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How many pure Nash equilibria can we expect to have in a finite game chosen
at random? Solutions to the above problem have been proposed in some special
cases. In this paper we assume independence among the profiles, but we allow either
positive or negative dependence among the players’ payoffs in a same profile. We
provide asymptotic results for the distribution of the number of Nash equilibria
when either the number of players or the number of strategies increases. We will
show that different dependence assumptions lead to different asymptotic results.
Journal of Economic Literature Classification Number C72. © 2000 Academic Press

1. INTRODUCTION

The idea of Nash equilibrium is one of the most powerful concepts in
game theory. Nash (1950; 1951) proved the existence of mixed strategy
equilibria for finite normal games. From a decision theoretic viewpoint the
concept of mixed strategy Nash equilibrium is less compelling than the con-
cept of pure strategy Nash equilibrium (PNE). It is therefore interesting to
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study how many PNE’s we can expect to have in a finite game, under dif-
ferent conditions. We will try to address this problem by considering finite
normal games with random payoffs, and by studying how the distribution of
the (random) number of PNE’s for these games varies under different as-
sumptions. Zero-sum games or common-payoff games constitute extreme
cases of negative or positive dependence among the players’ payoffs for
a given profile of strategies. Such games, with additional random factors
or some “noise” in the payoffs lead to intermediate forms of dependence
between these two extremes. The particular intermediate case of indepen-
dence has drawn most of the attention.

Several authors have dealt with the above problem under different as-
sumptions on the structure of the games and on the distribution of the
payoffs.

For a two-person zero-sum game, Goldman (1957) shows that if the pay-
offs for the first player are i.i.d. for different strategy profiles, coming from
any continuous distribution, then there can be at most one PNE with prob-
ability one, and the probability that there will be a PNE converges to zero
as the number of strategies converges to infinity.

For any number of players and strategies, if the payoffs of different play-
ers are assumed independent, the number of PNE’s has an expected value
of 1, and asymptotically as the number of players and/or strategies increase,
it has the Poisson distribution. Partial results in this direction can be found
in the pioneering work of Goldberg et al. (1968), who compute the proba-
bility that a finite two-person random game with independent payoffs has
at least one Nash equilibrium. Dresher (1970) generalizes this result to
n-person games. See also Papavassilopoulos (1995; 1996).

Powers (1990) follows the line of the above authors and investigates the
distribution of the number of PNE’s. She assumes that the payoffs of the
different players are independent and proves that, as the number of strate-
gies of two or more players approaches infinity, the number of PNE’s con-
verges in distribution to a Poisson (1).

Stanford (1995) obtains exact distributional results for the number of
PNE’s, for any fixed number of strategies. The asymptotic results by Powers
are then obtained as a by-product.

In a subsequent paper Stanford (1996) deals with the case of symmetric
bimatrix games and proves that, as the number of strategies increases, the
number of symmetric PNE’s converges in distribution to a Poisson (1), and
1
2 the number of asymmetric PNE’s converges to a Poisson ( 1

2 ).
An asymptotic result in the number of players can be deduced from

Example 1 in Arratia et al. (1989), which deals with an application of the
Chen–Stein method to a graph problem.

Other models lead to a large number of PNE’s. For instance Stanford
(1997) treats games with vector payoffs, namely, in his model the payoff of
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each player is a vector of fixed dimension. Under the assumption of random
i.i.d. payoffs Stanford proves that, as the number of strategies increases, the
expected number of PNE’s diverges to infinity, and the difference between
the variance and the expected value (of the number of PNE’s) converges
to zero. This allows to prove a Poisson approximation, which in turn gives
a normal limit theorem. The divergence of the expected number of PNE’s
is due to the fact that, since vector payoffs can only be partially ordered, it
is easier for a strategy profile to be a PNE.

Another way to get a large number of PNE’s is given by Stanford (1999),
who considers common-payoff two-person games, namely, games where the
payoffs corresponding to any profile of strategies are the same for the two
players. He computes the expected number of PNE’s and proves that it di-
verges as the number of strategies increases, and that for any k the number
of PNE’s exceeds k with probability that increases to 1.

Some of the results in Stanford (1999) are contained in Baldi et al. (1989)
(BRS), and in Baldi and Rinott (1989a; 1989b) who studied the distribution
of local maxima under random ranking of graph vertices. Example 1 of
BRS can be easily translated into game-theoretic language. BRS compute
the expected value and the variance of the number of PNE’s, and use a
version of Stein’s method to obtain asymptotic normality. For the case of
two players they also provide the exact distribution of the number of PNE’s.

The main goal of this paper is to study the expectation and asymptotic
distribution of the number of (pure strategy) Nash equilibria under various
assumptions about the relations between the players’ payoffs. In our model
the payoffs of the players corresponding to a given profile of strategies will
be correlated, the extreme cases being zero-sum games (maximal negative
correlation) and the common-payoff games (maximal positive correlation)
considered by BRS and Stanford (1999).

We focus on a particular dependence (correlation) model, the one of
the normal copula. For a recent reference, see e.g., Klaassen and Wellner
(1997) and further references therein.

We will study two different kinds of asymptotics, in the number of players,
and in the number of strategies.

