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This chapter offers a glimpse into the literature on finite population sampling from a

decision-theoretic point of view. Starting from a formal description of the problem of

estimation in finite populations, we present and discuss a selection of result and proofs

on optimality of sampling and estimation strategies.

1. Introduction

Decision theory provides tools and insights for understanding, comparing, and select-

ing sampling and estimation procedures. In this chapter we present a small sample of

the extensive literature on decision-theoretic aspects of sampling from finite populations,

without attempting to give a comprehensive survey of the best possible results and refer-

ences.1 Technical details are sometimes omitted for the sake of simplicity.

The chapter is quite theoretical, dealing with the foundations of finite population sam-

pling and inference through simple designs and models rather than the complex ones in

modern use. It is hoped that a practitioner may find these basic ideas of interest, albeit

theoretical. On the other hand, it seems that a student or teacher of statistical decision

theory can definitely benefit from the wealth of ideas that exist in the area of finite pop-

ulation sampling. It provides setups and examples that add an interesting perspective to

the standard illustrations given in most statistical decision theory courses, where a sample

is often restricted to mean i.i.d. observations.

The task of estimating the mean, say, of a given finite population of size N by measuring

n < N units does not seem to involve any probability structure, unlike other statistical

setups where it is assumed at the outset that the data consist of random or noisy obser-

vations. By random sampling, statisticians introduce noise or randomness that did not

∗Partially supported by Israel Science Foundation grant 473/04.
1For a scholarly survey of results until 1987 and numerous references, see Chaudhuri and Vos (1988).
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exist in the original problem. It is well known that the introduction of random sampling

can avoid biases and allow important notions such as unbiased estimation and confidence

intervals. While many statisticians (and most standard books on sampling) take random

sampling as so self-evident that questions like “why do statisticians use dice or other ran-

dom devices and add randomness or noise to the task” seem unwarranted2, it is, in fact,

an intriguing question that merits more than intuitive answers. Indeed, there is a large

body of literature showing formally and precisely that certain relevant optimality criteria

can only be achieved by random sampling designs.

Emphasis in this chapter is placed on optimal inference. In the context of finite popu-

lations, optimality is most often expressed in terms of minimax results, which in general

require random strategies. Other decision-theoretic notions such as loss and risk, ad-

missibility, sufficiency, completeness, unbiasedness, uniformly minimum variance (UMV),

Bayes procedures, and more, will also be discussed in connection with finite population

sampling.

2. Notations and definitions

The following notation will be used throughout the chapter. A list of main notations

appears in Section 8.

1. The population Y = (y1, . . . , yN) is a vector of values of some measurements with

index set N = {1, . . . , N}, where the population size N is assumed to be known

whenever it is needed. Here i ∈ N denotes the label of the i-th population unit

whose value is yi. In this chapter we assume that Y ∈ RN , so that each yi is a

univariate measurement (although in many applications more than one variable is

measured for each unit). Some of the ideas could be extended to more general

measurements, but this will not be done here. Y is an unknown parameter, and so

is any function θ(Y) such as Ȳ = 1
N

∑N
i=1 yi, V (Y) = 1

N

∑N
i=1(yi − Ȳ)2, Max(Y) =

Max1≤i≤Nyi, or Med(Y) = Median1≤i≤Nyi.

The set of possible Y ’s is denoted by Υ, the parameter space ; unless otherwise

stated (towards the end of Section 6), we shall always assume that Υ is a sym-

metric parameter space, that is, a symmetric subset of RN in the sense that if

Y = (y1, . . . , yN) ∈ Υ, then so does every permutation of Y . In particular, any set of

the form Υ = Λ× · · · ×Λ, a product of some set N times, satisfies this assumption.

The set Ω(Y) of all permutations of a given vector Y = (y1, . . . , yN) is of course also

symmetric. As usual, the parameter space Υ is known to the statistician.

2but see Valliant, Dorfman, and Royall (2000) for a refreshing change.
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If the parameter θ(Y) remains constant under permutations of Y , we say that it is

a symmetric parameter. The above examples are all of this kind.

2. A sampling design P is a probability function on the space of all subsets S of

N . Unless otherwise stated we assume noninformative sampling, also known

as ignorable sampling ; that is, the probability P(S) does not depend on the

parameter Y . Formally, P(S | Y) = P(S). In the Bayesian or superpopulation

context of Section 6, Y is also random, P(S | Y) becomes a conditional probability,

and ignorability is equivalent to independence of S and Y .

In certain example we allow the design P to depend on known covariates, or auxiliary

variables; see below. The inclusion probability of a unit is defined by αi = P({i ∈
S}) =

∑
S:S � iP(S), the probability that unit i is in the sample S. Here S is the set

of drawn labels (without order and repetitions). By a simple sufficiency argument

given in Remark 1 below, we can ignore designs that take an order of the elements

in the sampled set into account or allow repetitions.

The set S is called the sample, and its size, |S|, is the sample size. If P(S) > 0

implies |S| = n, then the design P is said to have a fixed sample size .

Simple random sampling without replacement of size n, abbreviated SRS,

is denoted by Ps and satisfies Ps(S) = 1/
(

N
n

)
if |S| = n, and zero otherwise.

When auxiliary information is available in the form of positive values (x1, . . . , xN),

where xi is some known value of a variable pertaining to unit i ∈ N , it can be used

in the design and in estimation. For example, when xi > 0, the design having a fixed

sample size n, defined by Pppas(S) =
∑

i∈S xi/
[
NX̄ (

N−1
n−1

)]
if |S| = n, where X̄ =

1
N

∑N
i=1 xi, is of this kind (Lahiri, 1951). The notation ppas stands for probability

proportional to aggregate size , in this case, to the aggregate size of the auxiliary

variables in S,
∑

i∈S xi. It can be implemented by first choosing one unit from the

population, say i, with probability xi/NX̄ , and then adding a subset of n − 1

additional units chosen from the remaining N − 1 units uniformly, that is, with

equal probabilities for for all subsets of size n− 1. See Rao and Vijayan (1977) and

Hedayat and Sinha (1991) for details and references on this design and a discussion of

drawing mechanisms for design implementation, and Cassel, Särndal, and Wretman

(1977) for further references.

3. The data consist of the set of pairs {(i, yi) : i ∈ S}, that is, the y-values and their

labels for the units in the sample S. we set

D = D[S,Y ] = {(i, yi) : i ∈ S}. (1)
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For S = {i1, . . . , in}, let YS be the multiset {yi1 , . . . , yin}, with equal y-values

listed separately provided that they have different labels. In other words, YS can

be viewed as the sequence (yi1 , . . . , yin), where the order is ignored. For example, if

S = {1, 2, 3} and y1 = y2 = 13 and y3 = 7, then YS = {13, 13, 7} in any order.

The alternative notation D = D[S,YS] indicates that the data consist of S and the

coordinates of Y having labels in S.

Remark 1 By sufficiency arguments (Basu 1958) we shall consider the data D as

above, i.e., without taking into account the order (if known) in which the sample was

drawn; when the sampling procedure allows repetitions of units, as in sampling with

replacement, repetitions will also be ignored and each repeated unit will be counted

once. Since the relevant data D consist only of the set of drawn labels S and their

y-values, we shall only consider designs P on the space of (unordered) sub-

sets (with no repetitions) of N . The sufficiency of D is intuitively obvious: no

information is added by measuring a unit more than once, or specifying the order

in which the measurements were taken. A formal statement and proof follow. We

denoted designs which ignore the order of labels and repetitions by P, and the corre-

sponding data by D. In the proposition below we consider designs that are probability

measures on ordered multisets of N , so repetitions are allowed, and the data contain

information on order and repetitions. In this case the sampling design and data are

denoted by bold-face letters P and D, respectively, and the sample is an ordered

multiset (allowing repetitions) denoted by S, distributed according to P.

Proposition 2 Let P be a sampling design on ordered multisets which we de-

note by S, and consider the data D = {(i, yi) : i ∈ S}, a multiset that includes

information on the order and repetitions in the sample. Let S = r(S) = {i : i ∈ S};
that is, S is the set formed from S when repetitions and order are ignored, and let

D = r(D) = {(i, yi) : i ∈ S}. Then D is a sufficient statistic for the parameter

Y.

Proof For a design P as above, the conditional probability of D = {(i, yi) : i ∈ S}
given D, where S is an ordered multiset and the parameter is Y, satisfies

P (D|D) =





P(S)/
∑

S′: r(S′)=S

P(S′) if r(D) = D

0 otherwise .

(2)
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Since the right-hand side of (2) depends only on D and not on the parameter, it

follows that D is sufficient.

4. An estimator t = t(D) = t({(i, yi) : i ∈ S}) is a function of the data. We use

various notations for t(D), namely t(D[(S,YS)]), or t(S,YS), or t(S,Y); the first

two emphasize that t depends on Y only through values with labels in S, and the

third is less cumbersome and sometimes more convenient. It should be emphasized

that t(S,Y) depends only on the data {(i, yi) : i ∈ S}, that is, the labels and the

labeled y-values in the sample. Note that when the sample size |S| is not fixed, then

implicit in the notation is the assumption that t is a function defined on arguments

of different dimensions.

If the estimator t(S,Y) = t(D[(S,YS)]) can be expressed as a function of YS alone,

we write t(S,Y) = t(YS) and say that t is symmetric (or invariant). Such an

estimator depends on the y-values in the sample, and not on their labels.

Examples of symmetric statistics are the sample mean ȳS = 1
|S|

∑
i∈S yi and variance

1
|S|−1

∑
i∈S(yi − ȳS)2. On the other hand, the Horvitz-Thompson estimator

tHT =
∑

i∈S yi/αi does require knowledge of the labels associated with each y-value

and thus it is not symmetric.

When auxiliary information (x1, . . . , xN) is available for every unit in the popula-

tion, it can be used in the sampling design and in estimation. For example, consider

the ratio estimator of Ȳ defined by tR = (ȳS/x̄S)X̄ , where x̄S = 1
|S|

∑
i∈S xi; we

denote it by tR since ȳS/x̄S is an estimator of the ratio R = Ȳ/X̄ . The estimator

tR is not symmetric since the computation of x̄S requires knowledge of the labels

in S (but not their pairing with the y-values). Note that if X̄ is known, and the

population consists of the pairs, that is, Z = {z1 = (y1, x1), . . . , zN = (yN , xN)},
then tR is a symmetric estimator for the population Z.

In this chapter we assume t ∈ R and any value in R is allowed, regardless of the

parameter space. For example, a proportion in a population of size N (see Section

3.5.2) is necessarily a rational number of the form k/N , but we allow an estimator t

of this proportion to assume any real value; if certain values are undesired, the loss

function should reflect it.

5. A pair (P , t) consisting of a sampling design and an estimator is called a strategy.

A class of strategies consists of all pairs (P , t) such that P belongs to some class

of sampling designs and t belongs to some class of estimators.
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6. A loss function L(τ,Y) represents a penalty paid in an estimation problem when

the estimator assumes the value τ , and the value of the parameter is Y . If θ = θ(Y)

is a parameter and t = t(S,YS) is an estimator of θ, we may use the notation L(t, θ)

for the loss. A common example is L(t, θ) = (t − θ)2, the quadratic loss function

(= squared error loss). A loss function is said to be symmetric if L(τ,Y) remains

constant when Y is replaced by any permutation of its coordinates for any fixed τ .

Clearly, if θ(Y) is a symmetric parameter, that is, if it remains constant under

permutations of Y , then so does L(τ, θ(Y)), and the loss is symmetric.

7. The risk of a strategy (P , t) for the population Y is the expected loss defined by

R(P , t;Y) := EPL(t,Y) =
∑

S

P(S)L(t(D[S,YS]),Y) (3)

where the sum extends over all subsets of N .

An important special case is R(P , t;Y) := MSE(P , t;Y) := EP(t− θ)2; one reason

for the interest in this measure is that by Chebychev’s inequality it provides a lower

bound on confidence interval coverage: P(|t − θ(Y)| ≤ c) ≥ 1 −MSE(P , t;Y)/c2

for each Y ∈ Υ. For unbiased estimators, the MSE coincides with the variance,

which plays a role in the construction of confidence intervals based on the normal

approximation. It is well known that the MSE of an estimator can be decomposed

into the sum of its variance and the square of its bias.

8. The strategy (P , t) is said to be unbiased for θ = θ(Y) if

EPt :=
∑

S

P(S)t(D[S,YS]) = θ(Y) (4)

for all Y = (y1, . . . , yN) ∈ Υ. In this case we say that t is P-unbiased.

Note that if P satisfies αi = n/N for all i = 1, . . . , N , then the sample mean

ȳS = 1
n

∑
i∈S yi is unbiased for the population average Ȳ and, more generally for

any design P , so is the estimator tHT /N where tHT =
∑

i∈S yi/αi is the Horvitz-

Thompson estimator, since by setting Ii to be the indicator of the event that i ∈ S

we have EPIi = αi and therefore

EP [tHT /N ] = EP
1

N

N∑
i=1

Iiyi/αi =
1

N

N∑
i=1

yiEPIi/αi = Ȳ . (5)

More generally, the estimator t = 1
N

∑
i∈S yici(S)/αc(i), where αc(i) =

∑
S:S � i ci(S)P(S),
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is easily seen to be P-unbiased for Ȳ . When ci(S) ≡ 1 it reduces to tHT .

