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Abstract

Phase I clinical trials are conducted in order to find the maximum tolerated
dose (MTD) of a given drug from a finite set of doses. For ethical reasons,
these studies are usually sequential, treating patients or groups of patients
with the optimal dose according to the current knowledge, with the hope
that this will lead to using the true MTD from some time on. However, the
first result proved here is that this goal is infeasible, and that such designs,
and, more generally, designs that concentrate on one dose from some time on,
cannot provide consistent estimators for the MTD unless very strong para-
metric assumptions hold. Allowing some non MTD treatment, we construct
a randomized design that assigns the MTD with probability that approaches
1 as the size of the experiment goes to infinity and estimates the MTD
consistently. We compare the suggested design with several methods by sim-
ulations, studying their performances in terms of correct estimation of the
MTD and the proportion of individuals treated with the MTD.

Keywords: Isotonic regression, Maximum tolerated dose, Phase I trial,
Stochastic approximation, Up-and-down design.

1. Introduction

Let x be a dose of a given drug and let y be a binary outcome, where y = 1
(y = 0) represents a toxic (non-toxic) response. Let f(x) := P (y = 1|x) be
the probability of a toxic response at dose x, where f : R+ → (0, 1) is an
unknown strictly increasing function. Typically, the dose range D consists
of only a few doses, d1 < d2 < . . . < dK , and one aims at finding the dose
dj∗ having toxicity that is closest to a prescribed target toxicity level p∗, i.e.,
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j∗ = argminj |f(dj)− p∗| (assuming it is unique). The dose dj∗ is called the
maximum tolerated dose (MTD).

MTD-finding studies, conducted as part of phase I clinical trials, are
usually performed sequentially for reasons of efficiency and ethics, according
to the following two, possibly conflicting, principles:

1. Treatment: ideally, treat each subject with the MTD dj∗. Since it is
unknown, subjects are often treated with an estimate of the MTD.

2. Experimentation: obtain a good estimate for the MTD at the end of
the study.

The choice between the two is called the treatment versus experimentation
dilemma in Bartroff and Lai [3]. The first point above reflects the ethical
consideration of avoiding treatment with doses that may have a high tox-
icity rate or doses with low efficacy. In the words of Shu and O’Quigley
[23]: “being optimal for anything other than the best estimated treatment
for the next patient, or group of patients, to be included in the study is not
acceptable”. The second point is the core of MTD studies, but may require
to treat subjects with non-optimal doses in order to find the MTD as fast as
possible.

In the case of a continuous response that follows a simple linear regression
model and a continuous dose space, Lai and Robbins [13] show that this
dilemma can be resolved asymptotically by treating each subject with the
estimated MTD based on a truncated version of the least squares estimators.
The aim of the current paper is to examine if and how this dilemma can be
resolved in the more common phase I framework of a finite dose space, under
minimal assumptions on the dose-response curve.

Many sequential designs for MTD studies have been suggested in the
literature. Some of them assume a functional parametric model for the dose-
response curve, e.g., the continual reassessment method (CRM)(O‘Quigley
et al. [17], O‘Quigley [16]), and escalation with overdose control (Babb et
al. [1]). Others are non-parametric in nature, e.g., Gasparini and Eisele [7];
Whitehead et al. [24]; Leung and Wang [14]; Ivanova et al. [9]. All these
methods focus on the ‘Treatment’ purpose, requiring that each subject be
treated with the estimated MTD. We show in Section 2 that they fail to
satisfy the ‘Experimentation’ purpose in the sense that such designs cannot
yield consistent estimators for all response curves. Consequently, as we show
in Section 2, they may also fail in the ‘Treatment’ goal.
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In contrast, methods that do not require treatment at the current esti-
mated MTD can yield consistent estimators. The classical non-parametric
up and down methods, e.g., Dixon and Mood [6], and Derman [5], can pro-
vide consistent estimators (of the MTD), but use only a small part of the
available data at each step to determine the next dose, and therefore have
undesirable properties (O‘Quigley and Zohar [18]). In particular, when con-
sidered asymptotically, these methods will continue to assign subjects to all
doses, and will therefore fail to accomplish the ‘Treatment’ goal, and will be
wasteful in the sense of assigning subjects to irrelevant doses.