Qualitatively, our findings can be summarized as follows. When the pay-
offs exhibit negative dependence, one should expect a small number of
PNE’s, and asymptotically this number converges to zero as the number of
strategies increases. For independent payoffs, the asymptotic distribution
is Poisson with expectation equal to 1, so that one should expect very few
PNE’s. On the other hand, for positively dependent payoffs the number of
PNE’s is large: its expectation diverges and its (standardized) distribution
is asymptotically normal as the number of strategies or players gets large.
This means that in “large” games with positively correlated payoffs, one
should indeed expect to see a large number of PNE’s very often.
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2. THE MODEL

We consider a strategic game �� �A1� � � � �Ap�u1� � � � � up�, where � =
�1� � � � � p� is the set of players, Ai is the set of actions for player i, ui� ×p

j=1
Aj → � is the payoff of player i. For simplicity we assume card
Ai� = s
for i ∈ � .

For a = 
a1� � � � � ap�, define Y

i�
a = ui
a1� � � � � ap�, and Ya = 
Y 
1�

a �

� � � � Y

p�
a �. Thus, Ya is the (random) vector whose p components are the

p players’ payoffs when player i chooses strategy ai� i ∈ � , resulting in the
profile a.

For different a’s the payoff profiles Ya are assumed to be i.i.d. random
vectors. The components of each random payoff profile will be assumed ex-
changeable, but not necessarily independent (The assumption of exchange-
ability is made only for simplicity, and is unnecessary. See Remark 2.2
below.)

Furthermore, we postulate that the random payoff profile Ya = 
Y 
1�
a �

� � � � Y

p�
a � is a standard multi-normal and

CovY 
i�
a � Y


j�
a � = ρ� i� j ∈ �� i �= j�

It is well known that, when ρ ≥ 0, this implies the following representa-
tion for the Y ’s

Y

i�
a = √

ρXa +
√

1− ρX

i�
a � i ∈ ��

where all the random variables X’s are i.i.d. standard normal.
We emphasize that we use the assumption of normality only to model

the dependence structure of the random payoffs, since any other distribu-
tion with continuous marginals and the same dependence structure would
give the same result. More precisely, any increasing transformation applied
to each of the Y


i�
a ’s marginally, has no effect on the number of PNE’s, and

thus our model is really a normal copula model with arbitrary equal con-
tinuous marginals. The normal copula is used since in it the dependence
can be parametrized in a simple way in terms of the correlation coefficient.
However, consider for example, p merchants whose payoffs are the sums
of profits from a large number of independent customers. Then a multi-
variate normal payoff distribution may be a natural approximation. Positive
correlations may arise if the merchants tend to cooperate with each other,
or if their profits depend primarily on the state of the market in which they
all operate. Negative correlations would arise if they mostly compete over
a more or less fixed number of customers in a fixed economic environment.

A profile a = 
a1� � � � � ap� is a PNE if for all i ∈ � , and for all bi ∈ Ai,

ui
a1� � � � � ai� � � � � ap� ≥ ui
a1� � � � � bi� � � � � ap��
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namely,

Y

i�
a ≥ Y


i�
a�bi

�

where a�bi = 
a1� � � � � ai−1� bi� ai+1� � � � � ap�. Define Va the indicator of the
event �a is a PNE�, Q = P
Va = 1�, and N be the number of PNE’s,
namely,

N =∑
a
Va�

Note that EN� = spQ.
The probability Q that a given strategy profile a is a PNE can be written

as follows:

Q = P
(
Y

i�
a ≥ W


i�
� � i ∈ �� � ∈ Ai \ �ai�

)
� (2.1)

where the random variables W ’s are i.i.d. standard normal. If the corre-
lation among the Y ’s is non-negative, a useful representation of (2.1) can
be obtained. If we denote by φ the standard normal density and by � its
distribution function, we have, for ρ ≥ 0,

Q = P
(√

ρXa +
√

1− ρX

i�
a ≥ W


i�
� � i ∈ �� � ∈ Ai \ �ai�

)
=
∫ [∫

�s−1(√ρx+
√

1− ρz
)
φ
z� dz

]p
φ
x�dx� (2.2)

where the expression is obtained by first conditioning on the X’s.
Several results in this article rely on the following well-known inequality,

whose proof can be found in the original paper by Slepian (1962) and, for
instance, in Tong (1980).

Theorem 2.1 (Slepian’s inequality). Let X be an n-dimensional multi-
normal random vector with mean � and covariance matrix � = 
σij�, and let
Y be an n-dimensional multinormal random vector with mean � and covari-
ance matrix � = 
γij�. If σii = γii for i = 1� � � � � n, and σij ≥ γij for all i �= j,
then

P

(
n⋂

i=1

�Xi > ai�
)
≥ P

(
n⋂

i=1

�Yi > ai�
)

and

P

(
n⋂

i=1

�Xi < ai�
)
≥ P

(
n⋂

i=1

�Yi < ai�
)
�
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Remark 2.2. It is not hard to express Q also as the probability that a
multivariate normal vector with a correlation matrix whose entries are ei-
ther 1/2 or ρ/2, exceeds zero in every coordinate. By Slepian’s inequality,
it follows that Q is increasing in ρ. Thus simple lower and upper bounds
on Q for 0 < ρ < 1 are obtained by considering the cases ρ = 0 and ρ = 1,
respectively, and the case of ρ = 0 also provides an upper bound to Q for
negatively correlated payoffs. Moreover, in the case that the components of
the payoff profile Ya are multivariate normal but not exchangeable, and the
smallest (largest) correlations between them has the value ρ, then Slepian’s
inequality easily shows that the value of Q computed with that ρ provides a
lower (upper) bound for Q. Thus our results can be easily modified for the
nonexchangeable case, when the correlations are all positive (or all nega-
tive).

