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Abstract

The theoretical literature on quantile and distribution function estimation in in-
finite populations is very rich, and invariance plays an important role in these
studies. This is not the case for the commonly occurring problem of estimation of
quantiles in finite populations. The latter is more complicated and interesting be-
cause an optimal strategy consists not only of an estimator, but also of a sampling
design, and the estimator may depend on the design and on the labels of sampled
individuals, whereas in iid sampling, design issues and labels do not exist.

We study estimation of finite population quantiles, with emphasis on estima-
tors that are invariant under the group of monotone transformations of the data,
and suitable invariant loss functions. Invariance under the finite group of permu-
tation of the sample is also considered. We discuss nonrandomized and random-
ized estimators, best invariant and minimax estimators, and sampling strategies
relative to different classes. Invariant loss functions and estimators in finite pop-
ulation sampling have a nonparametric flavor, and various natural combinatorial
questions and tools arise as a result.
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1. Introduction

In this paper we study invariant estimation of quantiles of a finite population.
Much of statistics, such as official statistics, concerns finite population sampling,
with emphasis on estimation of totals and quantiles. However, most of the work
in the past three decades or so on optimality properties of quantile estimators, in-
cluding the study of invariance, has concentrated on iid sampling, that is, sampling
from infinite populations.

In finite population sampling, the statistician chooses a strategy which consists
of a sampling design, and an estimator, and the data consist of the labels of the
sampled units, and their corresponding measured values; this clearly differs from
infinite population sampling, where there is no sampling design to consider, and
no labels.

When estimating quantiles of a finite population, it is natural to deal with
estimators that are invariant under monotone transformations of the measured val-
ues, since under such transformations the population unit which represents the
estimated quantile remains unchanged. It is also natural to consider the possi-
bility of invariance under permutations of the labels. In this paper we deal with
best-invariant and minimax strategies, that is, sampling designs and estimators in
connection with two groups: the infinite (and non-compact) group of monotone
transformations, and the finite group of permutations. Another special aspect of
the present work is that we consider a class of invariant loss functions that essen-
tially measure the deviation of the estimate from the estimated quantile in terms
of the number of population units that separate them; see (2). These loss func-
tions have a combinatorial flavor, and so do some of our proofs, including that of
Theorem 4.2 which is given in Malinovsky and Rinott (2009), and a simple use of
Ramsey theory in Theorem 5.3.

Some relevant references: invariance under monotone transformation when
estimating a whole distribution function with various loss functions appears, for
example, in Agarwal (1955), Ferguson (1967), Brown (1988), Yu and Chow (1991),
Yu and Phadia (1992), Stȩpień-Baran (2010), Cohen and Kuo (1985), and Lehmann
and Casella (1998), where the only last two reference consider finite population
models. Invariant quantile estimation in infinite populations appears in Ferguson
(1967), Brown (1988) (median), and Zieliński (1999).

Invariance in finite populations appears already in Blackwell and Girshick
(1954), where only finite groups (permutations) are considered, and in many
later references, such as Godambe (1968), Basu (1971), Godambe and Thomp-
son (1971), Cassel et al. (1977), where invariance under linear transformations
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also appears. For a Bayesian approach to finite population quantiles estimation
including admissibility results, but under a loss function different from ours, see
Nelson and Meeden (2006) and references therein, and for asymptotic results see,
for example, Chatterjee (2010). Results on optimality of strategies in finite popu-
lation sampling, with numerous references, can be found, for example, in Cassel
et al. (1977), and for a recent survey see Rinott (2009). The present paper com-
bines ideas related to invariant estimation of distribution functions based on iid
samples, as in Ferguson (1967) and other of the above mentioned papers, with
ideas from finite population sampling that can be found in Rinott (2009) and ref-
erences therein, to obtain minimax and related optimality results for estimation of
finite population quantiles.

In Section 2 we provide all definitions and notations. In Section 3 we show
that for our purposes randomized and behavioral estimators are equivalent. Thus
we can choose either formulation of randomization according to our convenience.
In Section 4 we describe the form of invariant estimators and some of their prop-
erties. We study best invariant-symmetric estimators under simple random sam-
pling, and determine them explicitly in certain interesting cases. Sample quantiles,
that is, quantiles of the empirical distribution function, provide a standard way of
estimating the corresponding population quantiles. However, the estimators we
propose and study in Section 4 are not always identical to the sample quantiles;
also, they may depend on the loss function under consideration. Furthermore,
they may not be unique. In Section 5 we bring minimax results for general sam-
pling designs. In Theorem 5.2 we show that the quantile estimators we propose,
together with simple random sampling, form a minimax strategy in the class of
strategies consisting of any sampling design, and an invariant estimator. Theorems
5.3 and 5.4 provide minimax results relative to non-invariant estimators. Minimax
estimators are obtained by a symmetrization procedure, see (14), leading naturally
to randomized estimators. Thus, randomized estimators play a part in the proofs.
Such estimators appear also when unbiasedness is desired. Unbiased estimators
are defined and studied in Malinovsky (2009).

2. Definitions and notations

Most of the definitions and notations, with references, appear in Ferguson
(1967), or Rinott (2009). We consider a size N finite population of values of
some measurement. Let x = (x1, x2, ..., xN) be the N-dimensional vector of
population values, where xj is a real number associated with the unit labeled
j ∈ N := {1, ..., N}, the label set. We assume that x ∈ Υ, a known param-
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eter space. For simplicity we shall consider only parameter spaces of the type
Υ = {(x1, x2, ..., xN) : xi ∈ R, xi distinct}, where R denotes the real line. Note
that Υ is symmetric in the sense that if x ∈ Υ then so is any permutation of the
coordinates of x. The assumption that the coordinates of x are distinct is not es-
sential, but making it helps avoid various technicalities, and the same is true with
regard to the assumption xi ∈ R, and we could assume that xi ∈ Λ where Λ is
some open interval, finite or infinite. We will comment on such possibilities only
briefly. The population distribution function Fx is defined by

Fx(t) =
1

N

N∑
j=1

I(−∞, t](xj) =
1

N

N∑
j=1

I[xj,∞)(t). (1)

Fx is an unknown parameter which is a function of the parameter x. Using the
assumption that the coordinates of x are distinct, we can also write

Fx(t) =
j

N
for x(j) ≤ t < x(j+1), j = 0, 1, ...N, (x(0) := −∞, x(N+1) := ∞),

where x(1) < x(2) < ... < x(N) are the order statistics of x. In particular
Fx(x(j)) = j

N
.