Under SRS, the ratio estimator tR = (ȳS/x̄S)X̄ is, in general, not unbiased. On

the other hand, the strategy (Pppas, tR), with Pppas defined above as probability

proportional to
∑

i∈S xi sampling, is unbiased for Ȳ , since

Eppas tR =
∑

S

(
∑
i∈S

xi)/

[
NX̄

(
N − 1

n− 1

)]
(ȳS/x̄S)X̄ =

(
N − 1

n− 1

)−1
1

N

∑
S

∑
i∈S

yi = Ȳ .

To compare the above notions for finite populations with standard statistical decision

theory, we give the following concise definitions, to be followed by a short discussion. For

further details see, for example, Ferguson (1967) and Lehmann and Casella (1998).

Definition 3 • An observation is a random variable X ∼ Pθ (i.e., X has the

distribution Pθ), where θ ∈ Θ, the parameter space.

• A decision rule δ(X) is a function taking values in a decision space A, or a

distribution on A (which may depend on X) in which case δ is randomized. The

decision space is sometimes identical to the parameter space.

• L(a, θ) is the loss due to a decision a ∈ A, and if δ is randomized, we set L(δ, θ) =

EδL(a, θ) where a ∼ δ = δ(X). The risk is defined by R(δ, θ) = EL(δ(X), θ), where

the expectation is with respect to X ∼ Pθ. Given a prior distribution ρ for θ, the

Bayes risk is r(ρ, δ) = EρR(δ, θ) =
∫

R(δ, θ)dρ(θ).

• A decision rule δ0 is Bayes with respect to ρ if r(δ0, ρ) = infδ r(δ, ρ). It is a

minimax rule if supθ R(δ0, θ) = infδ supθ R(δ, θ). The rule δ0 has a uniformly

minimal risk among unbiased estimators of g(θ) if Eδ0(X) = g(θ), that is, δ0 is

unbiased, and R(δ0, θ) ≤ R(δ, θ) for all θ ∈ Θ and any unbiased rule δ. In the case

of MSE risk, the latter δ0 has the Uniformly Minimum Variance among Unbiased

estimators (UMVU) property.

In standard decision theory as given in Definition 3, the distribution of the data is

prescribed as part of the problem, and optimization is done only with respect to the

decision rule or the estimator. In contrast, when we study strategies in finite population

sampling, we attempt to optimize over both the estimator and the sampling design. The

latter determines the data collection method and the distribution of the data, and in

this sense optimality in finite population sampling is more comprehensive than classical

decision theory.
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Remark 4 Henceforth we consider only nonrandomized estimators unless otherwise

stated (as when we consider non-convex loss in Section 3.4, and the Rao-Hartley-Cochran

strategy in Section 7.2). When the loss function L(a, θ) (or L(τ,Y) ) is convex in the

variable a (or τ), as in the quadratic loss case, then randomized estimators can be replaced

by nonrandom ones having a smaller risk. In fact, by Jensen’s inequality the risk of a

randomized estimator can only decrease when the estimator is replaced by its expectation

(assuming it is finite), which is a nonrandomized estimator.

One may now ask whether randomization in the sampling design can also be eliminated

in a similar way under some convexity conditions, that is, can a design P be replaced by a

deterministic sample with a smaller risk. However, this cannot be done since the relevant

space is not convex: there is no “average” or “expected” set for a given design.

3. Minimax strategies

3.1. Definitions and discussion

Definition 5 A strategy (P0, t0) is said to be minimax relative to a given class of strate-

gies if it belongs to this class, and

sup
Y∈Υ

R(P0, t0;Y) ≤ sup
Y∈Υ

R(P , t;Y) (6)

for every strategy (P , t) in the given class of strategies.

The estimator t0 is said to be minimax under P in a class of estimators, if

sup
Y∈Υ

R(P , t0;Y) ≤ sup
Y∈Υ

R(P , t;Y) (7)

for any estimator t in the class.

In (6) and below, the sup may be replaced by max when the latter exists. With quadratic

loss function supY∈Υ R(P , t;Y) becomes supY∈ΥMSE(P , t;Y), which is supY∈ΥVarP(t) for

unbiased estimators.

A minimax strategy guarantees the lowest maximal risk, that is, the smallest risk in

the worst case or the worst possible Y . If we denote the left-hand side of (6) by v0, then

using the strategy (P0, t0) we are guaranteed a risk of at most v0 whatever the population

values Y are, and a lower value for all Y cannot be guaranteed.

It turns out that minimax strategies involve random sampling. Strategies that avoid

randomization are in general not minimax and hence may yield very poor estimates for

certain populations Y . Randomization guarantees that the sample “represents” the pop-

ulation (with high probability). Any fixed sample could be very biased relative to certain
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populations. For example, the mean of a sample consisting of the first n labels from an

ordered Y would be a poor estimate of the population mean, and such poor samples are

avoided with high probability by randomization. This is why regulatory agencies insist

on randomization, and perhaps also in order to prevent biased experimenters who have

some partial knowledge of Y from choosing a biased sample that would prove their point

rather than yield good estimates.

Minimax strategies are particularly relevant in zero-sum games, where maximizing one’s

own gain is equivalent to minimizing one’s opponent’s gain. The view of a statistical

problem as a game between a statistician who chooses a strategy (P0, t0) and nature

which “chooses” the parameter value, appears in well-known texts such as Blackwell and

Girshick (1954) and Ferguson (1967). Random sampling is equivalent to a mixed strategy

of the statistician, that is, a strategy which chooses the action (in this case, the sample

S) at random according to a certain probability law (which in our case is P). In general,

minimax strategies are mixed strategies. Thus the minimax criterion leads naturally to

random sampling. One may argue that nature should not be considered a strategic player

who uses the worst possible (for the statistician) or least favorable Y as a player in a zero-

sum game, and question the minimax approach and the relevance of zero-sum games.

However, the protection against a worst-case population appears quite reasonable when

prior knowledge of the populations is very limited.

Brewer (1963) and Royall (1970b) present optimality results where the sup’s in (6) are

replaced by expectations with respect to a prior (superpopulation model) on Y satisfying

certain conditions that are expressed in terms of covariates. The resulting optimal design,

which may be very sensitive to the choice of a prior, is nonrandom: averaging over a

prior replaces the need for averaging by a random design. This approach is analogous

to average-case or probabilistic analysis of algorithms in computer science, whereas the

minimax approach pertains to worst-case evaluations.

While protecting against the worst case in the parameter space, minimax rules may

sometimes be relatively unsatisfactory in other parts of that space. An example is given

in Section 3.5.

3.2. Some minimax results through symmetry (invariance)

Invariance or symmetry has a long history in statistics. Symmetrization of strategies

(as in (9) below) appears in Blackwell and Girshick (1954), and in Kiefer (1957) with

reference to work of Hunt and Stein from the 1940s.

The first step towards finding minimax strategies through symmetry is to show that it

suffices to search among strategies consisting of symmetric estimators and a (conditional)

SRS design. This is formulated in Proposition 6. Part of the notation below follows
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Stenger (1979).

Let Π denote the group of permutations of N = {1, . . . , N}, and for π ∈ Π, S ⊆ N ,

and Y = (y1, . . . , yN), define

πS = {π(i) : i ∈ S} , πY = (yπ−1(1), . . . , yπ−1(N)) . (8)

For a design P let

P̄(S) =
∑
π∈Π

P(πS)/N ! , t̄P(S,Y) =
1

N !P̄(S)

∑
π∈Π

t(πS, πY)P(πS). (9)

Note that P̄(S) is a probability on subsets S of N . If the design P concentrates on

sets of size n, then P̄ is a uniform probability with P̄(S) = 1/
(

N
n

)
on such sets, that is,

P̄(S) = Ps(S), which is SRS. If P(|S| = m) = γm, m = 1, . . . , N , where |S| denotes the

size of S, then P̄(S) = γ|S|/
(

N
|S|

)
. In this case P̄(S) is uniform over all sets of a given size,

and we call it a conditional SRS. Moreover P̄ = P if and only if P is a conditional SRS.

Let us now consider a random pair (π, S), consisting of a random permutation and a ran-

dom set having the joint distribution (π, S) ∼ P(πS)
N !

. It is easy to see that
∑

π

∑
S
P(πS)

N !
=

1, and by (9) we have
∑

π
P(πS)

N !
= P̄(S), the marginal distribution of S. The conditional

distribution of π given S is the ratio of the joint distribution P(πS)
N !

and marginal distrib-

ution P̄(S) of S. We summarize this notation as follows:

(π, S) ∼ P(πS)

N !
, S ∼ P̄(S), π|S ∼ P(πS)

N !P̄(S)
. (10)

Then t̄P(S,Y) = E[t(πS, πY) |S] = Eπ|S[t(πS, πY)].

Note that D[πS, πY ] = {(π(i), yπ−1π(i)) : i ∈ S} = {(π(i), yi) : i ∈ S}, and so t̄P(S,Y)

does not depend on y-values outside of YS. The same is true for any t(πS, πY) with

known π. Assume without loss of generality that S = {1, . . . , n}, and use the notation

π(i) = ji for i ∈ S. From (9) we have

t̄P(S,Y) = c
∑

{j1,...,jn}
t({(j1, y1), . . . , (jn, yn)})P({j1, . . . , jn}),

where c is a constant. The sum is over all subsets of size n and does not depend on S, and

it follows that t̄P(S,Y) depends on YS (and P), but not on S; that is, t̄P is a symmetric

estimator.
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It is now easy to see that for a symmetric estimator t(YS) we have

t(πS, πY) = t(S,Y) and therefore t̄P(S,Y) = tP(S,Y). (11)

From the definitions in (9) it is easy to see that if (P , t) is an unbiased strategy for

a symmetric parameter θ = θ(Y), that is, a parameter satisfying θ(πY) = θ(Y) for all

π ∈ Π, then so is the strategy (P̄ , t̄).

The following proposition (see Gabler (1990) and references therein for closely related

results) implies that for a minimax strategy relative to designs of fixed sample size, it

suffices to search among strategies (Ps, t), where t = t(YS) is symmetric and Ps is SRS

with the same sample size. More generally, it shows that for any strategy (P , t) there is

a strategy consisting of a conditional SRS design having the same distribution of sample

size as P and a symmetric estimator t(YS) with a smaller maximal risk. The proposition

requires symmetry and convexity of L. A closely related result that does not require

convexity of the loss is Proposition 13. The latter proposition provides an interpretation

of the third expression in (13) below in terms of a randomized estimator. We defer the

discussion to Section 3.4 for the sake of simplicity at this point.

Recall that a loss function L is symmetric if it remains constant under permutations of

Y ; that is, L(τ,Y) = L(τ, πY). With the above definitions we have

Proposition 6 Let L(τ,Y) be a symmetric loss function that is convex in τ for each

Y ∈ Υ, a symmetric parameter space. Then for P̄ , t̄ defined in (9)

sup
Y∈Υ

R(P̄ , t̄;Y) ≤ sup
Y∈Υ

R(P , t;Y). (12)

Proof

R(P̄ , t̄;Y) =
∑

S

L(t̄(S,Y),Y)P̄(S)
(0)

≤
∑

S

∑
π

P(πS)

N !P̄(S)
L(t(πS, πY),Y)P̄(S)

=
∑

S

∑
π

P(πS)

N !
L(t(πS, πY),Y)

(1)
=

∑
π

∑
S

P(S)

N !
L(t(S, πY),Y)

(2)
=

1

N !

∑
π

∑
S

P(S)L(t(S, πY), πY) =
1

N !

∑
π

R(P , t; πY); (13)

Jensen’s inequality applied to the convexity of the loss function L implies the inequality

marked by (0); a further explanation is given below. The equality (1) was obtained by

substituting S for πS (both range over all subsets of N under the summation on S) and

(2) follows because by symmetry L(τ,Y) = L(τ, πY).

A simple way to understand the above inequality (0) is to note that under the definitions
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of (10),

∑
S

∑
π

P(πS)

N !P̄(S)
L(t(πS, πY),Y)P̄(S) = ES{Eπ|S[L(t(πS, πY),Y)]},

and the inequality becomes ESL(Eπ|S[t(πS, πY)], Y) ≤ ES{Eπ|S[L(t(πS, πY),Y)]}.
From (13) we have R(P̄ , t̄;Y) ≤ maxπ R(P , t; πY) since the maximum is larger than

the average, and by the symmetry (permutation invariance) of the parameter space Υ, it

follows that

sup
Y∈Υ

R(P̄ , t̄;Y) ≤ sup
Y∈Υ

R(P , t;Y).