It is not difficult to see that when ρ = 0, namely when the components
of the payoff profile are independent, then

Q =
∫ [∫

�s−1
z�φ
z� dz
]p

φ
x�dx =
(

1
s

)p

� (2.3)

If ρ = 1, i.e., the components of the profile are identical, then

Q =
∫ [∫

�s−1
x�φ
z� dz
]p

φ
x�dx

=
∫
�
s−1�p
x�φ
x�dx

= 1

s − 1�p+ 1

� (2.4)

We need the following

Definition 2.3. For positive functions g
d� and h
d�, we say that
g
d� � h
d� for large d (or as d →∞), if there exists a positive constant
c not depending on d, such that for all d > c,

1
c
h
d� ≤ g
d� ≤ ch
d��

We summarize some of our results in the following three propositions.
The first says that for independent payoffs EN� = 1 and the limit is Pois-
son, and the two others treat the case that ρ < 0 and N converges to zero,
and the case ρ > 0, EN� diverges to infinity, and the standardized N is
asymptotically normal.

Note that since both s� p ≥ 2, the existence (and value) of a limit when
“sp→∞” and when “either s →∞ or p→∞ or both” is equivalent.
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Proposition 2.4. If ρ = 0, then EN� = 1. Moreover, N is asymptotically
Poisson as sp→∞.

Proposition 2.5. (1) If ρ = −1/
p − 1�, namely if the correlation is
minimal, which happens in zero-sum games, then EN� ≤ sp2−p
s−1�.

Hence EN� → 0 as sp→∞ ( provided s > 2).
(2) For constant p and −1/
p− 1� < ρ < 0, EN� ≤ spRp�ρ
s�, where

Rp�ρ
s� � 
log s�β
ρ�p�s−p/1−�ρ�
p−1��� as s →∞�

and

β
ρ�p� = 
p− 1�
1− ρ�/21+ ρ
p− 1���
Thus EN� → 0 as s →∞.

In all these cases where EN� → 0, N → 0 in probability.

Proposition 2.6. (1) If 0 < ρ < 1, then Q < Tρ
sp�, where

Tρ
sp� � 
log
sp��
1−ρ�/2
1+ρ�
sp�−2/
1+ρ� as sp→∞�

(2) If ρ = 1, then EN� = sp/
s − 1�p+ 1� → ∞ as sp→∞. More-
over, N is asymptotically normal as sp→∞.

(3) If 0 < ρ < 1, then for s fixed,

EN� � 
logp�
1−ρ�/ρspp−
2−ρ�/ρ as p→∞�

Hence EN� → ∞ as p→∞.
(4) If 0 < ρ < 1, then for all s� p ≥ 2,

EN� ≥ 
1/6�
6e�−p
log s�α
ρ�p� · sps−p/1+ρ
p−1���

with α
ρ�p� = ρ
1 − p2� − 1�/21 + ρ
p − 1��. Hence (together with
part (3)) EN� → ∞ as sp→∞.

Also, for fixed p ≥ 2,

EN� ≤ Aρ�p
s� · sps−p/1+ρ
p−1���

where Aρ�p
s� � 
log s�β
ρ�p� as s → ∞, with β
ρ�p� defined in Proposi-
tion 2.5 (2). Moreover, N is asymptotically normal as either p → ∞ or as
s →∞, with some conditions on p (see Corollary 5.5) or as both s� p→∞.

Proposition 2.4 follows from (2.3) and the discussion of Section 3. Propo-
sition 2.5 is discussed in Section 4. The first part of Proposition 2.6 is proved
by Corollary 6.4 in Section 6. The second part is in Example 1 of BRS. The
result on EN� in the third follows from Lemmas 6.1; the fourth part fol-
lows from Lemmas 6.3 and 4.3, and the asymptotic normality is covered in
detail in Section 5.
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All the above results rely only on the assumption of a normal copula,
allowing arbitrary equal continuous marginals. In the cases of independent
(ρ = 0) and common payoffs (ρ = 1) all results on the distribution of
PNE’s such as (2.3) and (2.4) hold without any assumption of normality.
All that is needed is that the components of Ya are either independent from
a continuous distribution, or that all components are equal.

3. INDEPENDENT PAYOFFS AND POISSON LIMITS

In this section we deal with the case of independent payoffs, as consid-
ered by Goldberg et al. (1968), Dresher (1970), Powers (1990), Stanford
(1995), and show that asymptotic results both in the number of players
and in the number of strategies can be obtained by a simple application of
the Chen–Stein method, as indicated by Arratia et al. (1989) (AGG). Pow-
ers uses a similar tool to prove a Poisson approximation as s →∞, while
AGG’s Example 1 treats the case of s = 2 and p→∞, without using game
theoretic terminology.

Consider a game as described in Section 2 with independent payoffs for
different players. Again the assumption of normality is not needed. It is
possible to prove that the distribution of the number of PNE’s converges
in total variation to a standard Poisson.

Let A be an arbitrary index set, and for a ∈ A, let Va be a Bernoulli
random variable with pa �= P
Va = 1� = 1− P
Va = 0� > 0. Let

N = ∑
a∈A

Va and λ = EN� = ∑
a∈A

pa�

For each a ∈ A let Ba (the neighborhood of dependence of a) be a subset
of A such that a ∈ Ba. Define

β1 =
∑
a∈A

∑
b∈Ba

papb�

β2 =
∑
a∈A

∑
a �=b∈Ba

pab� where pab = EVaVb��

β3 =
∑
a∈A

sa�

where

sa = E
∣∣E[Va − pa � �Vb � b ∈ A \ Ba�

]∣∣�
Given two probability measures P� P ′ on a measurable space 
+�� � their

total variation distance dTV
P� P ′� is defined as follows

dTV
P� P ′� = 2 sup
A∈�

�P
A� − P ′
A���



282 rinott and scarsini

A sequence of probability measures �Pn� converges in total variation to
a measure P if limn→∞ dTV
Pn� P� = 0. Convergence in total variation is
quite strong and it implies weak convergence (convergence in distribution).