Ivanova et al. [10] and Ivanova and Kim [11], suggest an improved up and
down methods that estimate the dose-response curve by isotonic regression.
These methods use all available data at each step and provide consistent
estimator for the MTD for every increasing dose-response curve. Isotonic
regression was considered earlier in the framework of stochastic approxima-
tion on a lattice by Mukerjee [15], who proves consistency of a method which
eventually concentrates on two doses. All the methods described in this
paragraph concentrate eventually on doses adjacent to the MTD, but have a
non-vanishing probability of treating at a non-MTD dose.

In Section 2, we show that if treatment in a sequential experiment is
according to the current estimator of the MTD, then this estimator cannot
be strongly consistent, that is, it cannot coincide with the true MTD from
some time on. Moreover, any design that concentrates on a single dose
from some time on has a non negligible probability of concentrating on the
wrong dose and cannot lead to strongly consistent estimation of the MTD.
The implication is that a design having an optimal treatment from some
time on is impossible, and the practice of assigning sequentially the current
estimated MTD is statistically open to doubt. Though it is impossible to
assign the MTD from a certain stage of the sequential experiment and on, it is
possible to assign the MTD with probability approaching 1 as the experiment
grows, or equivalently, have a vanishing probability of treating at a non-MTD
dose. We introduce in Section 3 a design, which is based on Mukerjee [15],
that accomplishes this. Properties of several designs for small and moderate
sample sizes are studied via simulations in Section 4. Concluding remarks
are given in Section 5 and the proofs appear in the Appendix.
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2. An Impossibility Result.

We consider sequential designs and denote by xn and yn the dose as-
signed to the n’th subject and his response, respectively, and by Fn−1 :=
σ{(x1, y1), (x2, y2), . . . , (xn−1, yn−1)} the available data prior to the decision
on the n’th subject’s dose. We assume for n ≥ 2 that

xn ∈ Fn−1 , yn|Fn−1 ∼ Bernoulli (f(xn)) . (1)

The sequence {xn}∞n=1, is called a design; a sequence of estimators {M̂TDn}∞n=1

is said to be strongly consistent with respect to a given design if M̂TDn → dj∗
almost surely for all increasing functions f or equivalently, by discreteness

P (∃N s.t. ∀n ≥ N : M̂TDn = dj∗) = 1.
Under the above general framework we obtain the following impossibility

result:

Theorem 1. Assuming (1), there exists no design that satisfies for all in-
creasing functions f

P (∃N s.t. ∀n ≥ N : xn = dj∗) = 1, (2)

or equivalently that P (xn 6= dj∗ i.o. ) = 0.

The crux of the above result is that a design that concentrates eventually
on one dose, say dj, can yield a consistent estimator for f(dj), but cannot
estimate consistently f(di) for i 6= j, and therefore may miss the MTD, and
eventually treat patients with a non-optimal dose, so that asymptotically
both treatment and estimation fail.

Results like Theorem 1 and its consequences holds also for parametric
models where the dimension of the parameter space is two or larger. A design
that concentrates eventually on one dose can yield a consistent estimator for
the probability of a toxic response at that dose only, but knowing the response
curve in a single dose cannot yield a consistent estimator for the unknown
parameters, unless the dimension is one. Shen and O’Quigley [21] and Shu
and O’Quigley [23], make a similar argument in favor of a one parameter
model as a working model for the CRM.

Perhaps the most striking implication of the theorem is the following
corollary:
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Corollary 1 (Treatment versus experimentation dilemma). Let {M̂TDn}∞n=1

be any sequence of estimators of the MTD. If for all n, xn+1 = M̂TDn then

{M̂TDn}∞n=1 is not strongly consistent.

Corollary 1 has direct implications for phase I studies because many de-
signs, including the CRM and the non-parametric methods mentioned in
Section 1, assign the estimated MTD at each stage. Such designs cannot
yield consistent estimators for the MTD unless severe parametric assump-
tions on f are imposed. Hence, in our framework, the aforementioned ethical
requirement of Shu and O’Quigley seems arguable. In fact, it is easy to see
from the above results that designs that concentrates eventually on one dose
cannot yield weakly consistent estimation of the MTD, that is, estimators
that converge to the MTD in probability. In Section 3 we show that designs
leading to strongly consistent estimation of the MTD, and treatment at the
MTD with probability approaching 1, do exist.