Note that for a (conditional) SRS design P we have P = P̄ , and we conclude from

Proposition 6 that for such designs it suffices to consider symmetric estimators when the

goal is to minimize maximal risk with convex loss. This is formulated in the corollary

below, which appears in Royall (1970a).

Corollary 7 Let P be a conditional SRS design. Under the conditions of Proposition 6

sup
Y∈Υ

R(P , t̄;Y) ≤ sup
Y∈Υ

R(P , t;Y).

Our next goal is to establish a minimax result for unbiased strategies. First we need

the following lemma on completeness, due to Royall (1968). As usual, completeness will

be used to obtain uniqueness of unbiased estimators. A function h(y1, . . . , yn) is said to

be symmetric if it is invariant under permutations of its arguments, that is, it depends

only on the set of (unordered) values {y1, . . . , yn}. We can then write h(YS), since YS is

a set of (unordered) y-values.

Lemma 8 Let Υ be any product parameter space

Υ = ΛN = Λ× · · · × Λ, (14)

and let P be a design such that P(S) > 0 implies |S| = n. Then YS is complete; that is,

for any symmetric function h, EPh(YS) = 0 for all Y = (y1, . . . , yN) ∈ Υ implies that

h(y1, . . . , yn) = 0 for any yi ∈ Λ, i = 1, . . . , n.

Proof First consider Y = (a, . . . , a) ∈ Υ (here, for example, we use the structure of Υ

given by (14)) and compute the expectation under this value of the parameter. Then

0 = EPh(YS) =
∑

S P(S)h(a, . . . , a) implies h(a, . . . , a) = 0. Assuming without loss

of generality that P(S) > 0 for S = {1, . . . , n} choose now Y = (b, a, . . . , a) ∈ Υ.
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Then 0 = EPh(YS) = ph(a, . . . , a) + qh(b, a, . . . , a) with q > 0, and we conclude that

h(b, a, . . . , a) = 0. The result follows by continuing in the same manner (induction).

The next theorem shows that relative to the class of unbiased strategies, there exist

minimax strategies that involve simple random sampling without replacement (SRS). For

a closely related result see Theorem 3.10 in Cassel, Särndal, and Wretman (1977) and

references therein. Remark 11 compares their result to Theorem 9 below. Such a result

is not true without restricting the class to unbiased strategies (see Remark 11 below).

Unbiasedness is ubiquitous in applications. This is quite natural since avoiding bias is

often given as a justification for random sampling. However, unbiasedness alone does

not guarantee good estimation; see, e.g., Basu’s (1971) famous circus-elephants weighing

example for a ridiculously poor unbiased estimator.

Theorem 9 Let Υ be any product parameter space: Υ = ΛN = Λ × · · · × Λ, and let Ps

denote simple random sampling without replacement (SRS) of size n. If there exists any

unbiased strategy (P , t) for the parameter θ = θ(Y) with P having a fixed sample size n,

then there exists a unique symmetric estimator t0 = t0(YS) depending only on YS, such

that the strategy (Ps, t0) is unbiased.

If θ = θ(Y) is a symmetric parameter, and the loss function L(τ, θ) is convex in τ for

each Y ∈ Υ, then

sup
Y∈Υ

R(Ps, t0;Y) ≤ sup
Y∈Υ

R(P , t;Y) (15)

for any unbiased strategy (P , t) for θ, having a fixed samples size n. In other words, the

strategy (Ps, t0) is minimax relative to the above class of strategies (P , t).

Proof As mentioned after (11), if (P , t) is unbiased then so is (P̄ , t̄). Since P concentrates

on sets of size n, we have P̄ = Ps. Lemma 8 implies that a symmetric unbiased estimator

is unique (take h in the lemma to be the difference between two unbiased estimates to

obtain that they are the same). It follows that the strategy (P̄ , t̄) is the same for all

unbiased (P , t), and the result follows from (12) with t0 = t̄.

The sup’s in (15) may be infinite, in which case the result is uninteresting, and it is

empty if no unbiased strategies exist.

Corollary 10 Let Υ = ΛN . If θ = θ(Y) = 1
N

∑N
i=1 yi = Ȳ, the population mean, and

the loss function L(τ, θ) is convex in τ for each Y ∈ Υ, then for the sample mean ȳS =
1
n

∑
i∈S yi we have

sup
Y∈Υ

R(Ps, ȳS;Y) ≤ sup
Y∈Υ

R(P , t;Y) (16)
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for any unbiased strategy (P , t) for θ, having a fixed sample size n. In other words, the

strategy (SRS, ȳS) is minimax relative to the above class of strategies (P , t).

For the population variance θ = V (Y) = 1
N

∑N
i=1(yi−Ȳ)2, set v = N−1

N(n−1)

∑
i∈S(yi−ȳS)2,

an unbiased estimator. Then (SRS, v) is minimax relative to unbiased strategies having

sample size n.

Proof The population mean θ = Ȳ is a symmetric parameter, and the sample mean ȳS

is a Ps-unbiased estimator, that is, it is unbiased for SRS of size n. The result follows

from Theorem 9. Similarly, v above is symmetric and a Ps-unbiased estimator of the

population variance, which is a symmetric parameter.

Remark 11 Theorem 3.10 of Cassel, Särndal, and Wretman (1977) states a result simi-

lar to Theorem 9 for the special case of θ = Ȳ, the population mean, and for the quadratic

loss function (MSE). It states that in this case an unbiased strategy (P1, ȳS) with sample

size n is minimax relative to the class of unbiased strategies with sample size n, for any

such P1 satisfying αi = n/N for i = 1, 2, . . . , N , and it seems that all they require of the

parameter space is for it to be symmetric.

In the counterexamples below we also consider quadratic loss and estimation of the

population mean. The first example shows that the assumption αi = n/N does not suffice.

Set N = 4, n = 2, and Υ = {0, 2a}4. Then for quadratic loss a straightforward

calculation shows that maxY∈Υ R(Ps, ȳS;Y) = a2/2 and the maximum is attained at Y =

(0, 0, 0, 2a). On the other hand the design defined by P1({1, 2}) = P1({3, 4}) = 1/2

satisfies αi = n/N = 1/2, but for Y = (0, 0, 2a, 2a) one easily gets R(P1, ȳS;Y) = a2 and

clearly (P1, ȳS) is not minimax.

The next example shows that even in the case of SRS it is not enough to assume that

Υ is symmetric. Set Υ = Ω(1, 2, 3)
⋃

Ω(11, 12, 13), that is, the set consisting of the two

indicated vectors and all their permutations. Here N = 3. Then for SRS with n = 1 or

n = 2, there clearly exists an (unbiased) estimator t which is always exactly correct, and

hence satisfies R(Ps, t;Y) = 0 whereas R(Ps, ȳS;Y) > 0, so that (Ps, ȳS) is not minimax.

This happens because one observation provides complete information about the population

up to permutations (recall that the parameter space is assumed known).

Finally, we show by a simple example that the unbiasedness condition is not redundant.

(For MSE, this will become clear also in Section 3.5.) In fact, a biased estimate t

may satisfy maxY∈Υ R(Ps, t;Y) < maxY∈Υ R(Ps, ȳS;Y). Take N = 2,Υ = {0, 1}2, and

n = 1. Then maxY∈Υ R(Ps, ȳS;Y) = (1/2)2. The (biased) estimator t defined by t(0) =

1/4, t(1) = 3/4, satisfies maxY∈Υ R(Ps, t;Y) = (1/4)2.

The restriction to unbiased estimators may be replaced by linearity and invariance con-

ditions and similar results to Theorem 9 still hold. Note that for the case of estimating Ȳ,
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for example, the minimax strategy (SRS, ȳS) does not depend on Υ. Without unbiasedness

or similar restrictions, the minimax strategy depends on Υ, and finding it may be difficult.

For nonsymmetric parameter spaces the problem becomes even harder. See Proposition

17 below for a minimax rule on symmetric product parameter spaces for quadratic loss

(MSE), without an unbiasedness condition.

3.3. Symmetric estimators and non-convex loss

The next proposition is a special case of a general result on invariance, Theorem 8.6.4

of Blackwell and Girshick (1954), who applied it in the context of sampling. It says that

for symmetric estimators the maximal risk is minimized by (conditional) SRS designs.

In particular, designs having a fixed sample size can be replaced by SRS. Since R(P , t;Y)

is linear in P (but not in t), convexity of the loss L is not required. Also, we require

no conditions on Υ other than symmetry, which is always assumed. Recall that for a

given design P the corresponding P̄ is defined in (9).

Proposition 12 For any symmetric estimator t, design P, and symmetric loss function

L,

sup
Y∈Υ

R(P̄ , t;Y) ≤ sup
Y∈Υ

R(P , t;Y).

If the design P has a fixed sample size, say n, then

sup
Y∈Υ

R(Ps, t;Y) ≤ sup
Y∈Υ

R(P , t;Y),

where Ps denotes SRS of size n.

Proof

sup
Y∈Υ

R(P̄ , t;Y) = sup
Y∈Υ

∑
S

P̄(S)L(t(S,Y),Y) = sup
Y∈Υ

∑
S

∑
π

P(πS)

N !
L(t(S,Y),Y)

= sup
Y∈Υ

∑
π

∑
S

P(S)

N !
L(t(π−1S,Y),Y)

(1)
= sup

Y∈Υ

∑
π

∑
S

P(S)

N !
L(t(S, πY),Y)

(2)
= sup

Y∈Υ

∑
π

∑
S

P(S)

N !
L(t(S, πY), πY) ≤ 1

N !

∑
π

sup
Y∈Υ

∑
S

P(S)L(t(S, πY), πY)

=
1

N !

∑
π

sup
Y∈Υ

R(P , t;Y) = sup
Y∈Υ

R(P , t;Y); (17)

the equalities marked by (1) is obtained by the symmetry of t using the first part of (11),

and (2) follows from the symmetry of L; the rest is straightforward. The second part of

the proposition is a special case of the first, based on the fact that if P has a fixed sample

size n, then P̄ = Ps.
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It is easy to provide a counterexample to the above result for t that is not symmetric.

Take N = 3 and n = 2 and let t(S,Y) be an estimator that takes a huge and irrele-

vant value when 3 ∈ S. Clearly one can choose values such that the design satisfying

P({1, 2}) = 1 will violate the second inequality of Proposition 12.

3.4. Asymmetric and randomized estimators and non-convex loss

So far we have considered loss functions L(τ,Y) that are convex in τ , with one excep-

tion, namely Proposition 12. In sample survey applications, unbiased or nearly unbiased

estimators are usually considered, and their variances or MSE are computed. This cor-

responds to quadratic loss, which is convex. In this section we shall see (and it is well

known) that for non-convex loss functions and certain optimality criteria of statistical

decision theory, randomized estimators become relevant, and we discuss them briefly in

the next paragraph. Non-convex loss functions arise, for example, in specific areas such as

statistical classification, where a convex loss would tend to overemphasize misclassification

of outliers, and more generally, when one wants to allow bounded loss over unbounded

spaces. In this chapter we treat general loss functions, including non-convex ones, because

we think that they may be useful and relevant, and because their discussion clarifies the

analysis and shows what conditions are really needed, an issue that may be hidden in

explicit calculations with quadratic loss.

For randomized estimators, standard decision theory suggests taking expectation of the

loss over both the random estimator, and the design. This leads to the interpretation of

the loss for randomized estimators as given in Definition 3: L(δ, θ) = EδL(a, θ) where

a ∼ δ = δ(X). This interpretation, which in certain situations leads to optimality of

randomized estimators as shown later, is perhaps relevant when a large number of similar

estimation problems are considered together, with (roughly) the same value of the esti-

mated parameter. The law of large numbers is then often used to justify the expectation.

Perhaps one may consider repeated estimation of employment rates in a monthly Labor

Force Survey to be such a situation. But in general, statistical agencies do not use ran-

domized estimators, and their discussion in our context is theoretical.3 The latter fact

indicates that this approach to loss and randomized estimators is debatable. For exam-

ple, when the randomization does not depend on the data, which is the case in most of

the examples given later, this interpretation seems to violate the conditionality principle

which many statisticians accept4, since it takes into account possible estimators which

were not chosen to be used.

3However, the Rao-Hartley-Cochran strategy mentioned in Section 7.2 is an example of a randomized
estimator.
4See Helland (1995) for the history, a critical discussion, and references on the conditionality principle.
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Like random sampling (which is, of course, used everywhere) randomized estimators

may be seen as mixed strategies in game theoretical terminology; see, e.g., Rubinstein

(1991) and references therein for a discussion of the difficulty of interpreting mixed strate-

gies in game theory, which pertains to statistics as well.

Below is a simple example showing that without convexity, randomized estimators must

sometimes be taken into account. Consider for example the loss function of a perfectionist

defined by L(τ, θ) = 0 if τ = θ and = 1 otherwise,5 and let θ be the population mean.