The k-th population quantile for a given x ∈ Υ is

qk = inf{θ ∈ R : Fx(θ) ≥ k/N}.

Our goal is to estimate quantiles, where for a given estimate a of qk, k = 1, ..., N ,
the loss function is of the form

L(a, x) = G(|Fx(a)− k

N
|), a ∈ R , (2)

for some a nonnegative increasing function G. Some of our results focus on spe-
cial cases of such G. Note that |Fx(a) − k

N
| vanishes if a = qk, and otherwise

it counts the deviation of a from the estimated quantile in terms of number of
ordered population units by which they differ.

A parameter θ = θ(x) is said to be symmetric if it remains constant under
permutations of the coordinates of x. Clearly the examples given above, Fx and
x(k) are symmetric parameters, and so is the population total θ(x) =

∑N
i=1 xi, and

most of the common parameters of interest. Also, if for some θ, Fx(θ) ≥ k/N
for some x, then the same holds for any permutation of x since Fx is symmetric.
Therefore the population quantiles are also symmetric. A loss function L(a, x) is
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said to be symmetric if it remains constant when x is replaced by any permutation
of its coordinates for any a. It is clear that the loss (2) is symmetric since Fx is
symmetric.

A sampling design P is a probability function on the space of all subsets S
of N. We assume noninformative sampling, that is, the probability P(S) does
not depend on the parameter x. Simple random sampling without replacement
of size n is denoted by Ps and satisfies Ps(S) = 1/

(
N
n

)
if |S| = n, and zero

otherwise, where |S| denotes the size of S.
The data consist of the set of pairs {(i, xi) : i ∈ S}, that is , the x-values in

the sample S and their corresponding labels. We set

D = D[S, x] = {(i, xi) : i ∈ S}. (3)

The notation D[S, x] as defined above is sometimes convenient, however, is does
not reflect the pairing (i, xi) : i ∈ S which is part of the data, and the fact that the
data depends on x only through xi’s such that i ∈ S. By sufficiency arguments,
Basu (1958) (also Cassel et al. (1977) and Rinott (2009)), the order in which the
sample was drawn (if defined and known) and repetitions of units, if the sampling
procedure allows it, provide no information. Since the relevant data consist only
of the set of drawn labels S and their x-values, we shall only consider designs
P on the space of unordered subsets of N with no repetitions. Furthermore, we
consider here only sampling designs having a fixed sample size, |S| = n, say;
that is, the sample consists of n distinct units. Set X = {xi : i ∈ S} and let
Y = (Y1, ..., Yn) = (X(1), ..., X(n)) denote the ordered values (order statistics) of
X. We have Y1 < ... < Yn. It is often convenient to use the notation xS = {xi :
i ∈ S} instead of X.

A (nonrandomized) estimator t is a real valued function t(D) of the data. The
space of such estimators is denoted by T. We will also use the notation t(S, x)
and t ({(i, xi) : i ∈ S}) for t(D). An estimator t = t(D) is said to be symmetric
if it depends only on the x-values in the sample, that is, xS , and not on their label
set S. Thus, if {xi : i ∈ S} = {x′i : i ∈ S ′} for some x, x′ ∈ Υ and samples
S, S ′, then t(D[S, x]) = t(D[S ′, x′]). The class of all symmetric estimators is
denoted by TS . It is trivial but important to note that without information on S,
the information in X = {xi : i ∈ S} is the same as in Y. Hence for symmetric
estimators we may write t(X) = t(Y), and also t(xS).

The best known example of a non symmetric estimator is the Horvitz-Thompson
estimator of the finite population total, tHT (D) :=

∑
i∈S xi/αi, where the obser-

vation having label i is inversely weighted by the inclusion probability of the i-th
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unit according to the sampling design P, αi = PP(i ∈ S). On the other hand the
simple sample mean, or the median and other sample quantiles, for example, are
all symmetric.

A pair (P, t) consisting of a sampling design and an estimator is called a strat-
egy. The risk of a strategy (P, t) for a given x ∈ Υ is the expected loss

R (P, t; x) = EPL (t(D), x) =
∑

S

L(t(D[S, x]), x)P(S). (4)

For the next definition we need to consider the class of nonrandomized estima-
tors T as a measure space. As in Ferguson (1967) we do not specify a sigma-field,
however, we assume that singletons, that is, sets consisting of a single nonrandom-
ized estimator, are in the sigma-field. A probability distribution δ on the space of
nonrandomized estimators T, is called a randomized estimator. The space of all
randomized estimators is denoted by T∗. We define

R (P, δ; x) = ER (P, T ; x) =
∑

S

∫

T

L(t, x)dδ(t)P(S), (5)

where T is a random variable taking values in T with distribution δ, and the inte-
gral dδ(t) is properly defined over the function space T. A randomized estimator
is said to be symmetric if δ is concentrated on the class TS of nonrandomized
symmetric estimators. The class of such estimators is denoted by T∗S .

A behavioral estimator is defined by δ = {δD} = {δS,xS
}, where for each

possible data D, δD is a distribution on R, with the interpretation that if D is ob-
served, then a value inR is chosen according to δD as an estimate of the parameter
in question. A behavioral estimator is said to be symmetric when the distributions
δD depend only on xS and not on the sampled labels. For behavioral estimators,
letting Z ∈ R be distributed according to δD we define

R (P, δ; x) = ER (P, Z; x) =
∑

S

∫

R
L(z, x)δS,xS

(dz)P(S). (6)

We remark that under the present setup, the classes of behavioral and randomized
rules are equivalent by Wald and Wolfowitz (1951). In Section 3 we show that this
equivalence holds also for invariant symmetric estimators, which are defined next.
Therefore when discussing randomized estimators we consider either formulation
and use the same notation as defined above for randomized estimators, T∗ and T∗S
also for the classes behavioral and symmetric behavioral estimators, and similarly
for other such classes.