3. An asymptotically optimal design

In this section, we construct a design that satisfies P (xn = dj∗) −−−→
n→∞

1

and a strongly consistent sequence of estimators of the MTD. Such a design
‘almost’ resolves the treatment versus experimentation dilemma.

We shall use the isotonic regression estimator of f , which maximizes the
likelihood

∏n

i=1 f(xi)
yi[1 − f(xi)]

1−yi under the restriction that f is nonde-
creasing (Barlow et al. [2], p. 38). Specifically, for any dr, ds ∈ D such that
r ≤ s, define

Nn(dr, ds) =

n
∑

i=1

I(xi ∈ [dr, ds]),

ȳn(dr, ds) =

{ 1
Nn(dr ,ds)

∑n

i=1 yiI(xi ∈ [dr, ds]) Nn(dr, ds) > 0

0 Nn(dr, ds) = 0
.

The estimator for f at stage n is

f̂n(dj) = max
r≤j

min
s≥j

ȳn(dr, ds) j = 1, . . . , K.

The corresponding estimator of the MTD is defined as follows. Let j be
the maximal element in {1, . . . , K − 1} that satisfies f̂n(dj) ≤ p∗ (if no j

5



satisfies this, set j = 1); our estimator of the MTD is

M̂TDn =

{

dj p∗ ≤ f̂n(dj)+f̂n(dj+1)

2

dj+1 p∗ >
f̂n(dj)+f̂n(dj+1)

2
.

(3)

We suggest the following randomized allocation design (RAD), which is
a randomized version of Mukerjee [15] stochastic approximation scheme:

1. If p∗ < f̂n(d1), set xn+1 = d1.

2. If p∗ > f̂n(dK), set xn+1 = dK .

3. If Bn(dj) := {f̂n(dj) ≤ p∗ ≤ f̂n(dj+1)} occurs, select xn+1 to be dj or
dj+1 according to the following rule:

if p∗ ≤ (>)
f̂n(dj) + f̂n(dj+1)

2
then

xn+1 =

{

dj with probability 1− 1
k

( 1
k
)

dj+1 with probability 1
k

(1− 1
k
) ,

(4)

where k := k(n, j) =
∑n

i=1 I{Bi(dj)}.

Note that if p∗ ≤ (>)
f̂n(dj )+f̂n(dj+1)

2
for some j, then dj (dj+1) is the esti-

mated MTD and xn+1 = dj (dj+1) with large probability. The design is con-
structed in such a way that if Bn(dj) occurs infinitely often then the proba-
bility of choosing the estimated MTD tends to one (if f(dj) ≤ p∗ ≤ f(dj+1)),
and both {xn = dj} and {xn+1 = dj+1} occur infinitely often. Thus, in
the proposed design, non MTD treatment occurs asymptotically only rarely
(though it occurs infinitely often) and the probability of treatment at the
true MTD approaches one. The properties of this design are summarized in
the following theorem.

Theorem 2. Assume that f(dj′) < p∗ < f(dj′+1) for some j′ ∈ {1, . . . , K −
1}. The RAD (4) satisfies

I. P (∃N s.t. ∀n ≥ N : xn ∈ {dj′, dj′+1}) = 1.

II. The sequence M̂TDn (3) is strongly consistent.

III. P (xn = dj∗) −−−→
n→∞

1.
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The proof is given in the appendix. We note that the RAD guarantees
strongly consistent estimation of the MTD, hence satisfies the Experimen-
tation criterion, and from some stage on it treats with either the estimated
MTD or an adjacent dose (with an increasing probability to treat with the
former), and hence almost satisfies the Treatment purpose of MTD studies.

Remark 1. By a similar argument as in the proof of Theorem 2, The RAD
design (4) satisfies

i. If p∗ = f(dj∗) then P (∃N s.t. ∀n ≥ N : xn ∈ {dj∗−1, dj∗, dj∗+1}) = 1.

ii. If p∗ < f(d1) then P (∃N s.t. ∀n ≥ N : xn = d1) = 1.

iii. If p∗ > f(dK) then P (∃N s.t. ∀n ≥ N : xn = dK) = 1.

In all three cases, M̂TDn is strongly consistent and P (xn = dj∗) −−−→
n→∞

1.

We assume that argminj |f(dj) − p∗| is unique (otherwise, the MTD is not
well-defined). In the case that p∗ is exactly in the middle of [f(dj′), f(dj′+1)]

then for large enough n (with probability 1), xn and M̂TDn will oscillate
between dj′ and dj′+1.