Let n = 1, Υ = {0, 1}2, that is, N = 2. Then under SRS, for example, the randomized

estimator t∗ with t∗(0) = 0 or = 1/2 with probability 1/2 each, and t∗(1) = 1/2 or = 1,

again with probability 1/2, is the minimax rule with risk = 1/2. For convex loss function,

a simple application of Jensen’s inequality implies that we would achieve the same or

smaller risk by averaging t∗ to obtain the estimator t with t(0) = 1/4, t(1) = 3/4 (see

Remark 11), which for quadratic loss is minimax. However, for the perfectionist’s loss

function the risk of t equals 1; it is an estimator that is never exactly correct.

The next result says that for any symmetric loss function (convex or not) and any

strategy (P , t) having a fixed sample size n, one can find an estimator t∗ such that the

maximal risk of (Ps, t
∗) is smaller than that of (P , t), where Ps denotes SRS of size n.

This suggests that for minimax purposes or when considering maximal risk (and with the

absence of auxiliary information), only SRS needs to be considered.

The estimator t∗ turns out to be randomized, and its construction is given explicitly in

Proposition 13 below. I cannot provide a reference for this proposition; it is probably not

new, but if it is, it may be because little or no attention has been paid to non-convex loss

functions in finite population sampling. See Ferguson (1967 Theorem 4.3.1) for a related

result, where randomized rules play a similar role. The proposition shows that the fact

that SRS suffices for minimax considerations when estimating a symmetric parameter

(which implies symmetric loss) is not related to convexity.

Given an estimator t, let tπ(S,Y) = t({(π(i), yi) : i ∈ S} = t(πS, πY); see (1) and (8)

for notations. For example if t = tHT then tπ(S,Y) =
∑

i∈S yi/απ(i). For a strategy (P , t)

with a fixed sample size, let t∗ be the randomized estimator defined for a given S by

t∗(S,Y) = tπ(S,Y) = t(πS, πY) with probability
P(πS)

N !Ps(S)
for π ∈ Π, (18)

where Π is the permutation group over {1, . . . , N}. Note that the probabilities determin-

ing the randomization depend on S.6 Clearly
∑

π
P(πS)

N !Ps(S)
= 1.

5A smoothed version of this function could be studied in similar ways.
6In this case, such a t∗ is called a behavioral estimator.
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Proposition 13 Let L(τ,Y) be a symmetric loss function (convex or not) and as always

let Υ be a symmetric parameter space. Given a strategy (P , t) with fixed sample size n,

let t∗(S,Y) be the randomized estimator of (18). Then

sup
Y∈Υ

R(Ps, t
∗;Y) ≤ sup

Y∈Υ
R(P , t;Y). (19)

Proof We just repeat part of the proof of Proposition 6. Using the notation of (8), but

see also (9) and (13), we have

R(Ps, t
∗;Y) =

∑
S

∑
π

P(πS)

N !Ps(S)
L(tπ(S,Y),Y)Ps(S) =

∑
S

∑
π

P(πS)

N !
L(t(πS, πY),Y)

(1)
=

∑
π

∑
S

P(S)

N !
L(t(S, πY),Y)

(2)
=

1

N !

∑
π

∑
S

P(S)L(t(S, πY), πY)

=
1

N !

∑
π

R(P , t; πY) ≤ max
π

R(P , t; πY), (20)

where the relations marked by (1) and (2) are explained under (13). The result now

follows easily (compare to the proof of Proposition 6).

A similar result to the above holds when P does not have a fixed sample size, in which

case the left-hand side of (19) holds with Ps replaced by the conditional SRS design P̄ .

The relation between Propositions 13 and 6 is as follows. If the loss is convex we can

replace t∗ in (19) by its expectation, and obtain a lower bound by Jensen’s inequality,

and Proposition 6 follows; this is true also when the sample size is random.

We stated Propositions 12 and 13 separately only because in the context of finite pop-

ulation sampling, randomized estimators (which are needed to state Proposition 13) are

esoteric. We could have stated just Proposition 13, since it implies Proposition 12 read-

ily. To see this it suffices to note that by (11), if the estimator t is symmetric, then the

estimator t∗ defined in (18) is in fact nonrandomized, and t∗ = t.

3.5. Minimax and Bayes estimators

Minimax estimators can be obtained from Bayesian calculations. An example of this

approach concerning estimation of a proportion in a finite population is given with the

purpose of demonstrating the technique. While minimizing the maximal risk by defini-

tion, the resulting minimax rule has a higher risk than the usual estimator, the sample

proportion, in parts of the parameter space, and we discuss the comparison between the

two estimators. Most of the following discussion and much more can be found in Lehmann

and Casella (1998) and the references therein.

The problem of estimating a proportion in a finite population of size N by a sample of
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size n is first approximated by the standard decision-theoretic problem of estimating the

parameter p from a binomial distribution, that is, a sample of iid Bernoulli(p) observations.

The notation and terminology we need for the latter problem is that of Definition 3.

3.5.1. The binomial case

Consider X ∼ Binomial(n, p) and a Bayesian structure with a prior p ∼Beta(a, b). For

quadratic loss, it is well known that the Bayes estimator is the posterior expectation

d(X) = E(p|X). A standard calculation shows that the estimator

d(X) =
X

n

√
n

1 +
√

n
+

1

2(1 +
√

n)
(21)

is Bayes with respect to the above prior when a = b =
√

n/2 and that it is an equalizer,

that is, its risk is constant and does not depend on p. In fact, E(d(X)− p)2 = 1
4(1+

√
n)2

.

The following proposition is well known (see, e.g., Ferguson (1967) or Lehmann and

Casella (1998)) and readily implies the minimax result of Corollary 15 below. For defini-

tions see Definition 3.

Proposition 14 A Bayes estimator δ0 having a constant risk (equalizer) is minimax. If

δ0 is uniquely Bayes with respect to a given prior, then it is the unique minimax estimator.

Proof Let δ be another estimator, and assume δ0 is Bayes with respect to ρ. The estimator

δ0 satisfies r(δ0, ρ) =
∫

R(δ0, θ)dρ ≤ r(δ, ρ) =
∫

R(δ, θ)dρ. As R(δ0, θ) is a constant not

depending on θ, it follows that R(δ0, θ) ≤
∫

R(δ, θ)dρ ≤ supθ R(δ, θ) for all θ, and δ0 is

minimax. If another rule is minimax, then using the assumption of constant risk of δ0, it

is easy to see that it is also Bayes, and the uniqueness part follows.

Corollary 15 The estimator d(X) of (21) is the unique minimax estimator of p for

quadratic loss.

For the estimator d∗(X) = X/n, which is UMVU, we have E(d∗(X)−p)2 = p(1−p)/n,

and we see that around p = 1/2 the estimator d is slightly better than d∗ provided that

n is not small, but d∗ has smaller risk when p is not close to 1/2. Thus here, and in

the developments below where a similar phenomenon occurs, one may argue about the

quality of the estimator obtained by the minimax criterion.

3.5.2. Finite population sampling for proportion and mean

We now follow Lehmann and Casella (1998) and Hodges and Lehmann (1982). Related

results appear in Bickel and Lehmann (1981). In Corollary 16 and Proposition 17 below we

obtain minimax results without restriction to unbiased estimators (compare to Corollary

10).
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Consider SRS from a population of size N whose values are either 0 or 1, and we wish

to estimate the parameter W/N where W is the number of ones. In fact, in this case

W/N = Ȳ . Consider the prior on W , which is a mixture of binomials with Beta(a, b)

weights, that is,

P (W = w) =

∫ 1

0

(
N

w

)
pw(1− p)N−w Γ(a + b)

Γ(a)Γ(b)
pa−1(1− p)b−1dp. (22)

A reader who wants to avoid the calculations can look at numbered equations only. Let

X be the number of ones drawn in an SRS of size n. Then X|W ∼ Hypergeometric,

that is, P (X = x|W ) =
(

W
x

)(
N−W
n−x

)
/
(

N
n

)
and with standard calculations we have for some

c = c(x)

P (W = w|X = x) = cP (X = x|W = w)P (W = w) = c

∫ 1

0

(
N − n

w − x

)
pw+a−1qN−w+b−1dp

= c

∫ 1

0

(
N − n

k

)
pkqN−n−k · px+a−1qn−x+b−1dp ;

the last expression above is obtained by the substitution k = w−x where k = 0, . . . , N−n,

and it is arranged so that under the integral we observe the Bin(N − n, p) probability

function in the variable k. It is now easy to see that c = Γ(n+a+b)/[Γ(x+a)Γ(n−x+b)]

is the normalizing constant so that P (W = w|X = x) is a probability function. Using

the Bin(N − n, p) expectation we get

E(W − x|X = x) = c

∫ 1

0

(N − n)p · px+a−1qn−x+b−1dp =
(N − n)(x + a)

n + a + b
,

and therefore we obtain that the Bayes estimator is the linear estimator

d(x) = E(W/N |X = x) =
(N + a + b)x + (N − n)a

N(n + a + b)
. (23)

To compute the MSE of d, we use the relations E(X|W ) = nW/N and Var(X|W ) =

Wn(N −W )(N − n)N−2(N − 1)−1 for the hypergeometric distribution of X|W , and the

formula MSE(d)=Variance(d)+[Bias(d)]2. We then choose a, b which make the MSE con-

stant (not dependent on W ). The resulting equalizer estimator is given in (24) below and

we obtain

Corollary 16 Under SRS with sample size n and quadratic loss, the estimator

d(X) = AX/n + B, where A = 1/[1 +
√

(N − n)/(nN − n) ], B = (1−A)/2 (24)
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is minimax among symmetric estimators (depending only on X, the number of ones in

the sample) for the proportion W/N of ones in a finite population of zeros and ones.

We omit the calculations; clearly the obtained estimator is minimax, being an equalizer

and Bayes. Naturally the estimator obtained in (24) converges to that of (21) for large

N , and has similar properties: it is worse than the usual sample mean when W is not

near N/2, and it is somewhat better near N/2.

As already mentioned, for parameter spaces that are not symmetric, minimax estimators

depend on the parameter space, and their calculation may be difficult in the absence

of further restrictions on the decision rules. Corollary 16 provides a minimax rule for

estimating a proportion, in which case the parameter space is {0, 1}N . We show next that

for SRS on Υ = ΛN and quadratic loss, Corollary 16 can be extended to provide a minimax

estimator for any interval Λ ⊂ R (and more general sets). As noted by Lehmann and

Casella (1998) (see references therein), this can be obtained from the previous discussion.

See also Gabler (1990) for generalizations.

Proposition 17 Let Υ = ΛN , where Λ = [a, b] for some a ≤ b. Let Ȳ and ȳS denote the

population and sample means. Under Ps = SRS with sample size n, and quadratic loss,

the estimator d0 = (b − a)d((ȳS − a/(b − a)) + a, where d(z) = Az + B with A and B

as defined in (24), is minimax for Ȳ relative to the class of all estimators. In the case

[a, b] = [0, 1] the minimax estimator is d0 = d(YS) = AȳS + B. Moreover, the strategy

(Ps, d0) is minimax (see Definition 5) relative to the class of all strategies with a fixed

sample size n.

Proof We can assume first that Λ = [0, 1], and then apply a linear transformation. By

Corollary 7 we can restrict our attention to symmetric estimators t. By Corollary 16, the

estimator of (24) is minimax among symmetric estimators when the parameter space is

restricted to the set of extreme points of Υ, which we denote by Υe = {0, 1}N . Let E

below denote expectation with respect to the (prior) probability measure on Υe defined

by P (Y = (y1, . . . , yN)) = P (W = w)/
(

N
w

)
for any vector (y1, . . . , yN) ∈ Υe, where∑N

i=1 yi = w, w = 0, 1, . . . N , and the distribution of W is given in (22). Note that the

estimator d = AȳS + B is Bayes with respect to this prior and an equalizer on Υe. We

have

sup
Y∈Υ

R(Ps, t;Y) ≥ sup
Y∈Υe

R(Ps, t;Y)
(1)

≥ ER(Ps, t;Y)
(2)

≥ ER(Ps, d0;Y)

(3)
= sup

Y∈Υe
R(Ps, d0;Y)

(4)
= sup

Y∈Υ
R(Ps, d0;Y);

inequality (1) holds because an average is smaller than the maximum, (2) holds because
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d0 is Bayes with respect to the given prior, and (3) holds because d0 is an equalizer, that

is, R(Ps, d;Y) is constant on Υe. Finally (4) follows from the fact that R(Ps, d;Y) =∑
S Ps(S)(d(YS) − Ȳ)2 is a convex function of Y and therefore its maximum is attained

at the set of extreme points.

Proposition 6 readily implies that the strategy (Ps, d0) is minimax as stated.

It is easy to see that the above result holds for any bounded Λ ⊂ R satisfying {a, b} ⊆
Λ ⊆ [a, b] for some a, b ∈ R. By continuity arguments it also holds when Λ = (a, b). If Λ

is not convex, the estimator may take a value that is not in the parameter space, which

is allowed, as our decision space is always R. Proposition 17 is trivial if Λ is unbounded

since the maximal risk is always infinite.