6



Given a function ϕ : R → R, we extend its operation naturally to vectors
in the parameter space, by ϕ(x) = (ϕ(x1), ..., ϕ(xN)), to ordered samples by
ϕ(Y) = (ϕ(Y1), ..., ϕ(Yn)), and to data by ϕ(D) = {(i, ϕ(xi)) : i ∈ S} and
ϕ(xS) = {ϕ(xi)) : i ∈ S}. Let Φ denote the group of all strictly increasing
continuous functions from R onto R (bijections). In the case that we assume
xi ∈ Λ, an open interval, then we assume that Φ consists of similar extensions of
strictly increasing continuous functions from Λ onto Λ.

A nonrandomized estimator t ∈ T is said to be invariant if for all D and all
ϕ ∈ Φ, we have

t(ϕ(D)) = ϕ(t(D)). (7)

The class of nonrandomized invariant estimators is denoted by TI , and the sub-
class of nonrandomized, invariant and symmetric estimators is denoted by TIS.

A randomized estimator δ ∈ T∗ is said to be invariant if δ, as a probability
distribution over T, assigns all its mass to the subset TI of invariant nonrandom-
ized estimators. The class of invariant randomized estimators is denoted by T∗I .
A randomized estimator δ ∈ T∗ is said to be invariant-symmetric if δ, as a
probability distribution over T, assigns all its mass to the subset TIS of invari-
ant and symmetric nonrandomized estimators. The class of invariant-symmetric
randomized estimators is denoted by T∗IS.

A behavioral estimator is said to be invariant if ZD ∼ δD satisfies

Zϕ(D)
L
= ϕ(ZD)

for all D, where L
= denotes equality of distributions (laws).

An estimator δ is an equalizer with respect to a design P, if R(P, δ; x) = C
for some constant C, for all x ∈ Υ. Given a design P, an estimator δ1 is said to
be as good as an estimator δ2, if R(P, δ1; x) ≤ R(P, δ2; x) for all x ∈ Υ, and
better if in addition the latter inequality holds strictly for at least one x ∈ Υ.
They are equivalent if R(P, δ1; x) = R(P, δ2; x) for all x ∈ Υ. An estimator δ
is said to be admissible if there exists no estimator better than δ. An estimator
having a property C, that is as good as any other estimator having this property, is
called a best-C estimator. We shall consider C = the property of being invariant,
or invariant and symmetric, or invariant and symmetric and unbiased (the latter
case is discussed only in Malinovsky (2009)).
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3. Behavioral and randomized estimators

By a well known result of Wald and Wolfowitz (1951), see also Ferguson
(1967) and Kirschner (1976), behavioral and randomized estimators are equiva-
lent in our problem. It may happen in certain situations that the classes of be-
havioral and randomized rules are equivalent, whereas, the classes of invariant
behavioral and randomized rules are not equivalent. See, for example Ferguson
(1967) p. 153. However, in our case these classes are equivalent. The result is
close to that of Ferguson (1967) p. 197.

Proposition 3.1. For the group Φ defined above, the classes of symmetric invari-
ant behavioral and symmetric invariant randomized estimators are equivalent in
the sense that for every randomized symmetric invariant estimator there is an
equivalent behavioral symmetric invariant estimator and conversely.

Proof. The class of behavioral (invariant) estimators contains the class of ran-
domized (invariant) estimators. For details see Ferguson (1967). We show that in
our case the converse is also true, that is, given a symmetric invariant behavioral
estimator δ = {δD}, we construct an equivalent symmetric invariant randomized
estimator.

Consider a symmetric-invariant behavioral estimator. Since it is symmetric
we can write δxS

for δD. Let ZxS
∼ δxS

, and for simplicity of notation we now
write χ for the set xS . Choose χ0, a particular point in the sample space, and
a random variable Zχ0 ∼ δχ0 . For each χ in the sample space choose ϕχ ∈ Φ
such that ϕχ(χ0) = χ. Define Z̃χ = ϕχ(Zχ0). This constructs a randomized
estimator as follows: consider the nonrandomized function ta(χ) = ϕχ(a) for
each a ∈ R. Then Z̃χ is distributed as the randomized estimator ta(χ), with
a = Zχ0 ∼ δχ0 . Note that the invariance of the behavioral estimator Zχ implies
that Zχ

L
= ϕχ(Zχ0), and therefore marginal distribution of Z̃χ is the same as that

of Zχ, and therefore they are equivalent.
It remains to show that the constructed randomized estimator is invariant,

which means that the nonrandomized estimators ta(χ) are invariant, that is, ta(ϕ(χ)) =
ϕ(ta(χ)) with probability 1 with respect to a ∼ δχ0 . This follows from ϕ(ta(χ)) =

ϕ(ϕχ(Zχ0))
L
= Zϕ(ϕχ(χ0)) = Zϕ(χ) = Zϕϕ(χ)(χ0)

L
= ϕϕ(χ)(Zχ0) = ta(ϕ(χ)). In par-

ticular we have ϕ(ϕχ(Zχ0))
L
= ϕϕ(χ)(Zχ0). By Lemma 3.1 below this implies

the equality almost surely, and then by the above relations ϕ(ta(χ)) = ta(ϕ(χ))
almost surely, and the proof is complete.
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Lemma 3.1. If V is a random variable and g and h are strictly increasing con-
tinuous functions such that g(V )

L
= h(V ) then g(V )=h(V ) almost surely.

Proof. We can restrict g and h to the support of V , on which they must have the
same range. Their inverse functions are well defined on this range. Therefore, it
suffices to prove that if g(V )

L
= V then g(V ) = V with probability one. Let F

denote the distribution function of V , and denote g−1 by h. The assumed equality
in distribution is equivalent to F (h(v)) = F (v) for all v in the support of F .

If F is strictly increasing then the assumption becomes F (h(v)) = F (v) for
all v, which implies h(v) = v for all v. If F is not strictly increasing then almost
the same argument works for points of increase of F , whereas other points have
F probability zero. More specifically, if v is in the support of F then either F (v +
ε) > F (v) for any small ε, or F (v − ε) < F (v) for any small ε. In the first case,
for example, we cannot have F (h(v)) = F (v) for any h satisfying h(v) > v.
If h(v) < v, then for some ε we have h(v + ε) < v by continuity of h. Then
F (h(v + ε)) < F (v) < F (v + ε) contradicting the assumption that F (h(v)) =
F (v) for all v in the support of F .