Remark 2. Theorem 2 guarantees large probability of optimal treatment for
large n, and treatment at one of the two closest doses to the MTD with prob-
ability 1 from some time on (Part I). However, for practical purposes (small
n), we found that the algorithm performs better when the rate of choosing the
estimated MTD is reduced. For example, replacing k in (4) with a · k + 2,
where a is a (small) constant, yields better small sample performance. Thus,
the choice between dj and dj+1 is done with probability 1

a·k+2
which is ≈ 1/2

for small a. This modification does not change the asymptotic behavior of
the estimator given in Theorem 2, while improving the learning rate of the
response curve in early stages of the experiment.

4. A Simulation study

In this section, we compare the small sample performances of several
designs under the following dose-response curves:

A. (f(d1), . . . , f(d6)) = (0.1, 0.13, 0.15, 0.17, 0.25, 0.3);

B. (f(d1), . . . , f(d6)) = (0.07, 0.11, 0.23, 0.43, 0.84, 0.98).

7



Scenario B is taken from Table 4 of O‘Quigley et al. [17]. Scenario A rep-
resents a dose-response curve with a much smaller slope. For scenario A,
we considered two target probabilities: p∗ = 0.2 and p∗ = 0.22 (MTD=d3
and MTD=d4, respectively), and for scenario B, we considered p∗ = 0.2 and
p∗ = 0.3 (MTD=d3 in both cases). The two dose-response curves we con-
sider do not satisfy the working model for the CRM. However, scenario B
with m∗ = 0.2 satisfies the conditions given by Cheung and Chappell [4],
conjectured (and checked by simulations, but not proved) to be sufficient for
consistency of the CRM, and therefore one may expect the CRM to perform
well in this case.

We compare the randomized allocation design (RAD) (4) with three con-
sistent methods: the up and down design of Ivanova et al. [10] (IVA), the
design of Ivanova and Kim [11], with ∆ = 0.01 (IVA1) as recommended in
Ivanova et al. [8], the design of Mukerjee (MUK), and the widely used one-
parameter CRM design (Shen and O’Quigley [21]) with maximum likelihood
as the estimation approach and the constants suggested by O‘Quigley et al.
[17]. Three different versions of the RAD are studied according to different
choices of a (see Remark 2): a = (10− 2)/30, (10− 2)/50, and (10− 2)/100,
denoted RAD1, RAD2, and RAD3, respectively; these values correspond to
0.9 chance of assigning the estimated MTD for k = 30, 50, and 100.

All methods started with x1 = d1 and xn+1 = d(n+1)∧K until the first
toxicity response was observed, and continued according to the specific rules
described above. We conducted 10,000 replications from each scenario and
ran the experiment for a maximum of 500 individuals. For better comparison,
we coupled all designs in a manner that is akin to the notion of antithetic
variables in the following way: when individual n in replication r had the
outcome y = 1 in one design, then the same outcome was obtained in all
designs that assigned the same or a higher dose to individual n in replication
r. Similarly for the outcome y = 0.

The performances of the designs were measured according to the different
purposes of MTD studies, that is, the probability of finding the true MTD at
stage n and the proportion of subjects treated with the true MTD. For CRM,
the MTD was estimated according to the maximum likelihood approach; for
the other methods, (3) was used. The results for small sample sizes are given
in Tables A.1 and A.2; Figures A.1 and A.2 present the results for all sample
sizes.

Overall, the performances under scenario B are much better than under
scenario A. This is expected, as the response-curve of the latter is much
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flatter. Also of note is the small probability of correct estimation for n ≤ 50,
which are the typical sample sizes of MTD studies. This is a known problem
in such studies – the probability of selecting the true MTD is more often
than not smaller than 1/2.

When comparing the designs on the basis of the probability of finding the
true MTD, we found that IVA, IVA1 and MUK outperformed the others for
large n. The CRM preformed well only in scenario B with p∗ = 0.2 as sug-
gested by the consistency considerations mentioned above. The randomized
designs and especially RAD3 estimated the MTD relatively well for small n.
This is because the allocation probability is close to one half in these stages.
For small n, the performances of all designs except the CRM are comparable,
though, it seems that IVA, IVA1 and MUK are over all the best for the goal
of MTD estimation. IVA and IVA1 do not get “stuck” in one dose but rather
oscillate in some fashion around the MTD. In fact, these methods and MUK
have a similar property as in Theorem 2 I: for large enough n, only doses
near the MTD are assigned. Our simulation study shows that these three
methods preform in a similar way in estimating the MTD for large n and
they are generally better than the RAD’s. However, these methods treat at
non-MTD doses more often than the RAD’s for large n.