For the sample space Υ = {Y :
∑N

i=1(yi − Ȳ)2 ≤ M}, Bickel and Lehmann (1981)

proved that under simple random sampling, the sample mean is minimax for quadratic

loss. Since the variance of the sample mean is proportional to
∑N

i=1(yi−Ȳ)2, the definition

of the sample space is equivalent to assuming that this variance is bounded by a given

constant. The proof uses invariance, and a reduction of the problem to estimation of

a translation parameter, and showing that the sample mean coincides with the Pitman

estimator. If the population is divided into given strata, then the usual weighted average

of the sample means in the strata is minimax when the parameter space is defined by the

condition that its variance is bounded by a given constant. Results on optimal designs

are also given.

Related results by Aggarwal (1959, 1966) for a superpopulation model are described in

Section 7.3.

4. UMVU estimators

It may be natural to hope to find estimators that have a uniformly smallest risk in

an interesting class of estimators. However, this short section describes a negative result

which indicates that such uniformly best estimates do not exist in interesting cases. This

fact justifies “weaker” optimality criteria such as the minimax, which considers the max-

imal risk rather than the risk at each value of the parameter, or the Bayes risk, which

averages the risk over the parameter space. For further references and discussions see

Cassel, Särndal, and Wretman (1977).

UMVU estimators are unbiased estimators whose MSE is smaller than that of any other

unbiased estimator for each Y ∈ Υ. We consider more general risk functions than MSE

but still use the term UMVU.
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Definition 18 A P-unbiased estimator t∗ (of a parameter θ) that is in some class of

estimators, is said to be UMVU in this class, under the design P, if

R(P , t∗;Y) ≤ R(P , t;Y) for all Y ∈ Υ (25)

for any P-unbiased estimator t of θ in this class.

We briefly discuss estimation of the population mean, and show that interesting cases

of UMVU estimators do not exist; the condition that (25) hold for all Y ∈ Υ is too strong.

Consider the so-called generalized difference estimator (Basu 1971) defined for

any design P with inclusion probabilities αi > 0 for all i ∈ N by

tGD =
∑
i∈S

yi − ei

αi

+ ẽ, where ẽ =
N∑

i =1

ei, (26)

with known but arbitrary constants e = (e1, . . . , eN). When e = 0 we obtain the Horvitz-

Thompson estimator. Note that for any e we have EP(tGD/N) = Ȳ .

Proposition 19 Let P be a design such that αi > 0 for all i ∈ N and αi < 1 for some

i ∈ N , and let θ = Ȳ. Let Υ = ΛN with Λ ⊆ R such that |Λ| ≥ 2. Consider a loss

function L(τ, θ) such that L(τ, θ) ≥ 0 for all τ and θ, and L(τ, θ) = 0 if and only if τ = θ.

Then no UMVU estimator in the class of unbiased estimators of the population mean θ

exists.

Proof If e happens to coincide with some Y ∈ Υ then tGD/N = Ȳ for any sample S,

and R(P , tGD/N ;Y) = 0. It follows that a UMVU estimator t must satisfy R(P , t;Y) = 0

for all Y ∈ Υ. The result now follows readily.

Since tGD is in the class of unbiassed linear (or affine) estimators (a linear combination

of the observations plus a constant), the proof shows that there is no UMVU estimator

in this class. This was shown by Godambe (1955). For further references see Godambe

and Joshi (1965).

Finally we point out that among symmetric unbiased estimates there do exist UMVU

estimates in a trivial manner. For example, the completeness result of Lemma 8 shows

that ȳS is the unique unbiased estimator of Ȳ that is symmetric, that is, an estimator

of the form t = t(YS). Thus ȳS is trivially UMVU among symmetric estimators. More

generally, if we restrict attention to the class of symmetric unbiased estimators of any

parameter, then at most one such estimator exists, and it is trivially UMVU in this class.
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5. Admissibility

Definition 20 A strategy (P0, t0) is admissible in a class of strategies if there is no

strategy (P , t) in this class satisfying

R(P , t;Y) ≤ R(P0, t0;Y) for all Y ∈ Υ with strict inequality for at least one Y .

An estimator t0 is admissible under a design P0 in a class of estimators if there is no

estimator t in this class satisfying

R(P0, t;Y) ≤ R(P0, t0;Y) for all Y ∈ Υ with strict inequality for at least one Y .

If the first inequality in the above definition holds, we say that the strategy (P , t) dom-

inates (P0, t0), and if the second inequality holds, we say that t dominates t0 under

P0.

Admissibility is in some sense a minimal property. If a strategy (estimator) is inad-

missible, then there is a better strategy (estimator) that will perform better (or at least

as well) under any of the criteria mentioned in this chapter. But an admissible strategy

may still be very poor. For example, it is easy to construct a finite population estima-

tion problem such that an estimator which is a constant guess that ignores the sample

altogether is admissible in a wide class, but has an arbitrarily large risk on large parts

of the parameter space. Admissibility is called Pareto optimality in the terminology of

game theory.

The next two theorems, from Scott (1975), shows that admissibility is a property of

the support of the design P defined by SP = {S ⊆ N : P(S) > 0}. In fact, if t0 is

admissible under a design P , then it is admissible under any design having the same or

smaller support. Here convexity of the loss function and randomized rules play a role, as

will be seen in the precise statements and proofs.

Theorem 21 If an estimator t0 is admissible under a design P0 in the class of all es-

timators including randomized ones, then the same holds for any design P satisfying

SP ⊆ SP0.

Proof Suppose to the contrary that there exists an estimator t1 that dominates t0 under

P . Using it, we will construct an estimator t∗ that dominates t0 under P0, contradicting

our assumption.
Let m = max{P(S)/P0(S) : S ∈ SP} and Q(S) = P(S)/mP0(S). Then by the

conditions on the supports 1 ≤ m < ∞ and 0 < Q(S) ≤ 1. Here and in the next proof
we use the abbreviation t(S) for t(S,Y), that is, we suppress the parameter Y . Consider
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the following randomized estimator t∗: if S ∈ SP0\ SP then t∗(S) = t0(S). If S ∈ SP then
t∗(S) = t1(S) w.p. Q(S) and t∗(S) = t0(S) w.p. 1 − Q(S). We claim that t∗ dominates
t0 under P0. Indeed,

R(P0, t
∗;Y)

=
∑

S∈SP
Q(S)P0(S)L(t1(S),Y) +

∑

S∈SP
[1−Q(S)]P0(S)L(t0(S),Y) +

∑

S∈SP0\ SP
P0(S)L(t0(S),Y)

= m−1
∑

S∈SP
P(S)L(t1(S),Y) +

∑

S∈SP
[1−Q(S)]P0(S)L(t0(S),Y) +

∑

S∈SP0\ SP
P0(S)L(t0(S),Y)

≤ m−1
∑

S∈SP
P(S)L(t0(S),Y) +

∑

S∈SP
[1−Q(S)]P0(S)L(t0(S),Y) +

∑

S∈SP0\ SP
P0(S)L(t0(S),Y)

=
∑

S∈SP
Q(S)P0(S)L(t0(S),Y) +

∑

S∈SP
[1−Q(S)]P0(S)L(t0(S),Y) +

∑

S∈SP0\ SP
P0(S)L(t0(S),Y)

= R(P0, t0;Y)

for all Y , with a strict inequality for at least one Y , where the inequality follows from

the assumption that t1 dominates t0 under P . Note that the estimator t∗ is randomized.

If L(τ,Y) is convex in τ we can replace t∗ by its expectation, and thus assume that t∗

is nonrandomized. See Remark 4. In this case Theorem 21 holds also for the class of

nonrandomized estimators.

For the next result we slightly generalize Scott’s (1975) formulation. Given a collection

H of real valued functions defined on subsets of N and a corresponding collection of

constants C = {ch}h∈H , define the class of designs

DH,C = {P : EPh(S) = ch for all h ∈ H}.

For H consisting of the single function h(S) = |S|, and ch = n we obtain the class of

designs with expected sample size = n. Taking H to be the set of indicator functions of

all sets of size 6= n, and ch = 0, we obtain the class of design having fixed sample size n.

These two classes were considered by Scott.

Given an estimator t0(S,Y) and parameter θ = θ(Y), the class of designs P under

which t0 is unbiased for θ is also of this kind. To see this define hY(S) = t0(S,Y), and

ch = cY = θ(Y), and set H = {hY : Y ∈ Υ}.
The class of designs of having sample size n in some interval, the class of conditional

SRS designs, see definition following (9), and other classes are of the above type, as are

their intersections.

Theorem 22 If a strategy (P0, t0) is admissible in a class of strategies having designs in

a given class D = DH,C and estimators in the class of all estimators including randomized

ones, then the same holds for any strategy (P , t0) such that P ∈ D, and SP ⊆ SP0.
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Proof For P as above, suppose to the contrary that there exist a design P1 in D,

and an estimator t1, such that the strategy (P1, t1) dominates (P , t0). Set P∗(S) =

P0(S) + m−1(P1(S) − P(S)), and note that P∗ ∈ D. Define T (S) = P1(S)/mP∗(S).

Since P0(S) −m−1P(S) ≥ 0, we have P∗(S) ≥ m−1P1(S), and therefore 0 ≤ T (S) ≤ 1.

Define the randomized estimator t∗(S) = t1(S) with probability T (S) and t∗(S) = t0(S)

with probability 1 − T (S). A calculation similar to the one in the proof of Theorem 21

shows that R(P∗, t∗;Y) dominates R(P0, t0;Y), a contradiction.

Godambe and Joshi (1965) have shown that for any design, the Horvitz-Thompson

estimator is admissible in the class of all unbiased estimators of a finite population total.

The proof we give is essentially due to Ramakrishnan (1973), extended here from MSE to

a more general convex loss function. The requirement 0 ∈ Λ is discussed after the proof.

Theorem 23 Let P be any design with αi > 0 for i = 1, 2, . . . , N , and consider the

parameter space ΛN for some set Λ satisfying 0 ∈ Λ. The Horvitz-Thompson estimator

tHT (S,Y) =
∑

i∈S yi/αi is admissible in the class of unbiased estimators for the parameter

θN =
∑N

i=1 yi provided that the loss function L(t, θ) is strictly convex in t and assumes its

minimum when t = θ.

Proof We assume P(S) > 0 implies |S| > 0 to avoid trivialities. The proof is by induction

on N . For N = 1 clearly tHT = θ1, and the result is obvious. The induction hypothesis

is that for a population of size N , R(P , t;Y) ≤ R(P , tHT ;Y) for all Y ∈ ΛN implies that

t = tHT with P-probability 1, and it is easy to see that the desired admissibility follows.

Let (P∗, t∗) be an unbiased strategy for θN+1 on a population of size N + 1 denoted by

UN+1, and consider the population UN of size N obtained by removing the last coordinate

from UN+1. On the latter population we construct a strategy (P , t) by setting

P(S) = P∗(S)+P∗(S, N+1), t(S,Y) =
1

P(S)
[P∗(S)t∗(S,Y∗)+P∗(S, N+1)t∗((S, N+1),Y∗)]

where (S, N + 1) = S ∪ {N + 1}, Y = (y1, . . . , yN), and Y∗ = (y1, . . . , yN , 0). It is easy to

see that (P , t) is unbiased for θN . For now let tHT and t∗HT denote the Horvitz-Thompson

estimators for the designs P and P∗ respectively. We claim that

R(P , tHT ;Y) = R(P∗, t∗HT ;Y∗). (27)

To see this, construct tHT and t∗HT on the same probability space (coupling) as follows.

When a set S ⊂ {1, . . . , N} or (S, N + 1) is chosen with probability P∗ as the sample for

t∗HT , let S be the chosen set for tHT . It then follows that tHT = t∗HT , and (27) follows.
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Next we claim that

R(P , t;Y) ≤ R(P∗, t∗;Y∗). (28)

It is easy to see that this follows by the convexity of L and Jensen’s inequality, given that

t is a convex combination of values of t∗. Moreover, the fact that L is strictly convex

implies strict inequality in (28) whenever t∗(S,Y∗) 6= t∗((S,N + 1),Y∗), P∗(S) > 0, and

P∗(S,N + 1) > 0.

Assume that R(P∗, t∗;Y∗) ≤ R(P∗, t∗HT ;Y∗) for all Y∗ ∈ ΛN+1. Together with (27) and

(28) we then have

R(P , t;Y) ≤ R(P , tHT ;Y) for all Y ∈ ΛN (29)

and so by the induction hypothesis

t(S,Y) = tHT (S,Y) (30)

for any S with P(S) > 0. For such sets S ⊆ {1, . . . , N} we clearly have

tHT (S,Y∗) = t∗HT (S,Y∗) for all Y∗ ∈ ΛN+1. (31)

Moreover, strict inequality would hold in (29) for any Y such that t∗(S,Y∗) 6= t∗((S, N +

1),Y∗), P∗(S) > 0, and P∗(S, N +1) > 0 for Y∗ = (y1, . . . , yN , 0). But strict inequality is

impossible since it would contradict the induction hypothesis, and therefore if P∗(S) > 0

then either P∗(S, N + 1) = 0 or t∗(S,Y∗) = t∗((S,N + 1),Y∗). In either case we then

have t(S,Y) = t∗(S,Y∗). This, together with (30) and (31), implies that

t∗(S∗,Y∗) = t∗HT (S∗,Y∗) for all Y∗ ∈ ΛN+1 (32)

for any S∗ not containing N + 1 such that P∗(S) > 0. We can repeat the argument with

the label N +1 replaced by any j, and obtain (32) for any set S∗ of size ≤ N +1. Finally,

(32) for the set S∗ = {1, . . . , N + 1} follows from this equality for all other sets S∗ and

from the fact that t∗ and t∗HT have the same expectation. This completes the induction

step.