Given a random variable X, we denote its law by �
X�.
Theorem 3.1 [Arratia et al. (1989)]. Let Z be a Poisson random variable

with EZ� = EN� = λ. Then

dTV
�
N� −�
Z�� ≤ 2
β1 + β2 + β3��
In the case of a game with independent payoffs, A = ×p

i=1Ai is the set
of sp possible strategy profiles, Va is, as before, the indicator of the event
that the profile a is a PNE, pa = s−p, Ba is the set of all indices b such that
b differs from a in at most one coordinate. Therefore β2 = β3 = 0, and

β1 = sp
s − 1�p+ 1�s−2p = 
s − 1�p+ 1
sp

�

The above quantity converges to zero as either s or p diverge to infinity.
Hence Proposition 2.4 holds.

4. ZERO-SUM GAMES

Because of their importance in game theory, we discuss in this section
zero-sum games separately, and then games with negatively dependent pay-
offs.

Goldman (1957) deals with zero-sum games with only two players. As-
suming that payoffs for the first player are i.i.d. for different strategy pro-
files, coming from any continuous distribution, he shows that Q = 
s −
1�!�2/
2s − 1�!, and that P
N > 1� = 0, and hence the probability that
there will be a PNE is s!�2/
2s − 1�!, converging to zero as s →∞.

In a p-person zero-sum game, that is when the sum Y

1�
a + · · · + Y


p�
a is

constant, the correlation between the payoffs is minimal:

ρ = CovY 
i�
a � Y


j�
a � = − 1

p− 1
�

In our normal copula model, if we call �

p�
ρ the distribution of a p-

variate standard exchangeable multinormal with correlation coefficient ρ ∈
−1/
p− 1�� 1� , we have

Q = P
Y 
i�
a ≥ W


i�
� � i ∈ �� � ∈ Ai \ �ai��

=
∫
· · ·
∫ p∏

i=1

�s−1
zi� d�
p�
ρ 
z1� � � � � zp��
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With the notation z̄ = p−1∑p
i=1 zi, the fact that the normal distribu-

tion function is log-concave, i.e., log� is a concave function, implies∏p
i=1 �

s−1
zi� ≤ �p
s−1�
z̄�, and we obtain

Q ≤
∫
· · ·
∫
�p
s−1�
z̄� d�
p�

ρ 
z1� � � � � zp�� (4.1)

For the case that ρ = −1/
p − 1�, the zero-sum game, clearly z̄ = 0
with probability one relative to the measure d�


p�
ρ 
z1� � � � � zp� and since

�
0� = 1/2, we obtain

Lemma 4.1. For ρ = −1/
p − 1�, Q ≤ 2−p
s−1� and hence EN� ≤
sp2−p
s−1�.

Therefore, for s > 2,

lim
sp→∞EN� = 0� (4.2)

Since N is a non-negative random variable, (4.2) implies that N converges
to zero in probability as sp→∞.

Lemma 4.1 proves the first part of Proposition 2.5 concerning zero-sum
games. Note that for such games the first part shows that Q and EN� con-
verge to zero exponentially fast in the number of strategies s and the num-
ber of players p. The calculations below are valid for −1/
p− 1� < ρ < 1.
Lemma 4.3 taken for −1/
p − 1� < ρ < 0, proves the second part of
Proposition 2.5, which concerns games with negatively dependent payoffs.
It shows that negatively correlated payoffs have qualitatively similar re-
sults to those of zero-sum games: the number of PNE’s N converges to
zero as s → ∞. However, the convergence is much slower when the cor-
relations are not minimal, being polynomial rather than exponential. Even
small “noise” added to a zero-sum game may change N quantitatively by
slowing its convergence to zero.

Returning to (4.1) for any −1/
p− 1� < ρ < 1, a straightforward calcu-
lation shows that relative to the measure d�


p�
ρ 
z1� � � � � zp�, z̄ is a N
0� a2�

variable with a given in (4.3) below. Therefore,

Q ≤
∫
�p
s−1�
ax�φ
x�dx� where a =

√
1+ ρ
p− 1��/p� (4.3)

In order to evaluate Q we need the following lemma which is equivalent
to Proposition 1 in Rinott and Rotar (1999). The relation “∼” between two
quantities below indicates that their ratio converges to 1 as d →∞.

Lemma 4.2. For any fixed a > 0,

∫
�d
ax�φ
x�dx � 
log d�
1−a2�/2a2

(
1
d

)1/a2

as d →∞� (4.4)
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More precisely,

∫
�d
ax�φ
x�dx ∼ 1

a
-
1/a2�
2√π�
1−a2�/a2
log d�
1−a2�/2a2

(
1
d

)1/a2

as d →∞� (4.5)

Since a of (4.3) depends on p, we can apply Lemma 4.2 to (4.3) only as
s →∞. As p is fixed, we can simplify the asymptotic expression obtained
by relegating it into the constants.

Lemma 4.3. For constant p and −1/
p− 1� < ρ < 1,

Q ≤ Rp�ρ
s�� where Rp�ρ
s� � 
log s�β
ρ�p�s−p/1+ρ
p−1��

as s →∞�

with β
ρ�p� = 
p− 1�
1− ρ�/21+ ρ
p− 1��.
As mentioned above, Lemma 4.3 taken for negative ρ implies the second

part of Proposition 2.5.
The fact that the probability of finding at least one Nash equilibrium

converges to zero as s gets large, whenever payoffs are negatively corre-
lated, magnifies the importance of the Nash existence theorem in mixed
strategies.