Looking at the proportion of subjects treated with the true MTD, we see
that the RADs perform the best for large n for all scenarios except scenario
B with p∗ = 0.2 in which CRM is better. Generally, RAD3, which has the
smallest a, is the best among the RADs, though, in scenario B with p∗ = 0.3,
RAD1 and RAD2 perform somewhat better. For small n, it seems that the
best design depends on the specific dose-response curve and on p∗.

The CRM performs very well in scenario B, but performs poorly un-
der scenario A. This demonstrates the potential benefit and risk of using
parametric models. No single method among the nonparametric approaches
outperforms the others. Further study is needed in order to understand the
operating characteristics of the different designs under different scenarios.

5. Conclusions

The asymptotic point of view of this paper suggests that the estimation
and treatment goals cannot be achieved simultaneously. This finding neces-
sitates a second thought about the way doses should be assigned in phase I
studies. In particular, this result may imply that one should try to learn the
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responses in the two closest doses to the desired level, rather than the closest
one.

The proposed randomized allocation design in which the MTD is assigned
to the n’th subject with increasing probability, treats subjects ‘almost’ in an
optimal way for large n. However, for small and moderate sample sizes, this
design does not estimate the MTD as well as some of the other designs, as
it aims mainly at the treatment part of the dilemma. This implies that,
even tough the MTD can be consistently estimated, a price is being paid in
the experimentation part, and it seems that further investigation on how to
balance estimation and treatment is needed.

Acknowledgment We thank an anonymous referee for very helpful com-
ments.

Appendix A. Proofs

Proof of Theorem 1. We will exhibit two response probabilities f and f ′

such that if (2) holds for {xn}∞n=1 under f then it does not hold under f ′.
Let f satisfy f(dj∗) < p∗, and set, for example, j∗ = 2 . Then it is easy to
construct f ′ that differs from f only at one value in D, say d3, and such that
d3 is the MTD associated with f ′. Consider two probability measures, P and
P ′, generated by f and f ′, defined on the measurable space (Ω,F), where Ω
is the sample space of the experiment and F is the sigma-field generated by
the union of all Fn.

Let An = {xk = d2, k ≥ n} be the event that from the n’th subject on we
always choose d2. If (2) holds for {xn}∞n=1 under f , that is, under P , there
is an index n0 such that P (An0

) > 0. Consequently, there exists a vector
(x0

1, y
0
1, . . . , x

0
n0−1, y

0
n0−1) such that

Ã := {ω ∈ Ω : (x1, y1, . . . , xn0−1, yn0−1)(ω) = (x0
1, y

0
1, . . . , x

0
n0−1, y

0
n0−1)} ∩An0

satisfies P (Ã) > 0. We also have P ′(Ã) > 0, since the above n0−1 outcomes
that lead to An0

have positive probability also under P ′ by finiteness, and
conditioned on them, the probability of having xk = d2 for all k ≥ n0 is the
same under both P and P ′ by the relation between f and f ′. Therefore,
P ′(An0

) ≥ P ′(Ã) > 0 so that on a set of P ′ positive measure, An0
, we sample

d2 from n0 on, while the MTD under f ′ is d3.
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We define the randomized xn+1 explicitly by

if p∗ ≤
f̂n(dj) + f̂n(dj+1)

2
then xn+1 = djI(Un+1 ≤

k − 1

k
) + dj+1I(Un+1 >

k − 1

k
);

if p∗ >
f̂n(dj) + f̂n(dj+1)

2
then xn+1 = djI(Un+1 ≤

1

k
) + dj+1I(Un+1 >

1

k
),

where {Ui}∞i=1 are i.i.d Uniform[0, 1] random variables independent of the y’s,
j is such that I{Bn(dj)} = 1, and k =

∑n

i=1 I{Bi(dj)}.
For the proof of Theorem 2, we first need some lemmas.

Lemma 1. For almost all ω in the sample space, if Bn(dj) occurs infinitely
often for some j ∈ {1, ..., K − 1} then both xn = dj and xn = dj + 1 occur
infinitely often.