The above result required 0 ∈ Λ. Unlike in the case of Proposition 17, we cannot assume

it “without loss of generality” by applying a linear transformation when 0 /∈ Λ. Indeed, if

Λ = {a} with a 6= 0 then the estimator t = a is better than tTH with respect to any design

such that Var
∑

i∈S 1/αi > 0. It is easy to construct less trivial examples. However, for
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A = {0, 1} and using tHT /N for estimating a proportion, the above admissibility result

holds.

It is easy to construct examples with fixed or random sample size, where the Horvitz-

Thompson estimator tHT /N for a proportion is not in the interval [0, 1] with positive

probability (a trivial example is n = 1, 0 < αi < 1 and yi ≡ 1). In this case, it is

clearly not admissible in the class of all estimators. This does not contradict Theorem 23

which requires unbiasedness (and allows designs with random sample size). For fixed-size

sample designs, the Horvitz-Thompson estimator is admissible among all estimators when

the parameter space is RN ; see Joshi (1965, 1966). It follows that for SRS of any size n,

the sample mean is an admissible estimator of the population mean. By Theorem 21 it

follows that the sample mean is admissible for any fixed-size design.

The following example shows that if the sample size is random, tHT may not be admis-

sible in the class of all estimators: set N = 2 and P({1}) = P({1, 2}) = 1/2. When the

sample {1, 2} is selected, we have tHT = y1 + 2y2, and the (biased) estimator obtained by

instead using y1 + y2 shows that tHT is not admissible.

6. Superpopulation models

6.1. Background

In superpopulation models one assumes that the given population Y = (y1, . . . , yN)

is a realization of a random vector Y = (Y1, . . . , YN) having a distribution G. We shall

refer to G as the prior . Several possibilities arise: 1. G is completely known. 2. G belongs

to a class having some known parameters and properties, e.g., distributions with certain

specified moments and possibly with some exchangeability properties. 3. G depends on

a parameter φ, that is, G = Gφ.

Design-based inference on the population Y , as the name suggests, uses the sampling

design (randomization distribution) only. Pure model-based inference on the population

Y , the prior G, or the parameter φ, refers to inference where the sampling design plays no

role, and the risk, for example is defined as expectation with respect to G of the squared

difference between the estimate and the estimand, conditioned on the sample.

A third approach combines the above two. Starting from the design-based risk R(P , t; Y ),

this approach studies the Bayes risk (see definition 3), that is, the expected risk with re-

spect to G, EGR(P , t; Y ). The optimization goal is to find a strategy (P , t) that minimizes

the latter expectation. For unbiased estimators and quadratic loss, this expectation be-

comes EGV arPt, known in the sampling literature as the anticipated variance. It is often

used to compare two design unbiased estimators when comparison of the P-variances does

not lead to clear conclusions.
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It may happen that the superpopulation assumptions involve enough symmetry and

randomness to make the sampling design inessential. For example, if Y is exchange-

able under the superpopulation model and we use a symmetric estimator, then random

sampling may be redundant since the data are assumed to be given in a random order.

We have already used the Bayesian approach, and, in fact, (22) can be seen as a prior

of the above type; however, we used it only as a technical device to arrive at a minimax

estimator, noting that the minimax criterion does not depend on the Bayesian structure.

We shall not discuss the philosophy and relevance of superpopulation models and model-

based optimality criteria here. Some discussions and references can be found, for example,

in Smith (1976), Särndal, Swensson, and Wretman(1992), Hedayat and Sinha (1991), and

Cassel, Särndal, and Wretman (1977); the latter two books also contain a discussion that

is closely related to the one that follows, with references and further results.

6.2. P-unbiased estimators

In the discussion below we consider P-unbiased estimators of the population mean

Ȳ . We shall consider quadratic loss and MSE, and the Bayes risk, which is the MSE

integrated with respect to the prior G. Theorem 30 shows that for any exchangeable prior

(superpopulation model) the Bayes risk is minimized among P-unbiased strategies by the

strategy consisting of SRS (or any design with αi = n/N) and the sample mean. This

is generalized in Theorem 31 to the case of exchangeability of a linear transformation

of the population values, and the optimal estimators are then the generalized difference

estimators (see (26)) of which Horvitz-Thompson estimators form a special case. Note

that these results involve P-unbiasedness, which is a design-based criterion, and the Bayes

risk, which is a model-based expectation over a design-based risk.

The results and techniques used next: sufficiency, completeness and the Rao-Blackwell

approach are close to those that led to Theorem 9. However, many detail are different. In

particular, here the notions of sufficiency and completeness are with respect to the prior

G rather than the design as in Section 3.2.

When we think of the population as fixed we denote it by Y ; when we want to emphasize

that under the superpopulation model it is random we denote it by Y . We used Ȳ and

ȳS for the population and sample means; we denote them by Ȳ and ȲS, when we want to

emphasize that now the population is random, and when we take expectation with respect

to G. Given Y = (Y1, . . . , YN) and a sample S, YS denotes the multiset containing all

Yi-values arising from distinct labels i ∈ S, in analogy to YS in the fixed population case.

Similarly, we may express the data D[S,YS]) as D[S, YS]), and when we want to describe

an estimator, we may write t(S, YS) instead of t(S,YS), etc.

Note that we now have two sources of randomness, the sample S ∼ P and the population
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Y ∼ G. Therefore, notations like EP , EG, and EG,P for expectations will be used, where

EG,P = EGEP . Unless otherwise stated, we consider designs that are noninformative

or ignorable, that is P(S|Y ) = P(S), independent of Y . In words, the design does not

depend on the (initially known) population values Y . This assumption allows interchange

of expectations with respect to G and P . We discuss it further in Section 6.3.

Recall that the strategy (P , t) is unbiased for Ȳ (the population mean) if t is P-

unbiased, that is, if for all Y ∈ Υ, EPt :=
∑

S P(S)t(D[S,YS]) = Ȳ . Note that the latter

expectation can also be interpreted as the conditional expectation E{t(D[S, YS]) |Y = Y}.
Recall also that for S satisfying |S| = n, ȲS = 1

n

∑
i∈S Yi, that is, ȲS = 1

|S|
∑

i∈S Yi.

Let G denote the class of exchangeable distributions, that is, distributions that

remain unchanged under permutations of the components of the vector Y .

Lemma 24 Let (P , t = t(D[S,YS]) ) be an unbiased strategy for Ȳ. Let Y = (Y1, . . . , YN) ∼
G ∈ G, and EGYi = µG. Then EG,Pt(D[S, YS]) := EG

∑
S P(S)t(S, YS) = µG. Also,

EG,P ȲS = µG.

Proof The first part of the lemma is obvious. For the second part, note that for a general

sampling design P , ȲS is not necessarily P-unbiased, so the first part does not imply the

second. We have ȲS =
∑N

i=1 YiIi/
∑N

j=1 Ij where Ii = 1 if i ∈ S and 0 otherwise. Now

EG(Ȳ |S) = µG
∑N

i=1 Ii/
∑N

j=1 Ij = µG, and the result follows.

The next two easy lemmas show completeness and sufficiency. The classical Rao-

Blackwell argument uses completeness and sufficiency as follows: given a statistic t(X)

which depends on some data X ∼ Pθ (see Definition 3), and a sufficient statistic for θ, say

W (X), the estimator t0 =E(t|W ) is a statistic since it does not depend on θ by sufficiency.

Also, t0 has the same expectation as t, but a smaller variance (by Jensen’s inequality, or

by a well-known variance decomposition formula). If W is complete, then t0 is the unique

estimator with the same expectation as t. This proves that it is a UMVU estimator of Et

(see Definition 3). A version of this argument appears below, leading to Theorem 30.

Lemma 25 Let Y = (Y1, . . . , YN) ∼ G ∈ G and let S ∼ P. Consider the data D =

D[S, YS]. Then YS is sufficient in the sense that P (D|YS) does not depend on G. (It does

depend on P, which is held fixed here.)

Proof Just note that if |S| = n, then P (D|YS) = P(S)/n! , where the n! is due to the n!

equally likely (by exchangeability) ways of pairing the elements of S with those of YS.

For the next lemma we need two new conditions, which will henceforth be assumed.

The first is that the parameter space is a product of the form Υ = ΛN , and the

second is that the design P has a fixed sample size, say n.
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Lemma 26 Let G denote the class of exchangeable distributions over a product space ΛN ,

and let Y = (Y1, . . . , YN) ∼ G ∈ G, and S ∼ P, a given design with fixed sample size

n. Let YS denotes the multiset containing all Yi-values arising from distinct labels i ∈ S.

Then YS is complete; that is, for any symmetric (permutation invariant) function h of n

variables, if EG,Ph(YS) = 0 for all G ∈ G then PG,P(h(YS) 6= 0) = 0 for all G ∈ G.

Proof The proof is similar to that of Lemma 8. For any a ∈ Λ let G be the probability

measure concentrated on (a, . . . , a) ∈ ΛN . Then clearly for this G, EG,Ph(YS) = 0 implies

h(a, . . . , a) = 0. Now let G be the exchangeable probability measure which concentrates

on (b, a, . . . , a) ∈ ΛN and all its permutations. This is used to prove h(b, a, . . . , a) = 0 as

in the proof of Lemma 8, and so on.

As usual, completeness implies uniqueness of unbiased estimators, since if there existed

two distinct unbiased estimators which are functions of YS, then their difference h would

be a non zero function whose expectation is zero, contradicting Lemma 26. The following

example shows that a fixed sample size is indeed needed in Lemma 26. If the sample size

is random with expectation n, then it is easy to see that the estimator t = 1
n

∑
i∈S Yi,

where we divide by the expected sample size n rather than |S|, satisfies EG,Pt = µG. The

same holds for the estimator ȲS = 1
|S|

∑
i∈S Yi by Lemma 24, and unless the sample size

is fixed, we have two distinct unbiased estimators of µG.

We shall now consider quadratic loss . Then R(P , t; Y ) =
∑

S P(S)(t(S, YS)− Ȳ )2 =

V arP t, and EG,P(t − µG)2 = EG
∑

S P(S)(t(S, YS) − µG)2, where the sum extends over

all subsets S (of size n) of N . The following lemma shows that for unbiased estimation

of µG, the sample mean ȲS is optimal in the sense of minimizing EG,P(t − µG)2. In fact,

Lemma 27 holds for any convex loss function, but since quadratic loss is required in all

the subsequent lemmas and theorems, we use quadratic loss also here.

Lemma 27 Let ȲS = 1
n

∑
i∈S Yi, and let t = t(D[S, YS]) be an estimator satisfying

EG,Pt(D[S, YS]) = µG. Then

EG,P(ȲS − µG)2 ≤ EG,P(t− µG)2. (33)

In particular this holds for any P-unbiased estimator t of the population mean Ȳ.

Proof The lemma follows by a standard Rao-Blackwell argument applied to the quadratic

loss function, and using the facts that YS is sufficient and complete for the parameter G,

and that EG,P ȲS = µG. The latter equality and the last part about P-unbiased estimators

follow from Lemma 24.

The next lemma is a standard variance decomposition. Recall the notation Ȳ =
1
N

∑N
i=1 Yi, and the fact that for a P-unbiased estimator of Ȳ we have EP(t|Y ) = Ȳ .
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Lemma 28 Let t be a P-unbiased estimator of Ȳ. Then VarG,P t := EG,P(t − µG)2 =

EGV arPt+EG(Ȳ − µG)2 =EG
∑

S P(S)(t(S, YS)− Ȳ )2+EG(Ȳ − µG)2.

Lemmas 27 and 28 imply

Lemma 29 Let P be any design with fixed sample size n, t = t(D[S,YS]) a P-unbiased

estimator of Ȳ, and let G be any exchangeable (prior) distribution on the population

Y = (Y1, . . . , YN). Then

EGV arP ȲS = EGR(P , ȲS; Y ) ≤ EGV arPt = EGR(P , t; Y ).

The above result compares a P-unbiased estimator t to the estimator ȲS, which in

general is not P-unbiased. In fact, the strategy (P , ȲS) is unbiased if and only if αi = n/N .