5. POSITIVELY DEPENDENT PAYOFFS AND APPROXIMATE
NORMALITY OF N

In this section we consider the number of PNE’s for the case ρ > 0. In
this case, by Proposition 2.6, EN� → ∞ as sp→∞, and one may hope for
a normal approximation to the distribution of the standardized N , which
we now discuss.

Note again that in the case of ρ = 1, i.e., common payoffs, the assumption
of normality of the payoffs plays no role. This case is completely covered by
BRS Example 1, where it is shown that EN� = sp/
s− 1�p+ 1�, VarN� =
sp
p − 1�
s − 1�/2
s − 1�p + 1�2, and N is asymptotically normal when
either p → ∞ or s → ∞ (or both). Therefore we now focus on the case
0 < ρ < 1. It is unclear whether the method of BRS extends to the case
of ρ < 1, and therefore we will use another approach based on Stein’s
method, see, e.g., Stein (1986), which was used for the case of ρ = 1 in
Baldi and Rinott (1989a; 1989b). We make use of the following variant,
which appears with appropriate references in Dembo and Rinott (1996).
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Theorem 5.1. Let V1� � � � � Vn be random variables satisfying �Vi − E
Vi��
≤ B a.s., i = 1� � � � � n, E∑n

i=1 Vi� = λ, Var∑n
i=1 Vi� = σ2 > 0 and

n−1E∑n
i=1 �Vi − E
Vi��� = µ. Let Si ⊂ �1� � � � � n� be such that j ∈ Si if and

only if i ∈ Sj , and 
Vi� Vj� is independent of �Vk�k/∈Si∪Sj for i� j = 1� � � � � n.
Set D = max1≤i≤n�card
Si��. Then for all t,∣∣∣∣P

(∑n
i=1 Vi − λ

σ
≤ t

)
−�
t�

∣∣∣∣ ≤ 7
nµ

σ3 
DB�2� (5.1)

We can now prove the following

Theorem 5.2. If 0 < ρ < 1, then there exists a constant c depending only
on ρ, such that for all t,∣∣∣∣P

(
N − λ

σ
≤ t

)
−�
t�

∣∣∣∣ ≤ c
s4p4

sp/2Q1/2 �

where λ = EN� = spQ and σ2 = VarN�.
Proof. In order to apply Theorem 5.1 to

∑
a Va, we first look at the de-

pendence structure and determine the value of D. Note that, if Va = 1, then
Vb = 0 for any b differing from a at exactly one coordinate and hence Va
and Vb are negatively dependent. On the other hand, with some reflection,
it is not hard to see that if a and b differ by exactly two coordinates, then
Va and Vb are positively correlated, whereas if a and b differ by three coor-
dinates or more, then Va and Vb are independent (in order to prove the last
assertions one must invoke the independence of the Ya’s. This is explained
in more detail towards the end of the proof).

We can define Sa to be the set of strategy profile b which differ from a
by at most two coordinates. We then have D ≤ (

p
2

)
s2 ≤ p2s2. Note that in

the case at hand the number of summands is n = sp and clearly, we can
take B = 1 and µ ≤ 2Q.

We now turn to calculations concerning σ2 = VarN�. Expressing the
variance as a sum of all covariances, the discussion above implies that most
of the covariances vanish, and

σ2 = spQ
1−Q� − spp
s − 1�Q2 + sp
(
p

2

)

s − 1�2 Cov
Va� Vb�� (5.2)

where a and b are any two profiles which differ in exactly two coordinates.
The first term on the r.h.s. is the sum of the variances, the second corre-
sponds to the sum of covariances between Va and Vc with a and c differing
in exactly one coordinate (and hence EVaVc� = 0, since in this case at
most one of a or c can be a Nash point). The third term corresponds to
the sum of covariances between indicators of profiles which differ in ex-
actly two coordinates. In the normal model assumed throughout this paper,
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a straightforward calculation using Slepian’s inequality, shows that the lat-
ter covariances are positive. Indeed, consider the events Fa �= �Va = 1�
and Fc �= �Vc = 1�. They can be expressed as

Fa =
{
Y

i�
a − Y


i�
a�bi

> 0� ∀i ∈ �� ∀bi ∈ Ai

}
�

Fc =
{
Y

i�
c − Y


i�
c�di

> 0� ∀i ∈ �� ∀di ∈ Ai

}
�

It is easy to see that if the profiles a and c differ in three coordinates, the
variables appearing in Fa are independent of those in Fc and the events are
independent.

Suppose now that a and c agree on all coordinates, except say, the first
two. Then a�c2 = c�a1 and a�c1 = c�a2. Thus Y


2�
a�c2

appears in Fa while Y

1�
c�a1

appears in Fc, and there is another such pair. These two variables have a
correlation ρ and it is now easy to see that Slepian’s inequality implies that
P
Fa ∩ Fc� is increasing in ρ. If ρ = 0, then Fa and Fc are independent. It
follows that, in the case ρ > 0, Va and Vc are positively correlated.

By the first part of Proposition 2.6, we have p
s − 1�Q → 0 as sp→∞,
and it is easy to see that σ2 ≥ cspQ provided sp is large.

Thus, the r.h.s. bound in (5.1) can be bounded above by a constant times
spQp4s4/spQ�3/2, and the result follows.