Proof. Let {nk}
∞
k=1 be the (random) subsequence in which I{Bn(dj)} = 1.

The design implies {xnk+1 = dj} ⊇ {Unk+1 < 1
k
}, and {Unk+1}∞k=1 are inde-

pendent and identically distributed. (since nk = min{n : I{Bn(dj)} = 1, n >
nk−1} is a stopping time for all k; see Lemma 2 below). As,

∑

k P (Unk+1 <
1
k
) =

∑

k
1
k
= ∞, the second Borel-Cantelli lemma shows that {Unk+1 <

1
k
},

and hence {xnk+1 = dj} occur infinitely often. Similar arguments show that
{xn = dj+1} occur infinitely often.

Lemma 2. Let {Un}∞n=1 be a sequence of independent and identically dis-
tributed random variables with distribution F , and let {τn}∞n=1 be an increas-
ing sequence of finite stopping times with respect to Gn ⊇ σ(U1, . . . , Un).
Assume that Un+k|Gn ∼ F for all k ≥ 1 and n. Then {Uτn+1}∞n=1 is also
a sequence of independent and identically distributed random variables with
distribution F .

Lemma 2 is quite standard, we include a proof for completeness.
Proof. For any subset of indices n1 < n2 < . . . < nl and any measurable
sets A1, . . . , Al,

P (
⋂

1≤k≤l

{Uτnk
+1 ∈ Ak}) = E{

∏

1≤k≤l

I(Uτnk
+1 ∈ Ak)} = E[E{

∏

1≤k≤l

I(Uτnk
+1 ∈ Ak)|Gτnl

}]

= E[
∏

1≤k≤l−1

I(Uτnk
+1 ∈ Ak)E{I(Uτnl

+1 ∈ Al)|Gτnl
}]

= E{
∏

1≤k≤l−1

I(Uτnk
+1 ∈ Ak)}P (U1 ∈ Al) = . . . =

∏

1≤k≤l

P (U1 ∈ Ak);
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hence the random variables {Uτn+1}∞n=1 are independent and identically dis-
tributed.

Lemma 3. The RAD design (4) satisfies

I. ȳn(dj) → f(dj) almost surely on {Nn(dj) → ∞}, j = 1, . . . , K, where
ȳn(dj) := ȳn(dj, dj) and Nn(dj) := Nn(dj, dj).

II. f̂n(dj) → f(dj) almost surely on {Nn(dj) → ∞}, j = 1, . . . , K.

Proof. I.
∑n

i=1 I(xi = dj)(yi − f(dj)) is a square integrable martingale with
respect to the filtration Fn, with quadratic variation

n
∑

i=1

[I(xi = dj)]
2 · f(dj) · [1− f(dj)] = f(dj) · [1− f(dj)]Nn(dj),

since Nn(dj) =
∑n

i=1 I(xi = dj). Therefore, by the strong law of large
numbers for square integrable martingales, (Shiryaev [22] p. 519, Theorem
4)

1

Nn(dj)

n
∑

i=1

I(xi = dj){yi − f(dj)} → 0 a.s. on {Nn(dj) → ∞}.

Since ȳn(dj) = f(dj) +
1

Nn(dj)

∑n

i=1 I(xi = dj){yi − f(dj)}, the first part of

the lemma follows.
II. We first consider the case j ∈ {2, . . . , K − 1}. The RAD design (4)
satisfies, due to Lemma 1, that if Nn(dj) → ∞ then either Nn(dj+1) → ∞
or Nn(dj−1) → ∞ (or both); without loss of generality, we assume that
Nn(dj+1) → ∞, and we condition on the event {Nn(dj) → ∞}∩{Nn(dj+1) →
∞}.

We first show that for any r ≤ j and s > j and almost all ω ∈ Ω (where
the measurable space is (Ω,F) defined in the proof of Theorem 1) there exists
N(ω) such that

ȳn(dr, ds) > ȳn(dr, dj) (A.1)

holds for all n ≥ N(ω), when the random variables above are evaluated at
ω. To see that, write

ȳn(dr, dj) =

j
∑

k=r

Nn(dk)