4. Invariant estimators

4.1. General form of invariant and symmetric estimators
A close result to Proposition 4.1 below, in an infinite population (iid) set-

ting, appears in Uhlmann (1963), Ferguson (1967), p.153, Ex 4.2.3, and Zieliński
(1999). They show that invariant estimators are of the form YJ , with J indepen-
dent of the data. In finite population sampling, the data include the labels of the
observations, and independence of the data no longer holds. Further subtle issues
that arise in the presence of labels appear in Theorem 5.1 and the lemmas around
it. The next proposition is stated and proved for behavioral estimators, hence it
holds also for randomized estimators, including the first part where symmetry is
not assumed and therefore Proposition 3.1 does not apply.

Proposition 4.1. The behavioral invariant estimators are of the form t(D) =
YJ(D), where J(D) is a random variable taking values in {1, ..., n}, having dis-
tribution that depends on D. Moreover, the distribution of J(D) = J(D[S, x])
depends only on S and not on x.

Also, invariant-symmetric behavioral estimators are of the form t(D) = t(Y) =
YJ , where J is a random variable taking values in {1, ..., n}, having distribution
that is not a function of the data.
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Proof. The proof is an adaptation and simplification of exercise 3, p. 197 in Fer-
guson (1967) and Ferguson’s web site, where the case of iid sampling and non-
randomized estimators are considered.

A behavioral estimator is defined by a collection of random variables ZD ∼
δD, taking values in the decision space, which in our case is R (or an open interval
in R). Invariance means Zϕ(D)

L
= ϕ(ZD). In particular this holds for all strictly

increasing continuous functions ϕ, which leave X1, ..., Xn fixed. The set of such
functions ϕ is denoted by Φ

′ . For ϕ ∈ Φ
′ we have ZD = Zϕ(D)

L
= ϕ(ZD) and in

particular Support[ZD] = Support[ϕ(ZD)]. It follows that the support of ZD must
be contained in the set {Y1, . . . , Yn}; otherwise, it is easy to construct ϕ ∈ Φ

′

such that Support[ZD] 6= Support[ϕ(ZD)], a contradiction. Therefore, behavioral
invariant estimators are of the form YJ(D), where J(D) is a random variable taking
values in {1, ..., n}, whose distribution may depend on D.

Moreover, for D = {(i, xi) : i ∈ S} let y1 < . . . < yn be the ordered xi’s
and note that the above representation and invariance imply YJ(ϕ(D))

L
= ϕ(YJ(D)).

The left-hand side of the latter relation represent a random variable taking the
values ϕ(yj) with probability P (J(ϕ(D)) = j), whereas the right-hand side
variable takes the same values with probabilities P (J(D) = j), and it follows
that J(ϕ(D))

L
= J(D). Now, let D

′
= {(i, x′i) : i ∈ S}. For any vector

x = (x1, ..., xN) there exists ϕ ∈ Φ, such that {ϕ(x
′
i) : i ∈ S} = {xi : i ∈ S}.

Now the relation J(ϕ(D))
L
= J(D) implies that J(D) depends only on S.

The last part of the Proposition follows readily since by symmetry J(D) does
not depend on S either, and therefore it does not depend on D.

Corollary 4.1. There are only n nonrandomized symmetric invariant estimators,
of the form t(D) = Yj, j = 1, ..., n.

4.2. Best invariant-symmetric estimators under simple random sampling
In this subsection we consider only simple random sampling Ps and symmet-

ric estimators. In Section 5 we consider nonsymmetric estimators and general
sampling designs. For the estimators of Corollary 4.1 we have

Lemma 4.1. Under Ps and the loss (2) any estimator Yj is an equalizer.

Proof. It is easy to see that the distribution of NFx (Yj) under Ps is the same as
the distribution of the j-th order statistic in a simple random sample of size n from
{1, . . . , N}. Clearly, this distribution does not depend on the parameter x, and the
result follows.
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More explicitly, the distribution of Fx (Yj) under Ps for j = 1, . . . , n is
PPs

(
Fx (Yj) = m

N

)
=

(
m−1
j−1

)(
N−m
n−j

) /(
N
n

)
; m = j, . . . , N − n + j , see, e.g., Wilks

(1962), p.243, Arnold et al. (1992) p.54, David and Nagaraja (2003) p.23. It fol-
lows that the distribution of Fx (Yj) under Ps does not depend on the parameter
x ∈ Υ and under (2) the estimator Yj is therefore an equalizer.

Lemma 4.1 holds for Ps, but not in general, that is, for any sampling design.
For example, if n = 2, N = 3, k = 1, and t(D) = Y1, then a design that
chooses S = {1, 2} with probability = 1 has the risk (and loss) G(0) under (2) if
x1 < x2 < x3. However, if x3 < x2 < x1, the risk is G(|1

3
|).

Definition 4.1. Define

j∗ := j∗G,k = arg min
j

R(Ps, Yj; x) = arg min
j∈{1,...,n}

EPsG(
∣∣Fx(Yj)− k

N

∣∣). (8)

If the minimum is not unique, then one can view j∗G,k as the set where the minimum
obtains, or one of the minimizers.

Remark 4.1. Below we discuss the estimator Yj∗ . Theorem 4.3 gives an explicit
expression for j∗ for square error loss, that is, G(u) = u2. For example, when
N = 100, n = 10, and k = 79, one gets j∗ = 9. Note, however, that (j∗− 1)/n =
8/10 > k/N = 79/100, so that here Yj∗ = Y9 is clearly not the sample quantile
corresponding to the k-th population quantile; this sample quantile is at most
Y8. Thus our estimators are not always the “natural" sample quantiles, although
in general they are close. One can define such quantiles as any Yj̄ such that
k
N
− 1

n
< j̄

n
< k

N
+ 1

n
. The above example shows that j∗ does not always satisfy

the latter inequalities, although it does so very often.
In general, j∗, may depend on G. For example, when L(a, x) = |Fx(a)− k

N
|r,

that is, when G(u) = ur, j∗ depends on r. Consider N = 9, n = 7, k = 2;
direct calculations show that for r ≤ c we have j∗ = 2 whereas r > c implies
j∗ = 1, where c = log(17/3)/log(2) ≈ 2.5. This means that the above estimator
of the second population quantile, t = Yj∗ depends on the loss function. This is a
natural but somewhat undesirable state of affairs, since statisticians often do not
have a precise loss function in mind.