Remark 5.3. By Eq. (5.2) we can obtain also a useful upper bound
for VarN�. In fact Cov
Va� Vb� ≤ Q, therefore VarN� ≤ Qspp2s2 =
EN�s2p2. It follows that√

VarN�/EN� ≤ sp/sp/2Q1/2��
The latter quantity is obviously smaller than the bound of Theorem 5.2.
Therefore whenever we can assert the convergence of N to normality by
showing that the bound of Theorem 5.2 coverges to zero (see below), it
follows that the standard deviation σ is of a smaller order than EN�.
Therefore, as EN� → ∞, in all cases for which we can prove normal
convergence of N in distribution, we are guaranteed that, with probability
converging to 1, N will be large. For instance we can obtain for all positive
ρ results similar to the ones that Stanford (1999) has for the particular case
of ρ = 1, namely, for any positive integer k, P
N > k� → 1.

Because our evaluations of Q as a function of p and s are done when one
is held constant and the other increases to infinity (see Proposition 2.6), our
results distinguish between asymptotics in p and in s, and we begin with the
limit in p. Applying the evaluation of Q from Lemma 6.1 to Theorem 5.2
we obtain

Corollary 5.4. With the same terminology used in Theorem 5.2, for all t∣∣∣∣P
(
N − λ

σ
≤ t

)
−�
t�

∣∣∣∣ ≤ K
p��
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where

K
p� � 
logp�−
1−ρ�/2ρ p
3�5+1/ρ

sp/2 as p→∞�

It follows that 
N − λ�/σ → N
0� 1� in distribution as p → ∞ for any
fixed s.

The next result shows asymptotic normality when both s and p→∞, and
also when only s →∞ and p is fixed. For the latter limit in s, the present
results require a restriction on p. This problem (for the case ρ = 1) arose
also in Baldi and Rinott (1989a; 1989b) and the method introduced in BRS
was designed to avoid this restriction. However, as mentioned above, we
are unable to extend the method of BRS to the case of ρ < 1, and we do
not know if asymptotic normality as s →∞ holds for all p, or whether for
ρ < 1 some restrictions on p are necessary. Applying the lower bound of
Q from Lemma 6.3 to Theorem 5.2 we obtain

Corollary 5.5. For all s� p ≥ 2 and all t,∣∣∣∣P
(
N − λ

σ
≤ t

)
−�
t�

∣∣∣∣ ≤ cJ
s��

where

J
s� =
√

6
6e�p/2
log s�−ρ
1−p2�−1�/41+ρ
p−1��
(

1
s

)ρp
p−1��/21+ρ
p−1��−4

�

It follows that 
N − λ�/σ → N
0� 1� in distribution as both s and p →∞,
and also if only s →∞ for any p large enough such that the exponent of 1/s
in J
s� is positive.

For example, for ρ = 1/2, we have asymptotic normality as s →∞ pro-
vided p > 10.

6. EVALUATION OF Q

In order to study Q as given in (2.2), that is, the probability that
a given profile is a PNE, we need an approximation of the integral∫ �
ax��dφ
x�dx for large values of d. This is given in Lemma 4.2 which
is proved in Rinott and Rotar (1999). The latter paper contains references
to surveys which lead to numerous further references, however, we have
not found the required asymptotic result in the literature. It is easy to
see that for fixed a, the above integral expresses the quadrant probabil-
ity P
Y1 ≤ 0� � � � � Yd ≤ 0�, where the Yi’s are exchangeable normals with
correlation ρ = a2/
1+ a2�.
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We are unable to provide precise asymptotic results which cover together
all cases where either one of s and p or both s and p→∞, or equivalently
(since s� p ≥ 2) as sp→∞, though we have useful bounds on Q which are
valid as sp→∞, see Lemma 6.3 and Corollary 6.4. In Lemmas 6.1 and 6.3
below it may be possible to obtain more precise results by extending the
calculations in Rinott and Rotar (1999), see Remark 6.2. However, this
would require a great deal more technicalities which we prefer to avoid.

The following lemma will provide the asymptotic behavior of Q in p. It
proves the third part of Proposition 2.6.

Lemma 6.1. For a constant s and 0 < ρ < 1,

Q =
∫ [∫

�s−1
(√

ρx+
√

1− ρ z
)
φ
z� dz

]p
φ
x�dx

� 
logp�
1−ρ�/ρp−
2−ρ�/ρ as p→∞�

Proof. An upper bound to Q is obtained by replacing �s−1
· · ·� with
�
· · ·�. Now the relation∫

�
(√

ρx+
√

1− ρ z
)
φ
z� dz = �

(√
ρ/
2 − ρ�x

)
(6.1)

leads to an upper bound of the required order for constant s and large p
by Lemma 4.2 with a = √

ρ/
2 − ρ�, and d = p.
For the lower bound, again we use (6.1). By the inequality EUs−1� ≥


EU��s−1 for s ≥ 2, we have∫ [∫
�s−1

(√
ρx+

√
1− ρ z

)
φ
z�dz

]p
φ
x�dx

≥
∫ [∫

�
(√

ρx+
√

1− ρ z
)
φ
z� dz

]
s−1�p
φ
x�dx

=
∫ [

�
(√

ρ/
2 − ρ�x
)]
s−1�p

φ
x� dx�
The result now follows (actually giving the precise asymptotics if all con-
stants are computed, see Remark 6.2 below) from Lemma 4.2 with a =√
ρ/
2 − ρ�, and d = 
s − 1�p, noting that a fixed s can be relegated into

the constants.

Remark 6.2. Using calculations as in Rinott and Rotar (1999), we can
obtain the following more precise result than Lemma 6.1 at the expense of
many technicalities that we omit.