Nn(dr, dj)
ȳn(dk),
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and recall that Nn(dr, dj) ≥ Nn(dj) → ∞. If limn Nn(dk) < ∞ then the
corresponding term in the sum above has zero limit; if limnNn(dk) = ∞ then,
by part I of the lemma, limn ȳn(dk) = f(dk) almost surely, and in particular,
limn ȳn(dj) = f(dj) almost surely. Thus, lim supn ȳn(dr, dj) ≤ f(dj) almost
surely. A similar argument shows that lim infn ȳn(dj+1, ds) ≥ f(dj+1) almost
surely, and therefore, for large enough n, with probability 1, ȳn(dj+1, ds) >
ȳn(dr, dj). The inequality (A.1) follows, as

ȳn(dr, ds) =
Nn(dr, dj)

Nn(dr, ds)
ȳn(dr, dj) +

Nn(dj+1, ds)

Nn(dr, ds)
ȳn(dj+1, ds) >

Nn(dr, dj)

Nn(dr, ds)
ȳn(dr, dj) +

Nn(dj+1, ds)

Nn(dr, ds)
ȳn(dr, dj) = ȳn(dr, dj).

In view of (A.1) and the definition of f̂n(dj) = maxr≤j mins≥j ȳn(dr, ds), we

have for large enough n, f̂n(dj) = maxr≤j ȳn(dr, dj) with probability 1. Now,
since lim supn ȳn(dr, dj) ≤ f(dj) almost surely for r < j, and limn ȳn(dj, dj) =
f(dj) almost surely, the second part of the lemma follows for j ∈ {2, . . . , K−
1}.

If j = 1 (the case j = K is similar), then if Nn(dk) → ∞ for some k ≥ 2
the proof is the same (however, Theorem 2 shows that for k > 2 this is
impossible). If d1 is the only dose that is assigned infinitely often then for
every j

ȳn(d1, dj) =

j
∑

k=1

Nn(dk)

Nn(dr, dj)
ȳn(dk) → f(d1) a.s.

because for k = 1 the limit of the k’th term above is f(d1), and for k > 1,
this limit is zero. Since f̂n(d1) = minj≥1 ȳn(d1, dj) the lemma follows.

Proof of Theorem 2. I. Denote by Bn(dK) the event that f̂n(dK) < p∗.
We show by contradiction that the only j satisfying that {Bn(dj)} occurs

infinitely often is j = j′. The event that f̂n(d1) > p∗ is treated similarly.
Assume that j satisfies j > j′ and {Bn(dj)} occurs infinitely often. By

Lemmas 1 and 3, there exists N such that f̂n(dj) > p∗ for all n ≥ N , with
probability 1. Then, I{Bn(dj)} = 0 for n ≥ N in contradiction to {Bn(dj)}
occurring infinitely often. A similar argument shows that {Bn(dj)} does not
occur infinitely often for j < j′; hence, for large enough n, with probability
1, I{Bn(dj′)} = 1.
II. The first part of the theorem ensures that the design will concentrate
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eventually on the two closest doses to f−1(p∗) and both of these doses will be
chosen infinitely often due to Lemma 1. By Lemma 3, f̂n(dj′) and f̂n(dj′+1)
are strongly consistent. This implies that for large enough n, with probability

1, M̂TDn = dj∗.
III. The MTD, dj∗, is either dj′ or dj′+1. Assume that dj∗ = dj′ (the argument
is symmetric). For any n ≥ k0 ≥ 1, define the set

An,k0 = Bn(dj′) ∩ {M̂TDn = dj′} ∩ {k(n, j′) ≥ k0}.

where k(n, j) is defined after (4). For any fixed k0 and large enough n (so
that An,k0 is not null),

P (xn+1 = dj′) ≥ P (xn+1 = dj′|An,k0)P (An,k0) ≥
k0 − 1

k0
P (An,k0),

since P (xn+1 = dj′) = P (Un+1 ≤ k−1
k
) ≥ P (Un+1 ≤ k0−1

k0
) on An,k0. For any

fixed k0, P (An,k0) → 1 by Parts I and II, so that lim infn P (xn = dj′) ≥
k0−1
k0

.
As this is true for all k0, the claim follows.
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(a) Scenario A (p∗ = 0.2)
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(b) Scenario A (p∗ = 0.22)
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(c) Scenario B (p∗ = 0.2)
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(d) Scenario B (p∗ = 0.3)

Figure A.1: The percent of finding the true MTD at stage n for n = 20 . . . 500 based on
10,000 replications. The following designs were compared: RAD1 (red), RAD2 (pink),
RAD3 (purple), MUK (blue), IVA (green), IVA1 (brown) and CRM (yellow).
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Table A.1: The percent of correct estimation (standard errors) at stage n for n =
20, 30, 40, 50 based on 10,000 replications; the best designs are shown in bold. The simu-
lation standard error is about 0.5 for all designs and all sample sizes.

