9,866.5) 55102 2755
Chromosome 16 589.6 (325.6,2761.8) 36406 1820 523.4 (372.8,874.3) 55874 2794
Chromosome 17 350.8 (232.3,700.2) 30687 1534 426.8 (312.6,684.1) 46989 2349
Chromosome 18 438.3 (268.9,1111.6) 34357 1718 664.5 (421.1,1473.4) 58296 2915
Chromosome 19 184.6 (130.6,312.4) 20858 1043 613.8 (368.7,1728) 31015 1551
Chromosome 20 212 (157.3,321) 29107 1455 997.3 (538.5,5362.6) 47875 2394
Chromosome 21 388.6 (231.8,1136.5) 16410 820 3433.6 (767.1,-1475.7) 27037 1352
Chromosome 22 186.9 (133.3,302.6) 16012 801 590.1 (355.6,1648.6) 25761 1288
Chromosome X 8.3 (8,8.6) 42207 2110 4.6 (4.6,4.7) 54889 2744