For constant s and 0 < ρ < 1,

Q ∼
√

2 − ρ�/ρ-

2 − ρ�/ρ�
4π�
1−ρ�/ρ
log sp�
1−ρ�/ρ

(
1


s − 1�p
)
2−ρ�/ρ

as p→∞�
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For asymptotics as s →∞ we need another evaluation of Q. An upper
bound for Q, valid for large s was given in Lemma 4.3. Below we present a
lower bound which holds for all s� p ≥ 2. The upper bound of Lemma 4.3
and the lower bound below exhibit different powers of log s. However, the
main terms (considered for large s) in the upper and lower bounds do coin-
cide. Together they prove the fourth part of Proposition 2.6. In particular,
the following lower bound is used in concluding that EN� → ∞ as both
s� p→∞, in Proposition 2.6.

Lemma 6.3. For any constant 0 < ρ < 1 and for all s� p ≥ 2,

Q =
∫ [∫

�s−1
(√

ρx+
√

1− ρ z
)
φ
z�dz

]p
φ
x�dx

≥ 
1/6�
6e�−p
log s�α
ρ�p�
(

1
s

)p/1+ρ
p−1��
� (6.2)

where α
ρ�p� = ρ
1− p2� − 1�/21+ ρ
p− 1��.

Proof. First, we use the following Mills’ ratio inequality, Gordon (1941),
for x > 0,

x

x2 + 1
φ
x� < 1−�
x� < 1

x
φ
x�� (6.3)

to prove that for 0 < r < 1 and y ≥ 1,

1−�
ry� > 
1/4�1
y
φ
ry�� (6.4)

To prove (6.4) note that if ry > 1 then by (6.3),

1−�
ry� > 
ry�2


ry�2 + 1
1
ry

φ
ry� > 
1/2�1
y
φ
ry��

On the other hand, if ry ≤ 1 then

1−�
ry� ≥ 1−�
1� > 1−�
1��
√

2π
1
y
φ
ry� > 
1/4�1

y
φ
ry��

and (6.4) is proved.
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Let B
s� x� = �z� √ρx+√1−ρ z≥√2 log s− log log s�. For z ∈ B
s� x�
we have �s−1
√ρx+√1− ρ z� ≥ �s−1
√2 log s − log log s�. By (6.3) and
straightforward calculations we have for s ≥ 2,

�s−1

√

2 log s − log log s� ≥ 
1− 1/s�s−1 > e−1�

Thus a lower bound to the quantity on the l.h.s. of (6.2) is∫
e−1P
B
s� x���pφ
x�dx

=
∫
e−p

[
1−�

(√
2 log s − log log s −√

ρx√
1− ρ

)]p
φ
x�dx� (6.5)

We obtain a lower bound to the integral in (6.5) by integrating only over
x ≥ √

2 log s − log log s
1 − r�/√ρ for some function r = r
s� p� ρ� taking
values in 
0� 1� to be determined later (it will actually not depend on s).
For such an x we obtain from (6.4) with y = √

2 log s − log log s ≥ 1 for
s ≥ 2 and simple calculations,

1−�

(√
2 log s − log log s −√

ρx√
1− ρ

)

≥ 1−�

(
r
√

2 log s − log log s√
1− ρ

)

≥ 1/
4
√

2��
log s�r2/2
1−ρ��−1/2e−
r
2 log s�/
1−ρ�� (6.6)

Therefore, repeating the argument, the quantity in (6.5) is bounded below
by


6e�−p
log s�pr2/2
1−ρ��−p/2e−p
r2 log s�/
1−ρ�

×
[
1−�

(√
2 log s − log log s
1− r�/√ρ

)]
≥ 1/
4

√
2��
6e�−p
log s�pr2/2
1−ρ�+
1−r�2/2ρ�−
p+1�/2

×
(1
s

)pr2/
1−ρ�+
1−r�2/ρ
� (6.7)

We are free to choose r. We choose it to minimize the exponent of 1/s
in (6.7) and get r = 
1− ρ�/
pρ+ 1− ρ�, and the exponent’s minimal value
for that r is p/1 + ρ
p − 1��. (Recall that p ≥ 2.) Some straightforward
calculations now lead to (6.2).

The following upper bound to Q applies as sp→∞, and can be used to
prove the first part of Proposition 2.6.
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Corollary 6.4. For a constant 0 < ρ < 1,

Q ≤ Tρ
sp�� where Tρ
sp� � 
log
sp��
1−ρ�/2
1+ρ�
(

1
sp

)2/
1+ρ�

as sp→∞�

Proof. The quantity a of (4.3) is decreasing as a function of p, and
its maximal value is therefore a = √1+ ρ�/2, attained for p = 2. The
integral in (4.3) is increasing in a, and therefore we obtain from (4.3) a
further upper bound

Q ≤
∫
�p
s−1�


√
1+ ρ�/2x�φ
x�dx�

We can now apply Lemma 4.2 for large sp and the result follows.

7. POSSIBLE EXTENSIONS

Expression (2.2) can be adapted to the case where the card
Ai� = si and
the si are not all equal. In this case

Q = P
√ρXa +
√

1− ρX

i�
a ≥ W


i�
� � i ∈ �� � ∈ Ai \ �ai��

=
∫ ∏

i∈�

[∫
�si−1

(√
ρx+

√
1− ρz

)
φ
z� dz

]
φ
x�dx� (7.1)

The extensions of (2.3) and (2.4) are then easy. If all the si are of the
same order, the asymptotic results go through with little change.