By Definition 4.1 and Proposition 4.1, we obtain

Corollary 4.2. Under Ps, Yj∗ is the best nonrandomized invariant-symmetric es-
timator, that is, it is best in the class of nonrandomized, symmetric and invariant
estimators.
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Theorem 4.1 below is a stronger result. In (9) below the expectation EPs is
with respect to simple random sampling, while the second expectation is with
respect to the randomness of t(D).

Theorem 4.1. Under Ps, the (nonrandomized) estimator Yj∗ is also the best
invariant-symmetric estimator in T∗IS, that is, the estimator minimizing

EPsEG(|Fx(t(D))− k

N
|) (9)

among randomized and behavioral invariant-symmetric estimators t(D).

Proof. According to Lemma 4.1 the estimator t(D) = Yj is an equalizer. From
Corollary 4.1 it follows that every nonrandomized symmetric invariant estimator
is of the form Yj for some j and the best invariant-symmetric among nonrandom-
ized estimators is Yj∗ , and therefore

EPsG(
∣∣Fx(Yj∗)− k

N

∣∣) ≤
n∑

j=1

αjEPsG(
∣∣Fx(Yj)− k

N

∣∣) ∀x, (10)

for any α1, ..., αn such that αi ≥ 0 ∀i = 1, ..., n and,
∑n

i=1 αi = 1. Any risk of
a randomized invariant-symmetric estimator can be represented by the right-hand
side of (10). Together with Proposition 4.1, it follows that the estimator Yj∗ is the
best among randomized invariant-symmetric estimators in T ∗

IS, and by Proposition
3.1 it is also best among behavioral invariant-symmetric estimators.

We next describe two important cases where j∗ is known, and by Theorem 4.1
the best randomized or behavioral invariant-symmetric estimator is given explic-
itly. First, for estimating the median when N and n are odd, that is, k = N+1

2
, we

have j∗ = n+1
2

for any (increasing) G; see Theorem 4.2 below. The other case is
when G = u2, given in Theorem 4.3.

The following theorem is a special case of a result in Malinovsky and Rinott
(2009). It seems obvious, but the proof requires more calculations than expected.
It has a simple combinatorial flavor since under simple random sampling the quan-
tities NFx(Yj) are distributed as the order statistics of a simple random sample of
size n from {1, . . . , N}. Below ≥st stands for “stochastically larger".

Theorem 4.2. Let Y1, . . . , Yn be the order statistics of a simple random sam-
ple without replacement from a finite population consisting of N distinct values,
where n and N are odd. Then∣∣∣∣Fx(Yj)− N + 1

2N

∣∣∣∣ ≥st

∣∣∣∣Fx(Yn+1
2

)− N + 1

2N

∣∣∣∣ for j = 1, . . . , n. (11)

12



It follows that in this case j∗ = n+1
2

.

Next we compute j∗ = j∗G,k explicitly for square error, that is, G(u) = u2, so
L(a, x) = |Fx(a)− k

N
|2. The proof is given at the end of this section.

Theorem 4.3. j∗ = arg minj∈{1,...,n} EPs(
∣∣Fx(Yj) − k

N

∣∣)2 is the nearest value in
{1, ..., n} to j∗∗ = n+2

N+2

(
k + 1

2

)− 1
2
.

Remark 4.2. It is easy to see that j∗ = b n+2
N+2

(
k + 1

2

)c, that is, the integer value
of A = n+2

N+2

(
k + 1

2

)
, except that if A < 1 then j∗ = 1, if A > n then j∗ = n, and

if A is integer, then j∗ is not unique, and may also be taken to be bAc − 1.
If N and n are odd and we estimate the median

(
k = N+1

2

)
, then, j∗ = j∗∗ =

n+1
2

(the sample median).
Examples where the estimator defined in Theorem 4.3 is not unique: if N =

7, n = 4, k = 4, then n+2
N+2

(
k + 1

2

) − 1
2

= 2.5. Hence the estimators for the 4/7
quantile (=median) are both Y2 or Y3, as well as any estimator which randomizes
between these two estimators. If N = 20, n = 6, k = 5, then n+2

N+2

(
k + 1

2

)− 1
2

=
1.5. Hence for the 4/20 quantile the estimators of Theorem 4.3 are Y1 or Y2.

If N and n are not very small, and if N is large relative to n, then j∗ will be
close nk/N and j∗/n will be close to k/N , so Yj∗ will be close to the “natural"
sample quantile Yj̄ corresponding to k-th population quantile qk (see Remark 4.1).
However, for some values of n,N , and k we have j∗/n ≥ k/N + 1/n, and then
clearly Yj∗ is not identical to Yj̄ . The discussion below and Figure 1 aim to indicate
the extent in which this phenomenon happens, and to show that it does not happen
just for small sample sizes, or extreme quantiles.

For any fixed k define c(N) = max{n/N : j∗/n ≥ k/N+1/n}. Specifically,
if k/N = 0.6 then c(N) increases with N from about 0.25 for small N to 0.285
for large N , with some fluctuations due to the discrete nature of the problem.
Figure 1 shows c(N) as a function of N . For N = 100, k = 60 we have j∗/n ≥
k/N + 1/n for n = 5, 10, 15, 20, 25. Here the number of such n’s is 5 (5%) and
the largest such n satisfies n/N = 0.25 = c(100). For N = 1000, k = 600, the
number of such n’s is 55 (5.5%), and for the largest we have n/N = 0.28 =
c(1000). For N=1,000,000, k=600,000, the number of such n’s is 57,142 (5.7%)
and c(1, 000, 000) = 285710/1000000.