% of correct estimation

Scenario Design n=20 n=30 n =40 n=50

A(p∗ = 0.2)

RAD1 25.6 28.3 30.1 32.2
RAD2 25.4 28.6 31.1 33.1
RAD3 25.9 29.3 31.4 33.4
MUK 25.6 30.1 31.5 34.1

IVA 24.2 27.8 30.2 33.2
IVA1 26.0 28.8 30.4 32.6
CRM 20.5 22.8 25.6 26.9

A(p∗ = 0.22)

RAD1 24.3 26.3 27.8 29.6
RAD2 24.6 27.5 29.1 30.7
RAD3 25.4 28.8 30.0 31.7
MUK 23.8 26.6 30.1 32.5
IVA 21.4 24.4 27.1 30.1
IVA1 21.6 26.1 29.5 32.7

CRM 22.9 24.1 25.4 26.3

B(p∗ = 0.2)

RAD1 44.8 49.2 52.2 53.6
RAD2 45.6 50.5 54.2 56.3
RAD3 46.3 52.6 55.8 58.8
MUK 45.9 53.9 58.6 62.0
IVA 46.3 51.9 56.9 60.8
IVA1 45.6 53.6 58.6 62.4

CRM 42.1 49.9 55.1 59.3

B(p∗ = 0.3)

RAD1 47.9 55.8 61.7 65.5
RAD2 48.7 56.3 62.0 66.1
RAD3 47.7 55.9 61.2 65.5
MUK 48.8 55.4 59.9 63.47
IVA 51.2 60.2 65.4 69.5

IVA1 49.7 58.6 62.5 66.2
CRM 50.6 58.3 63.0 65.2
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Table A.2: The proportion of subjects treated with the true MTD for n = 20, 30, 40, 50
based on 10,000 replications; The simulation standard error is about 0.002 for all designs
and all sample sizes.

Proportion of subjects treated with the true MTD

Scenario Design n=20 n=30 n =40 n=50

A(p∗ = 0.2)

RAD1 0.190 0.212 0.229 0.244
RAD2 0.187 0.209 0.227 0.243
RAD3 0.187 0.207 0.225 0.240
MUK 0.198 0.214 0.227 0.239
IVA 0.202 0.220 0.234 0.246
IVA1 0.218 0.231 0.239 0.248

CRM 0.173 0.188 0.202 0.214

A(p∗ = 0.22)

RAD1 0.192 0.217 0.233 0.245
RAD2 0.194 0.221 0.239 0.252
RAD3 0.202 0.230 0.249 0.263
MUK 0.207 0.235 0.254 0.269

IVA 0.157 0.183 0.203 0.218
IVA1 0.196 0.212 0.226 0.238
CRM 0.170 0.191 0.205 0.216

B(p∗ = 0.2)

RAD1 0.325 0.361 0.389 0.411
RAD2 0.324 0.361 0.389 0.413
RAD3 0.314 0.351 0.381 0.405
MUK 0.312 0.339 0.360 0.375
IVA 0.333 0.367 0.391 0.409
IVA1 0.340 0.362 0.380 0.3927
CRM 0.310 0.360 0.402 0.437

B(p∗ = 0.3)

RAD1 0.335 0.382 0.422 0.456
RAD2 0.330 0.376 0.414 0.446
RAD3 0.318 0.359 0.393 0.423
MUK 0.312 0.337 0.356 0.371
IVA 0.362 0.403 0.433 0.456
IVA1 0.348 0.366 0.382 0.394
CRM 0.372 0.434 0.478 0.512
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(a) Scenario A (p∗ = 0.2)
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(b) Scenario A (p∗ = 0.22)
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(c) Scenario B (p∗ = 0.2)
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(d) Scenario B (p∗ = 0.3)

Figure A.2: The proportion of subjects treated with the true MTD for n = 20 . . .500
based on 10,000 replications. The following designs were compared: RAD1 (red), RAD2
(pink), RAD3 (purple), MUK (blue), IVA (green), IVA1 (brown) and CRM (yellow).
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