Note that for any i ∈ � we have N ≤ ∏
j �=i sj . Therefore it is clear that

if only si, say, diverges, then N is bounded, and it cannot be asymptotically
Poisson, even in the independent case. On the other hand, if two of the si
diverge, we obtain the Poisson limit by the method indicated in Section 3.

Also for the case ρ < 0 it can be shown that if only one si diverges, then
N does not converge to zero in probability, but it does if two of the si
diverge. Results of the same flavor can be obtained also for ρ > 0.

In the whole paper we assumed a uniform correlation within each ran-
dom payoff profile. As pointed out in Remark 2.2, it is possible to use
Slepian’s inequality in order to get bounds, even in the case of different
correlation coefficients.

A different and much more complicated problem would arise by assum-
ing that different payoffs are not independent. This is natural when con-
sidering, for instance, symmetric games. The whole analysis of the problem
changes from the start. We hope to deal with this issue in the future.



292 rinott and scarsini

ACKNOWLEDGMENTS

We are grateful to V. Rotar for his kind contribution to the paper. We thank an anonymous
referee for several thoughtful comments.

REFERENCES

Arratia, R., Goldstein, L., and Gordon, L. (1989). “Two Moments Suffice for Poisson Approx-
imations: The Chen–Stein Method,” Ann. Probab. 17, 9–25.

Baldi, P., and Rinott, Y. (1989a). “Asymptotic Normality of Some Graph-Related Statistics,”
J. Appl. Probab. 26, 171–175.

Baldi, P., and Rinott, Y. (1989b). “On Normal Approximations of Distributions in Terms of
Dependency Graphs,” Ann. Probab. 17, 1646–1650.

Baldi, P., Rinott, Y., and Stein, C. (1989). “A Normal Approximation for the Number of Local
Maxima of a Random Function on a Graph,” in Probability, Statistics, and Mathematics.
Papers in Honor of Samuel Karlin (T. W. Anderson, K. B. Athreya, and D. L. Iglehart, Eds.),
pp. 59–81. San Diego: Academic Press.

Dembo, A., and Rinott, Y. (1996). “Some Examples of Normal Approximations by Stein’s
Method,” in Random Discrete Structures (D. Aldous and R. Pemantle, Eds.), IMA volume 76.
pp. 25–44. Berlin: Springer-Verlag.

Dresher, M. (1970). “Probability of a Pure Equilibrium Point in n-Person Games,” J. Combin.
Theory 8, 134–145.

Goldberg, K., Goldman, A. J., and Newman, M. (1968). “The Probability of an Equilibrium
Point,” J. Res. Natl. Bur. Stand., Sect. B 72B, 93–101.

Goldman, A. J. (1957). “The Probability of a Saddlepoint,” Amer. Math. Monthly 64, 729–730.
Gordon, R. D. (1941). “Values of Mills’ Ratio of Area to Bounding Ordinate and of the

Normal Probability Integral for Large Values of the Argument,” Ann. Math. Stat. 12, 364–
366.

Klaassen, A. J., and Wellner, J. (1997). “Efficient Estimation in the Bivariate Normal Copula
Model: Normal Margins are Least Favorable,” Bernoulli 3, 55–77.

Nash, J. F. (1950). “Equilibrium Points in n-Person Games,” Proc. Natl. Acad. Sci. USA 36,
48–49.

Nash, J. F. (1951). “Noncooperative Games,” Ann. of Math. 54, 286–295.
Papavassilopoulos, G. P. (1995). “On the Probability of Existence of Pure Equilibria in Matrix

Games,” J. Optim. Theory Appl. 87, 419–439.
Papavassilopoulos, G. P. (1996). On the probability of existence of pure equilibria in matrix

games,” J. Optim. Theory Appl. 91, 729–730.
Powers, I. Y. (1990). “Limiting Distributions of the Number of Pure Strategy Nash Equilibria

in N-Person Games,” Internat. J. Game Theory 19, 277–286.
Rinott, Y., and Rotar, V. (1999). “A Remark on Quadrant Normal Probabilities in High Di-

mensions,” preprint.
Slepian, D. (1962). “The One-Sided Barrier Problem for Gaussian Noise,” Bell Syst. Tech. J.

41, 463–550.
Stanford, W. (1995). “A Note on the Probability of k Pure Nash Equilibria in Matrix Games,”

Games Econom. Behavior 9, 238–246.



number of pure nash equilibria 293

Stanford, W. (1996). “The Limit Distribution of Pure Strategy Nash Equilibria in Symmetric
Bimatrix Games,” Math. Oper. Res. 21, 726–733.

Stanford, W. (1997). “On the Distribution of Pure Strategy Equilibria in Finite Games with
Vector Payoffs,” Math. Soc. Sci. 33, 115–127.

Stanford, W. (1999). “On the Number of Pure Strategy Nash Equilibria in Finite Common
Payoffs Games,” Econ. Lett. 62, 29–34.

Stein, C. (1986). Approximate Computation of Expectations, Institute of Mathematical Statistics
Lecture Notes/Monograph Series, 7. California: Institute of Mathematical Statistics.

Tong, Y. L. (1980). Probability Inequalities in Multivariate Distributions. New York: Academic
Press.


	1.INTRODUCTION
	2.THE MODEL
	3.INDEPENDENT PAYOFFS AND POISSON LIMITS
	4.ZERO-SUM GAMES
	5.POSITIVELY DEPENDENT PAYOFFS AND APPROXIMATE NORMALITY OF N
	6.EVALUATION OF Q
	7.POSSIBLE EXTENSIONS
	ACKNOWLEDGMENTS
	REFERENCES