Corollary 4.3. The estimator given in Theorem 4.3 is unique if either n is odd or
both N and n/2 are even.

The proof is given at the end of this section.
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Figure 1: For k/N = 0.6, 0.7 and 0.9, the curves show the maximal value of n/N for which
j∗/n ≥ k/N + 1/n holds as a function of N .

Remark 4.3. The uniqueness of Corollary 4.3 does not hold for absolute loss. For
example, when N = 7 and n = 3, the best invariant-symmetric estimator of the
quantile 5/7 under absolute loss is Y2 or Y3.

4.3. Proofs
The following lemma is used in the proof of Theorem 4.3. It can be found in

Wilks (1962), p. 244.

Lemma 4.2.

EPs (Fx(Yj)) =
j

N

N + 1

n + 1
, j = 1, ..., n

EPs

(
F 2

x (Yj)
)

=
j

N

N + 1

n + 1

(
(j + 1)(N + 2)

N(n + 2)
− 1

N

)
, j = 1, ..., n.

We remark that for estimating the median, for example, in the case of odd N
and n, we have “unbiasedness" in the sense that Theorem 4.2 implies j∗ = n+1

2
,

and by the first equality in Lemma 4.2, EPs (Fx(Yj∗)) = N+1
2N

. In general, such
unbiasedness may require randomized estimators.

Proof of Theorem 4.3. From

EPs

(
Fx(Yj)− k

N

)2

= EPs

(
F 2

x (Yj)
)− 2

k

N
EPs (Fx(Yj)) +

k2

N2

it follows that

arg min
1≤j≤n

{
EPs

(
Fx(Yj)− k

N

)2
}

= arg min
1≤j≤n

{
EPs

(
F 2

x (Yj)
)− 2

k

N
EPs (Fx(Yj))

}
.
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Using Lemma 4.2 we have:

EPs

(
F 2

x (Yj)
)− 2

k

N
EPs (Fx(Yj))

=
j

N

N + 1

n + 1

(
(j + 1)(N + 2)

N(n + 2)
− 1

N

)
− 2

k

N

j

N

N + 1

n + 1

=
(N + 1)(N + 2)

N2(n + 1)(n + 2)
j2 +

(
(N + 1)(N + 2)

N2(n + 1)(n + 2)
− N + 1

N2(n + 1)
(2k + 1)

)
j = f(j).

The last expression f(j) is a convex parabola as a function of the continuous vari-
able j whose minimum is attained at the point = n+2

N+2

(
k + 1

2

) − 1
2
. This point is

not necessarily an integer. Setting j∗ = arg minj∈{1,...,n} EPS

(
Fx(Yj)− k

N

)2 it is
clear by symmetry of the parabola f(j) around its minimum, that j∗ is the nearest
integer to the minimum point of f .

Proof of Corollary 4.3. In preceding proof, the function EPs

(
Fx(X(j))− k

N

)2 was
shown to be convex and symmetric with minimum at the point j∗∗ = n+2

N+2
2k+1

2
− 1

2
.

Hence, it is clear that if the number n+2
N+2

2k+1
2

is not an integer then the estimator
t∗ is unique. If n is odd, then the numerator of the above ratio is odd, while the

denominator is clearly even. If N and n
2

are even, then n+2
N+2

2k+1
2

=
(n

2
+1)(2k+1)

N+2
,

and again the numerator is odd while the denominator is even.

Clearly, there exist many other cases where n+2
N+2

2k+1
2

is not an integer not
covered above.

5. Minimax results for non symmetric or non invariant estimators

5.1. Symmetrization of estimators
In this section we study symmetrization of estimators and show that minimax

strategies consist of simple random sampling and symmetric estimators. Sym-
metrization as in (14) below appears in Blackwell and Girshick (1954), and Kiefer
(1957) with references to work of Hunt and Stein from the 1940s. The required
formulations explained next follow Stenger (1979) and Rinott (2009), where fur-
ther references can be found.

Let π be a permutation of N. For S ⊆ N we define πS = {πi : i ∈ S}. For
x ∈ Υ let πx be the parameter vector having coordinates

(πx)i = xπ−1i. (12)
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Thus, the group Π of permutations of {1, 2, ..., N} can also be seen as a group
operating on the (symmetric) parameter space Υ, where the group operation is
permutation of the coordinates.

Given an estimator t, let tπ(S, x) = t ({(πi, xi) : i ∈ S}). For a strategy (P, t)
with a fixed sample size and a nonrandomized estimator t, let t∗ be the randomized
estimator

t∗(D[S, x]) = tπ(S, x) with probability cP(πS) for π ∈ Π, (13)

and for a randomized behavioral estimator ZD ∼ δD let t∗ be the randomized
behavioral estimator

t∗(D[S, x]) = Z{(πi,xi):i∈S} with probability cP(πS) for π ∈ Π, (14)

where c =
1

n!(N − n)!
=

1

N !Ps(S)
is such that

∑
π∈Π cP(πS) = 1, and Z{(πi,xi):i∈S},

π ∈ Π, are taken to be independent. Set S = {s1, . . . , sn}. An equivalent formu-
lation is

t∗({(i, xi) : i ∈ S}) = Z({(`i,xsi ):i=1,...,n}) w. p. cP({`1, . . . , `n}), (15)

for all (`1, . . . , `n) having distinct coordinates in N.
Note that the probabilities P(πS)

N !Ps(S)
in (14) seem to depend on S, making t∗

appear like a non symmetric estimator. However, from (15) we see that t∗ is
symmetric and depends only on xS . Thus we have

Lemma 5.1. t∗ is a symmetric (randomized) estimator.

Lemma 5.2. If t is invariant, then t∗ is invariant.

Proof. By definition t∗(D[S, ϕ(x)]) = Z(πS,ϕ(x)) with probability cP(πS). Since

Z(πS,ϕ(x))
L
= ϕ(Z(πS,x)), invariance follows.