Note that EGV arP ȲS = EG
∑

S P(S)(ȲS − Ȳ )2 = EG
∑

π P(πS)(ȲπS − Ȳ )2 is constant as

a function of P for all designs having sample size n, since by exchangeability ȲπS are

identically distributed for all permutations π. Thus we obtain the following theorem that

compares the Bayes risk of unbiased strategies:

Theorem 30 Any strategy (P0, ȲS) with fixed sample size n, and αi = n/N , is optimal in

the class of P-unbiased (for the population mean) strategies (P , t = t(D[S, YS]) ) having

sample size n, in the sense that for any G ∈ G,

EGR(P0, ȲS; Y ) ≤ EGR(P , t; Y ). (34)

The above result can be generalized as follows. Suppose that we have reason to be-

lieve that our units are not exchangeable. For example, they may have different known

average sizes ai, that is, µi := EGYi = ai and, more generally, µi = EGYi = aiµ + bi and

perhaps also EG(Yi − µi)
2 = a2

i σ
2. The known constants ai, bi can be viewed as auxiliary

information. This leads to Theorem 31 below, in which we assume that the variables

(Y1− b1)/a1, . . . , (YN − bN)/aN have an exchangeable prior (superpopulation model) with

known constants ai > 0 and bi. We set
∑N

i=1 ai = N without loss of generality.

Theorem 31 Let ((Y1 − b1)/a1, . . . , (YN − bN)/aN) ∼ G ∈ G, and

tGD0 =
∑
i∈S

Yi − bi

αi

+ b̃ , where b̃ =
N∑

i =1

bi .

Let P0 be any design having a fixed sample size n, and αi = ain/N . The strategy

(P0,
1
N

tGD0) is optimal in the class of P-unbiased (for the population mean) strategies
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(P , t = t(D[S, YS]) ) having sample size n, in the sense that

EGR(P0,
1
N tGD0 ; Y ) ≤ EGR(P , t; Y ). (35)

Proof Define Zi = (Yi−bi)
ai

+ b̄, where b̄ = 1
N

∑N
i=1 bi, and Z = (Z1, . . . , ZN). Then

Z̄S := 1
n

∑
i∈S Zi = 1

N
tGD0 . The proof is the same as that of Theorem 30, applied to the

above Z.

Theorem 31 is due to Cassel, Särndal, and Wretman (1977). The special case of bi = 0

shows that Horvitz-Thompson strategies, that is, any strategy (P0,
1
N

tHT ) with αi =

ain/N and the corresponding estimate 1
N

tHT = 1
N

∑
i∈S yi/αi, have a minimal Bayes risk

among P-unbiased (for the population mean) strategies for priors such that the vector

(Y1/a1, . . . , YN/aN) is exchangeable. In this case, the expectations EYi are proportional to

some known constants, and any design of fixed sample size n with inclusion probabilities

that are proportional to those constants and a corresponding Horvitz-Thompson estimator

form an optimal strategy with respect to Bayes risk.

6.3. Linear prediction

We consider estimation of the population mean on the basis of a sample from the random

population Y , where Y ∼ G, to be specified later. Under such a superpopulation model,

the population mean Ȳ = 1
N

∑N
i=1 Yi is a random variable which we are trying to predict.

From the relation Ȳ = n
N

ȲS + (1− n
N

)ȲSc we see that when D[S, YS] is observed, our task

is to predict ȲSc = 1
N−n

∑
i∈Sc Yi, where n = |S| and Sc denotes the complement of S. We

consider momentarily the possibility that the design depends on the population values, in

which case the design is said to be informative, and write P(S|Y ) for the probability

of sampling S given that the population vector is Y . Let g(y), y ∈ RN denote a density

of the prior G (which may depend on a parameter). Then the predictive density of

YSc , the unobserved part of Y given the data, is

f(ySc |S, yS) = P(S|yS, ySc)g(yS, ySc)/
∫
P(S|yS, ySc)g(yS, ySc)dySc .

The design is noninformative or ignorable if P(S|Y ) = P(S), independent of Y .

Adaptive designs satisfy P(S|Y ) = P(S|YS); that is, the sample may depend on the

observed y-values, but not on the unobserved ones. Such designs arise when the sample

is selected sequentially: first some units are sampled, and the choice of the units that

are added to the sample depends on the y’s already observed; see Thompson and Seber
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(1996) and references therein. In either the ignorable or the adaptive case we obtain

f(ySc |S, yS) = g(yS, ySc)/
∫

g(yS, ySc)dySc ,

and we see that the design does not play a role in the predictive density. It is therefore

not surprising that the predictive (model-based, Bayes) optimality result of Theorem 32

below is not stated in terms of a sampling design.

We need some definitions. A statistic t = t(S, YS) is said to be a linear predictor

(or estimator) if it is of the form t(S, YS) =
∑

i∈S riYi + q, where the constants ri, q may

depend on S.

Let s be a given subset of N . Given a statistic t = t(S, YS) we can fix the set s, and

consider the random variable t(s, Ys) for the given fixed set s and Y ∼ G. The estimator

t is said to be a G-unbiased predictor of the population mean Ȳ if EG(t(s, Ys)− Ȳ ) = 0

for every fixed s ⊂ N . See, e.g., Cassel, Särndal, and Wretman (1977). G-unbiased

predictors of other parameters are defined similarly.

The above definition and the theorem below are written in terms of a fixed set (or

nonrandom sample) s and expectations in the form EG[ · ], taken with respect to Y ∼ G.

An equivalent formulation would be to consider a random S and replace these expectations

by EG[ · |S = s] provided that Y and S are independent, which means that the design P
is ignorable. If EG[(t(s, Ys)− Ȳ )|S = s] = 0 for an ignorable design P , then we can now

take expectation with respect to S ∼ P , to obtain EP,G,(t− Ȳ ) = 0. Exchanging the order

of the expectations, it is easy to see that a G-unbiased predictor t satisfies EG,P(t− Ȳ ) = 0

for any ignorable design P . These operations cannot be done if P is informative, that is,

if it depends on Y .

On the other hand, for any design P (ignorable or not), a P-unbiased estimate t of Ȳ

satisfies EG,P(t− Ȳ ) = 0 for any G.

Theorem 32 below, which is one of many results on optimality in the class of G- unbiased

predictors, appears in Hedayat and Sinha (1991) with further references. A closely related

result appears in Royall (1970b). The auxiliary variables xi, bi below are assumed to be

known constants.

Theorem 32 Let Y ∼ G ∈ GL, where GL is a family of distributions such that Zi =
(Yi−bi)

xi
satisfy EGZi = µ, V arGZi = σ2, and CorrG(Zi, Zj) = ρ for all i 6= j for some

(unknown) (µ, σ, ρ) ∈ Θ, a parameter space which contains at least two distinct values

of µ, and let xi, bi be known. Let s ⊂ N be fixed and |s| = n, and consider the linear

predictor

t∗ = t∗(s, Ys) =
n

N
Ȳs + (1− n

N
)(Z̄s x̄sc + b̄sc),
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where Ȳs = 1
n

∑
i∈s Yi, Z̄s = 1

n

∑
i∈s Zi, sc is the complement of s in N ,

x̄sc = 1
N−n

∑
i∈sc xi, and b̄sc = 1

N−n

∑
i∈sc bi. Then t∗ is G-unbiased for any G ∈ GL, and

EG(t∗(s, Ys)− Ȳ )2 ≤ EG(t(s, Ys)− Ȳ )2

for any linear predictor t of Ȳ that is G-unbiased for all G ∈ GL.

Theorem 33 Under the conditions of Theorem 32 let now S be a random sample satis-

fying S ∼ P where P is any ignorable design. Then

EG,P(t∗(S, YS)− Ȳ )2 ≤ EG,P(t(S, YS)− Ȳ )2

for any linear predictor t of the population mean Ȳ , that is G-unbiased for all G ∈ GL.

Proof of Theorem 33 This follows from the inequality of Theorem 32 by taking P
expectation and exchanging the order of expectations as explained above for ignorable

designs.

Proof of Theorem 32 The proof is almost the same as in Hedayat and Sinha (1991).

We can express any linear predictor in the form

t(s, Ys) =
n

N
Ȳs + (1− n

N
)t̂(s, Ys), where t̂(s, Ys) =

∑
i∈s

ciYi + d.

We have Ȳ = n
N

Ȳs + (1− n
N

)Ȳsc , where Ȳsc = 1
N−n

∑
i∈sc Yi, and therefore t is G-unbiased

if and only if EG(t̂ − Ȳsc) = 0, which is equivalent to
∑

i∈s ci(xiµ + bi) + d = x̄scµ + b̄sc .

The latter equality holds for two distinct values of µ if and only if

∑
i∈s

cibi + d = b̄sc , and
∑
i∈s

cixi = x̄sc . (36)

It suffices to minimize

EG(t̂− Ȳsc)2 = V arG(t̂− Ȳsc) = V arG t̂ + V arGȲsc − 2 CovG(t̂, Ȳsc).

Using (36), it is easy to calculate that CovG(t, Ȳsc) = ρσ2x̄2
sc . Therefore, the above

minimization is achieved by finding t̂ satisfying (36), and having a minimal variance. A

straightforward expansion of the variance and (36) lead to

V arG t̂ = σ2[ ρ(
∑
i∈s

cixi)
2 + (1− ρ)

∑
i∈s

c2
i x

2
i ] = σ2[ ρx̄2

sc + (1− ρ)
∑
i∈s

c2
i x

2
i ].
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We can now use the Lagrange method to minimize
∑

i∈s c2
i x

2
i subject to the constraint∑

i∈s cixi = x̄sc from (36). We readily obtain the solution ci = x̄sc/nxi. From (36) we

can now obtain d, and putting it all together with some simple calculations, the result

follows.

It is now possible to write an explicit expression of EG(t∗(s, Ys) − Ȳ )2 for any set s,

and minimize over s of a given size, thus obtaining an efficient purposive (nonrandom)

sample. Such considerations led Royall (1970b) to advocate purposive rather than ran-

dom sample selection. This approach, and the concept of G-unbiasedness depend on

the superpopulation model, unlike man-made randomness and P-unbiasedness where the

statistician controls the randomization procedure. The efficiency of purposive designs

constructed in the above manner is sensitive to the choice of the prior or superpopula-

tion model and therefore robustness issues arise; see, e.g., Scott, Brewer, and Ho (1978),

Hansen, Madow, and Tepping (1983), and references therein. See also Valliant, Dorfman,

and Royall (2000), Mukhopadhyay (1998), and Chaudhuri and Stenger (1992) for further

discussion and references on the issues arising here, and in other parts of this chapter.

7. Beyond simple random sampling

We have so far concentrated on relatively simple models, and for many results (but not

all) on simple sampling designs, with emphasis on (conditional) simple random sampling.

We now discuss a few examples of results on various well-known sampling designs, and

more general models. Only parts of the results are proved, and other parts are explained

or stated without a proof. Here, as in the whole chapter, the results given constitute a

sample and certainly not a survey. In all examples below only quadratic loss and the

corresponding MSE are considered.

7.1. pps cluster sampling

Related results to Proposition 12, but for cluster sampling, with clusters of different

sizes and when the estimated parameter is a weighted average (by cluster size) of the

cluster means, were given by Scott and Smith (1975), and Scott (1977). They consider

Bernoulli sampling, that is, sampling n clusters with replacement, where unit i is

drawn with probability pi in each draw, and in particular the case of probability pro-

portional to size (pps) sampling, where pi are proportional to cluster size. They

show that under certain conditions, the pps strategy minimizes supYMSE for the pps-

Horvitz-Thompson estimator in the class of Bernoulli designs with expected sample size

n. When the conditions are relaxed, approximate minimaxity is derived.
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7.2. Approximate minimax and the Rao-Hartley-Cochran strategy

We now describe results of Cheng and Li (1983,1987) which extend the results of

Section 7.1. Further references can be found in these papers. Consider a population

Y = (y1, . . . , yN) satisfying yi = θxi + εi, i = 1, . . . , N where εi = δig(xi) are nonrandom

errors, the xi’s and g are known, and δ = (δ1, . . . , δN) belongs to some known set L, and

θ ∈ Θ, some suitable parameter space, is an unknown nuisance parameter.

Given a sample S, a linear estimator is of the form t(S, Y ) =
∑

i∈S rsi yi, that is, a

linear combination of the observations with weights that may depend on S. Let rt
s (rs)

denotes the row (column) vector rt
s = (rs1, . . . , rsN), where for i /∈ S we set rsi = 0. For

R = {rs : S ∈ 2N} we set tR(S, Y ) =
∑

i∈S rsi yi = rt
sY . A strategy consists of a pair

(P , tR(S, Y ) ). Our goal is to estimate the population mean Ȳ =
∑N

i=1 yi/N using the

auxiliary information, and we look for a strategy that minimizes (approximately) the risk

sup
θ∈Θ,δ∈L

∑
S

P(S)(
∑
i∈S

rsi yi − Ȳ)2.

Set xt = (x1, . . . , xN), 1 an N -vector of 1’s, X̄ =
∑N

i=1 xi/N , and let G be the N × N

diagonal matrix G = diag(g(x1), . . . , g(xN)). We have

∑
S

P(S)(
∑
i∈S

rsi yi −
N∑

i=1

yi/N)2 =
∑

S

P(S)(θx + Gδ)t(rs − 1/N)(rs − 1/N)t(θx + Gδ),

and it is easy to see that if Θ is unbounded then the risk is bounded if and only

if (rs − 1/N)tx = 0. If we restrict our choice to such rs’s, then we guarantee that∑
i∈S rsi xi = X̄, so that the linear coefficients are calibrated for X̄. Such a strategy is

called representative.