Example 5.1. Consider N = 3, n = 2, and the sampling design P (Si) = qi, i =
1, 2, 3, q1 + q2 + q3 = 1, where S1 = {1, 2}, S2 = {1, 3}, S3 = {2, 3}. Consider
the nonrandomized invariant nonsymmetric estimator

t =

{
Y1, if 1 ∈ S

Y2, if 1 /∈ S,
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where, as defined in Section 2, Yi are the sample order statistics. The corre-
sponding estimator t∗ of (14) is the symmetric (depending only on Y1, Y2 and
independent of S) randomized estimator

t∗ =

{
Y1, w.p. q1 + q2

Y2, w.p. q3 .

By Lemmas 5.1 and 5.2 and Proposition 4.1 we now know the form of t∗ as
follows:

Theorem 5.1. If t(D) is invariant, then the corresponding estimator t∗ of (14) is
a randomized estimator of the form t∗(D) = YJ , where J is a random variable
whose distribution is independent of the data D.

Example 5.2. Let N = 3, n = 2. Given a sample S of two elements, define
` = `(S) = min{i : i ∈ S}, and m = m(S) = max{i : i ∈ S}. Consider the
following nonrandomized invariant nonsymmetric estimator

t =

{
Y1, if x` < xm

Y2, if x` > xm .

Then for lπ := min{πi : i ∈ S} and mπ := max{πi : i ∈ S}

tπ =

{
Y1, if x`π < xmπ

Y2, if x`π > xmπ .

The corresponding estimator t∗ of (13) is the randomized symmetric estimator:

t∗ =

{
Y1, with probability 1

2

Y2, with probability 1
2

.

A version of the next proposition appears with references as Proposition 13 in
Rinott (2009). It is relevant in reducing considerations of minimax strategies to
Ps and symmetric estimators. The proof is given at the end of the section.

Proposition 5.1. Let L(t, x) be a symmetric loss function and as always let Υ be
a symmetric parameter space. Given a strategy (P, t) with fixed sample size n and
a behavioral (or randomized, or nonrandomized) estimator t, let t∗(D[S, x]) be
the estimator defined by (14). Then

sup
x∈Υ

R(P, t; x) ≥ sup
x∈Υ

R(Ps, t
∗; x). (16)
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5.2. Minimax invariant quantile estimation without symmetry
The main result of this section is the following minimax result.

Theorem 5.2. The strategy (Ps, Yj∗), with j∗ defined in (8) is minimax among all
strategies (P, t) consisting of a sampling design P having a fixed sample size n,
and any randomized or behavioral invariant estimator t(D), that is,

inf
(t∈T ∗I ,P)

sup
x∈Υ

EPEG(
∣∣Fx(t(D))− k

N

∣∣) = sup
x∈Υ

EPsG(
∣∣Fx(Yj∗)− k

N

∣∣), (17)

where EP stands for expectation with respect to the design P, and E on the left-
hand side is with respect to the randomness of t. Equivalently,

inf
(t∈T ∗I ,P)

sup
x∈Υ

R(P, t(D); x) = sup
x∈Υ

R(Ps, Yj∗; x). (18)

Proof. By the first part of Proposition 4.1, we can restrict attention to estimators
of the form YJ(D). Using Theorem 5.1 together with Proposition 5.1 we have

sup
x∈Υ

EPEG(|Fx(YJ(D))− k

N
|) ≥ sup

x∈Υ
EPS

EG(|Fx(t
∗(D))− k

N
|), (19)

where t∗(D) = YJ is the randomized estimator obtained from t(D) = YJ(D) by
(14), and the distribution of J is independent of the data D.

Because, YJ is a symmetric estimator we have from Theorem 4.1 for j∗ defined
in (8)

EPS
EG(|Fx(t

∗(D))− k

N
|) ≥ EPS

G(|Fx(Yj∗)− k

N
|). (20)

Combining (19) and (20), we end the proof.

The next corollary, which concerns the special case of estimation of the me-
dian, follows from Theorems 4.2 and 5.2.

Corollary 5.1. For odd N and n, the strategy
(
Ps, Yn+1

2

)
is minimax among all

strategies (P, t) consisting of a sampling design P having a fixed sample size n,
and a randomized or behavioral invariant estimator t, that is,

inf
(t∈T ∗I ,P)

sup
x∈Υ

EPEG(|Fx(t(D))− N + 1

2N
|) = sup

x∈Υ
EPsG(|Fx(Yn+1

2
)− N + 1

2N
|).
(21)
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5.3. Minimax results without invariance
In this section we prove two results that compare the minimax risk of our

estimators to classes of estimators that are not invariant. In Theorem 5.3 we focus
for simplicity on the sample median, and compare it to non-invariant estimators
whose distance from the median is bounded. In Theorem 5.4 we compare our
quantile estimators to linear estimators. For the next two theorems we assume for
simplicity that Υ = {(x1, x2, ..., xN) : xi ∈ R xi distinct}. The next theorem is
of interest because it reflects the combinatorial nature of our structure. Its proof is
given at the end of this section.

Theorem 5.3. Let N and n be odd. Consider any loss function of the form
L(a, x) = G(|Fx(a) − N+1

2N
|), where G is convex and increasing. Then the strat-

egy (Ps, t0 = Yn+1
2

) is minimax among strategies consisting of any design P and a
nonrandomized symmetric estimators t satisfying for some B (which may depend
on t),

|t(xS)− Yn+1
2
| < B for all S and all x ∈ Υ; (22)

that is, for any such t,

inf
P

sup
x

R(P, t(xS); x) ≥ R(Ps, t0(xS); x) ∀x ∈ Υ.

Note that sup with respect to x is not needed on the right-hand side above and
in Theorem 5.4 below, because t0 is an equalizer.

Condition (22) may seem artificial: it does not hold for the sample mean, for
example. However, since Yn+1

2
is the most natural estimator of the population

median, this condition is a reasonable restriction, suggesting that if an estimate is
too far from the sample median, it should be corrected (or trimmed).

The next result compares the maximum risk of linear estimators, including
the sample mean or trimmed or Winsorized means, which are not covered by
Theorem 5.3, with the best invariant estimator Yj∗ . It is easy to see that these
linear estimators are symmetric nonrandomized, and in general are not invariant.

Theorem 5.4. The strategy (Ps, t0 = Yj∗) for estimating the k-th population
quantile, with j∗ defined in (8), is minimax among all strategies (P, tw) consist-
ing of any design P and estimators tw that are convex combinations of the type
tw(Y) =

∑n
i=1 wiYi; that is, for any tw,

inf
P

sup
x

R(P, tw(xS); x) ≥ R(Ps, t0(xS); x) ∀x ∈ Υ.

The proof is given at the end of the section.
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5.4. Proofs
Proof of Proposition 5.1. Consider a behavioral estimator ZD ∼ δD, and observe
that in the present case (6) can be expressed as in the first equality below:

R (Ps, t
∗; x) =

∑
S

∑
π

P(πS)

N !Ps(S)
EL

(
Z{(πi,xi):i∈S}, x

)
Ps(S)

=
1

N !

∑
S

∑
π

P(πS)EL
(
Z{(πi,xi):i∈S}, x

)

(1)
=

1

N !

∑
π

∑
S

P(S)EL
(
Z{(i,xπ−1i):i∈S}, x

) (2)
=

1

N !

∑
π

∑
S

P(S)EL
(
Z{(i,xπ−1i):i∈S}, πx

)

(3)
=

1

N !

∑
π

∑
S

P(S)EL
(
Z{(i,(πx)i:i∈S}, πx

)
=

1

N !

∑
π

R (P, t; πx) ≤ sup
π

R (P, t; πx) ,

where the equality (1) follows by substituting S for πS, (2) by symmetry of L,
and (3) by (12). Taking sup over x ∈ Υ yields the result.

An admissible equalizer estimator is minimax. In fact a somewhat weaker
property suffices, and will be useful for the proof of Theorem 5.3.

Lemma 5.3. An equalizer estimator t0 is minimax relative to some class of esti-
mators if for any estimator t in the class, and any ε > 0 there exists x ∈ Υ such
that

R(Ps, t(xS); x) > R(Ps, t0(xS); x)− ε. (23)

Proof. If t0 is not minimax, then for some t, supx R(Ps, t(xS); x) < supx R(Ps, t0(xS); x).
Since t0 is an equalizer it follows that supx R(Ps, t(xS); x) < R(Ps, t0(xS); x)
and therefore for some ε > 0 supx R(Ps, t(xS); x) < R(Ps, t0(xS); x) − ε, con-
tradicting (23).

Proof of Theorem 5.3. Given a strategy (P, t) with a symmetric t, we can use
Proposition 5.1 to replace it by the strategy (Ps, t

∗), and the symmetry of t implies
t∗ = t. Therefore, it suffices to prove (23) for any nonrandomized symmetric t
satisfying (22), and we prove it with with ε = 0.

Let Γ be a set of points in R such that each pair of points in Γ is spaced by
more than B. Every set xS of n data points in Γ satisfies either (a) t(xS) < Yn+1

2
,

or (b) t(xS) ≥ Yn+1
2

, where as usual Yn+1
2

is the median of xS . By the infinite
Ramsey Theorem, see, e.g. Graham et al. (1990) page 19 Theorem A, there exists
an infinite subset ∆ of Γ such that either all its n-subsets xS satisfy (a) above,
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or all satisfy (b). In the latter case, we take N point in ∆ and form x, to obtain
R(Ps, t(xS); x) = R(Ps, t0; x) (here we use the B spacing).

It remains to consider the case that for the above x, all n-subsets xS satisfy
(a). Divide (partition) the set of

(
N
n

)
possible samples into two subsets, A1 and

A2, as follows: A1 = {S : Yn+1
2
≤ x(N+1)/2}, and A2 = {S : Yn+1

2
> x(N+1)/2}.

Assume that the components of x are arranged in increasing order. For each S =
{s1, . . . , sn} in A2, its reflection around (N + 1)/2, S ′ = {N + 1− s1, . . . , N +
1 − sn} is in A1, and |Fx(t0(xS)) − N+1

2N
| has the same value for S and S ′. For

any S ∈ A2 there corresponds one point in A1, it reflection. In fact |A2| < |A1|
since some point in A1 have reflection also in A1. Moreover, for S ∈ A2 we have,
due to condition (a), |Fx(t0(xS)) − N+1

2N
| = |Fx(t(xS)) − N+1

2N
| + 1/N , and for

S ∈ A1 we have |Fx(t0(xS)) − N+1
2N
| = |Fx(t(xS)) − N+1

2N
| − 1/N , where again

the B spacing was used. It follows that

R(Ps, t(xS); x)−R(Ps, t0(xS); x)

≥
∑
S∈A2

[
G(|Fx(t0(xS))− N + 1

2N
| − 1/N)−G(|Fx(t0(xS))− N + 1

2N
|)

+ G(|Fx(t0(xS′))− N + 1

2N
|+ 1/N)−G(|Fx(t0(xS′))− N + 1

2N
|)
]
Ps(S) ≥ 0,

(24)

where the first inequality holds because we have neglected some summands of the
type appearing in the last line of (24) that are all in A1 and are positive since G is
increasing. The second inequality follows by convexity of G.

Proof of Theorem 5.4. As in the proof of Theorem 5.3, we can replace P by Ps,
and by Lemma 5.3 it suffices to show that for some x ∈ Υ we have

R(Ps, tw(xS); x) ≥ R(Ps, t0(xS); x), (25)

and we show it for x constructed as follows. Let w = wk < 1 (the case wk = 1 is
trivial) be the first non zero among w1, . . . , wn, and set xi = f(i) := 1 − wi, i =
1, . . . , N , and x = (x1, . . . , xN).

We claim that for any S = {i1, . . . , in} we have for the above x, Yk = xik , and
xik ≤ tw(xS) < xik+1; this is equivalent to proving that for any 1 ≤ i1 < . . . <
in ≤ N we have f(ik) ≤

∑n
j=k wjf(ij) < f(ik+1). The left-hand side inequality

follows by monotonicity of f , and the right-hand side from
∑n

j=k wjf(ij) < 1−
wkw

ik = 1− wik+1 = f(ik + 1).
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The relation xik ≤ tw(xS) < xik+1 implies that for any sample of size n from
x, the estimator tw is equivalent to Yk, which is an invariant estimator, and by
Corollary 4.2 the risk of Yk is not smaller than that of the best invariant estimator
Yj∗ , and (25) follows.
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