In order to describe one of the results from Cheng and Li (1983) we now define the

Rao-Hartley-Cochran (RHC) strategy. In order to obtain a sample of size n, divide the

population at random (all partition having equal probabilities) into n groups of predeter-

mined sizes Nj such that
∑n

j=1 Nj = N . Let Xj be the sum of the xi’s in group j. Draws

one element from each group, so that if the ith unit is in the jth group, it is drawn with

probability xi/Xj, and denote its y-value by yj and its x-value by xj. The Rao-Hartley-

Cochran estimator for the population mean Y is then tRHC =
∑n

j=1 Xj yj/Nxj.

Note that this (P-unbiased) estimator is not of the type t(S,YS) considered in this

chapter, which are functions of the sampled set S and the corresponding y-values. The

quantities Xj are random since they depend on the random partition, with distribution
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depending on the data D[S,YS] (actually, on S). Hence it is a randomized estimator.7

With convex loss we could replace Xj by E(Xj|S) and by Jensen’s inequality the risk is

reduced (see Remark 4). This calculation is usually complex and therefore it is avoided.

For suitable L and g, and under assumptions relating n,N , and the xi’s which require

that n largest xi’s are not too large, Cheng and Li (1983) show that the risk of the RHC

strategy is bounded by 1+ε times the maximal risk supθ∈Θ,δ∈L

∑
S P(S)(

∑
i∈S rsi yi−Ȳ)2,

where an explicit bound on ε in terms of the xi’s is given. Thus the RHC strategy is

approximate minimax. The details will not be given here.

Cheng and Li (1987) show interesting relation between models as above and super-

population models where the εi’s are random variables. Such a superpopulation model

is considered in Section 7.3.

7.3. Minimax linear esimation in a superpopulation model

Our next discussion concerns a superpopulation model that is closely related to the

one given in Theorem 32. The results stated here are from Stenger (2002).

Consider a population Y = (Y1, . . . , YN) ∼ G (see the notation in Section 6.1) generated

according to the superpopulation model Yi = θxi + εi, where εi are random variables

satisfying Eεi = 0, Cov(εi, εj) = γuij , the xi’s are known, i, j ∈ N , γ is unknown and

the uij’s are discussed below. Our goal is to estimate the parameter θ on the basis of a

sample of size n. Writing Zi := Yi/xi = θ + εi/xi we see the similarity to the model of

Theorem 32, where now we allow a more general covariance structure.

Parts of the discussion that follows are similar to that of Section 7.2; however, here we

are dealing with a superpopulation model. Given a sample S, a linear estimator is

of the form t(S, Y ) =
∑

i∈S rsiYi, that is, a linear combination of the observations with

weights that may depend on S. For R = {rs : S ∈ 2N} we set tR(S, Y ) =
∑

i∈S rsiYi =

rt
sY, where rt

s denotes the row vector (rs1, . . . , rsN), and for i /∈ S we set rsi = 0.

Let U denote the N×N matrix with entries uij. We assume that U ∈ B, some (known)

class of positive definite matrices. For S fixed, the usual MSE decomposition to variance

and bias squared yields

EG(
∑
i∈S

rsiYi − θ)2 = γrt
sUrs + θ2(

∑
i∈S

rsixi − 1). (37)

A strategy consists of a pair (P , tR(S, Y ) ). We have

EG,P(
∑
i∈S

rsiYi − θ)2 =
∑

S

P(S)EG(
∑
i∈S

rsiYi − θ)2,

7Since the probabilities determining the randomization depend on S, tRHC is a behavioral estimator.
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and here we define a minimax strategy as the strategy (P , tR) minimizing

sup
θ∈R,U∈B

EG,P(
∑
i∈S

rsiYi − θ)2. (38)

In view of (37) the expression under the sup is arbitrarily large for large values of θ, unless

we set
∑

i∈S rsixi − 1 = 0 for all S in the support of P . This condition is equivalent to

EG
∑

i∈S rsiYi = θ for such S, and hence the same holds for EG,P , and our estimators

are unbiased (see Section 6.3). If U is known, that is, |B| = 1, the problem reduces to

finding a set S that minimizes infrs{rt
sUrs :

∑
i∈S rsixi − 1 = 0}, and we conclude that

the minimax strategy is degenerate, concentrated at a minimizing set S. Thus for this

problem, random sampling is not required. Clearly the minimizing S depends on the xi’s

and U . Degenerate designs are called purposive sampling.

Next consider |B| > 1, and suppose that the covariance matrix U is in the set of

diagonal matrices B = {W = diag(w1, . . . , wN) : wi > 0 ∀i, ∑
βiwi ≤ 1} for some given

β1, . . . , βN > 0. Since the matrices in B are diagonal, the εi’s are uncorrelated. Assume

αi := nβix
2
i /

∑N
i=1 βix

2
i ≤ 1 for all i ∈ N . Stenger’s (2002) result is

Theorem 34 A minimax strategy (P0, tR0(S, Y ) ), minimizing (38) among strategies con-

sisting of size n designs and linear estimators, is given by any size n design P0 having

inclusion probabilities αi = nβix
2
i /

∑N
i=1 βix

2
i , and tR0 = 1

n

∑
i∈S Yi/xi.

Proof By (37) and the discussion following (38), the problem of finding the strategy

(P , tR) minimizing (38), that is, the minimax strategy, is equivalent to minimizing

sup
W∈B

∑
S

rt
sWrsP(S) subject to rt

sx− 1 = 0. (39)

For a given S, W , and x = (x1, . . . , xN), let θ̂S(W ) be the linear estimator
∑

i∈S rsiYi

derived by minimizing rt
sWrs subject to rt

sx − 1 =
∑

i∈S rsixi − 1 = 0. Using Lagrange

multipliers we obtain rsi = xi/wiP
i∈S x2

i /wi
for i ∈ S, and therefore θ̂S(W ) =

P
i∈S xiYi/wiP
i∈S x2

i /wi
. It is

easy to see that for any P the same vectors rs also minimize
∑

S rt
sWrsP(S) subject to

the condition rt
sx− 1 = 0 holding for all S.

By compactness, the sup in (39) is attained at some V = diag(v1, . . . , vN) ∈ B, and

therefore the vectors rs minimizing (39) must satisfy rsi = rsi(V ) = xi/viP
i∈S x2

i /vi
for i ∈ S.

Note that for this rs = rs(V ) we have γrt
sWrs=VarW θ̂S(V ), where VarW is the variance

with respect to the model G when W is the true covariance matrix. It follows that finding
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the minimax strategy is equivalent to finding a design P and V ∈ B minimizing

sup
W∈B

∑
S

V arW θ̂S(V )P(S). (40)

Let V0 = diag(v1, . . . , vN) where vi = x2
i /

∑N
i=1 βix

2
i . Then for |S| = n, θ̂S(V0) =

1
n

∑
i∈S Yi/xi, V arU θ̂S(V0) = γ

n2

∑
i∈S uii/x

2
i , and V arV0 θ̂S(V0) = γ

n
(1/

∑N
i=1 βix

2
i ), which

is independent of S; this will turn out to be useful in (41) below.

Let P0 be any design with inclusion probabilities αi = nβix
2
i /

∑N
i=1 βix

2
i . See Chaudhuri

and Vos (1988, Part B) for a survey of methods for construction of such designs. Since

αi =
∑

S:S � iP(S), we have for all V, U ∈ B and any design P

∑
S

V arU θ̂S(V0)P0(S) =
γ

n2

N∑
i=1

αiuii/x
2
i =

γ

n

N∑
i=1

βiuii/

N∑
i=1

βix
2
i

≤ γ

n
(1/

N∑
i=1

βix
2
i ) = V arV0 θ̂S(V0) =

∑
S

V arV0 θ̂S(V0)P(S) (41)

≤
∑

S

V arV0 θ̂S(V )P(S) ≤ sup
W∈B

∑
S

V arW θ̂S(V )P(S),

where the first inequality holds because U ∈ B, and the second because V = V0 minimizes

V arV0 θ̂S(V ) by definition of θ̂S(W ). It follows that for any V ∈ B and any design P

sup
W∈B

∑
S

V arW θ̂S(V0)P0(S) ≤ sup
W∈B

∑
S

V arW θ̂S(V )P(S), (42)

and the strategy (P0, r(V0)) minimizes the expression in (40), and hence it is the minimax

strategy in the sense defined in (38).

Unlike the result of Theorem 32, which concerns estimation or prediction of the pop-

ulation mean Ȳ , the problem of estimating the regression parameter θ discusses above

and the sample selection based on the xi’s may be viewed as belonging to the area of

optimal regression design rather than sampling. Note in particular that even if the whole

population (Y1, . . . , YN) is observed, the parameter θ is not determined. Stenger (2002)

discusses also the problem of predicting Ȳ , under the same regression model, and proves

existence of minimax strategies. Again, purposive sampling suffices when |B| = 1, and

random sampling is required for |B| > 1.

Returning to the problem of estimating the population mean under a superpopulation

model, we now discuss the seminal work of Aggarwal (1959, 1966). The population

Y = (Y1, . . . , YN) is distributed according to G ∈ H, where H is the class of distributions
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G that are concentrated on a hyperplane in RN of the form Y1 + . . . YN = constant, say

NµG, and subject to

EG
N∑

i=1

(Yi − µG)2 ≤ M (43)

for some M > 0. Setting EGYi = µG,i, and VarGYi = σ2
G,i, we can express that latter

condition as
∑N

i=1[σ
2
G,i + (µG,i − µG)2] ≤ M . The goal is to estimate the population mean

Ȳ which here equals µG. Under Ps, simple random sampling of n observations, consider

the problem of finding the minimax eatimator, that is, the estimator t minimizing the

risk supG∈HEPs,G(t(S, Y )− Ȳ )2. Aggarwal (1959) uses Bayesian calculations (see Section

3.5) to show that the minimax estimator is the sample mean.

If the population is divided into given strata, and simple random sampling with a given

sample size is carried out in each stratum, and if in each stratum a superpopulation model

of the above kind holds (with the bound Mi instead of M of (43) for the ith stratum), then

the usual weighted sum of the strata means is shown to be minimax. For a statistician

who can choose the sample sizes, and the cost of sampling is added to the above risk,

Aggarwal (1959) provides the minimax strategy8, consisting of the same weighted mean,

and where naturally the sample sizes in the strata depend on the bounds Mi, and the cost

of sampling in each stratum.

Aggarwal (1966) provides similar results for two-stage sampling. Now the population

is divided into given subgroups called primary units (or clusters). A simple random

sample of primary units (clusters) is selected in the first stage (whereas in stratified

sampling all strata are sampled), and a second-stage simple random sampling is carried

out in each of the selected clusters. The superpopulation model constrains the cluster

means to be on a hyperplane, as well as the Y ’s within each cluster, with conditions

similar to (43) within and between clusters, and suitable bounds replacing M . With

weights computed in terms of these bounds and the sample sizes, a weighted average of

the sample means in the sampled clusters is shown to be minimax for given sample sizes.

A minimax allocations of sample sizes that depends on the bounds and the sampling costs

is also given, which together with the above estimator comprise a minimax strategy.8

8. List of main notations

Y = (y1, . . . , yN), a finite population of size N . N = {1, . . . , N}. S ⊆ N , a sample.

YS - the multiset containing all yi-values arising from distinct labels i ∈ S.

8Among strategies based on simple random sampling.
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Y = (Y1, . . . , YN), a random finite population of size N under a superpopulation model.

G - distribution of Y (prior or superpopulation model). G - class of exchangeable priors.

YS - the multiset containing all Yi-values arising from distinct labels i ∈ S.

Ȳ = 1
N

∑N
i=1 yi, the population mean. Ȳ = 1

N

∑N
i=1 Yi, the population mean under a

superpopulation model.

ȲS = 1
n

∑
i∈S yi, the sample mean, where n = |S|. ȲS = 1

n

∑
i∈S Yi, the sample mean

under a superpopulation model.

D = D[S,Y ] = {(i, yi) : i ∈ S}, the data.

t = t(D) = t({(i, yi) : i ∈ S}) - an estimator. We also use t(D[(S,YS)]), t(S,YS), or

t(S,Y). Under a superpopulation model we use t({(i, Yi) : i ∈ S}) or t(D[(S, YS)]), etc.

P - a sampling design (probability over subsets S of N ). αi = P({i ∈ S}), inclusion

probabilities.

SRS = Ps - simple random sampling without replacement, also SRS.

tHT =
∑

i∈S yi/αi - the Horvitz-Thompson estimator.

L(t,Y) - loss when the estimator takes the value t.

R(P , t;Y) := EPL(t,Y) =
∑

S P(S)L(t(D[S,YS]),Y) - risk.
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