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Abstract

Unlike the usual stochastic order, total positivity order is closed under conditioning. Here we
provide a general formulation of the preservation properties of the order under conditioning; we study
certain properties of the order including translation properties and the implications of having equality
in the inequality defining the order. Specializing to the multivariate normal distribution, the study of
total positivity order leads to new cones defined in terms of covariance M-matrices related to positive
dependence, whose properties we study.
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1. Introduction

Stochastic order relations have been used to compare different features of random quan-
tities, e.g. location, variability, dependence, etc. The reader is referred to [13, 11] for an
introduction to stochastic orders.
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In this paper we discuss the multivariate total positivity order, also known as multivari-
ate likelihood ratio order. This order is stronger than the usual stochastic order. Whereas
stochastic order is not preserved under conditioning, the stronger total positivity order does
have such a closure property which is often needed in applications. It is this stronger prop-
erty which makes it interesting and useful (see [15]). This is analogous and connected to the
fact that association of random variables is not closed under conditioning, but the stronger
condition of MTP2 (also known as FKG condition, or affiliation) does possess such a clo-
sure property. For the FKG condition the reader is referred to [1,3,12,9]. Karlin and Rinott
[5] provided a review of MTP2 distributions. The term affiliation was coined by Milgrom
and Weber [10], who studied its properties in the context of auction theory. A dependence
ordering involving a TP2 condition has been introduced by Kimeldorf and Sampson [8] for
distributions in the same Fréchet class (see also [4,2]).

The likelihood ratio order for univariate densities f, g is defined by requiring that the
ratio f/g be increasing. It is well known that this order is stronger than the usual stochastic
order. For multivariate densities, by itself, the condition f/g increasing (in each variable)
does not lead to useful results. The condition that f/g is increasing is necessary but not
sufficient for the TP order; together with the condition that f is MTP2 it is also sufficient.
We will assume the existence of densities with respect to a product measure on Rd or a
more general lattice, which includes discrete distributions. It is possible to define conditions
like the MTP2 in terms of the associated probability rather than the density. The results are
essentially the same.

We will focus our attention on some properties of total positivity order in general, and
with more detail when applied to multinormal distributions. In Section 2 we provide a
general formulation of the preservation-under-conditioning properties of the order, and
applications. The order is defined by an inequality and we study the case of equality. We
also characterize the order for translations and convolutions. In Sections 3 we focus on
multinormal distributions. We will need some results about covariance M-matrices and a
related order, that have some interest of their own, and will be studied in Section 4. We then
show that adding a positive deterministic vector to a multinormal random vector produces
an increase in the total positivity order if and only if the vector lies in a cone defined by the
covariance matrix. This result shows the interaction between the location comparison and
the dependence that is captured by the likelihood ratio order.

2. General results

In this section we define the total positivity order and we study some of its properties.
Using the framework of Karlin and Rinott [5] we consider a product lattice X := ×d

i=1Xi

and a product measure � on this lattice. Densities are taken with respect to d�. For the sake
of simplicity we will write dx instead of d�(x).

Let J ⊆ {1, . . . , d}, and XJ := ×i∈J Xi ; for x ∈ X let xJ denote a vector in XJ

constructed by using only the coordinates in J of x. For x = (x1, . . . , xd) ∈ X and
J = {1, . . . , d} \ i set x−i := xJ = (x1, . . . , xi−1, xi+1, . . . , xd) ∈ X−i := XJ . For
x, y ∈ X we set x ∨ y = (max{x1, y1}, . . . , max{xd, yd}), x ∧ y = (min{x1, y1}, . . . ,
min{xd, yd}).
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Definition 2.1. Let f and g be densities defined on X .
(a) We say f �TP g if

f (x)g(y)�f (x ∧ y)g(x ∨ y) for all x, y ∈ X . (2.1)

(b) We say that a density f is MTP2 if f �TP f .

Given an X -valued random quantity X, we denote its density by fX and write X �TP Y
whenever fX �TP fY. Shaked and Shantikumar [13] denote the order �TP by � lr .

We mention briefly the following facts that can be found in [11]:

Lemma 2.2.
(a) The relation f �TP g implies that h(x) := g(x)/f (x) is increasing in x. The converse

is not true in general.
(b) If either f or g is MTP2 then f �TP g if and only if h(x) := g(x)/f (x) is increasing.
(c) For MTP2 densities the relation �TP is a partial order, that is, it is reflexive, antisym-

metric and transitive.

Definition 2.3.
(a) Given two random quantities X, Y, we say that X� stY if E[�(X)]�

E[�(Y)] for all nondecreasing functions �.
(b) A random vector X is associated if Cov[�(X), �(X)]�0 for all nondecreasing functions

�, �.

An important consequence of the total positivity order is the following result by Holley
[3] which says that it implies stochastic order, and the FKG inequality which says that the
FKG or MTP2 condition implies association. For a proof of these results see, e.g., [11]. It
is well known that part (a) implies part (b) easily.

Proposition 2.4. If X �TP Y then X� stY. (b) If fX is MTP2 then X is associated.

Stochastic order is not preserved under conditioning.As we shall see, total positivity order
is preserved under certain conditioning, and thus, if the total positivity order holds, we are
guaranteed stochastic order also after conditioning. The following proposition generalizes
and unifies various previous results on conditioning with a very simple proof. In order to
state it we need some notation. Given A, B ⊆ X we denote A∨B = {a∨b : a ∈ A, b ∈ B},
and A ∧ B = {a ∧ b : a ∈ A, b ∈ B}. We write A�B if a�b for all a ∈ A and b ∈ B.

Theorem 2.5.
(a) Let A, B ⊆ X satisfy A ∨ B ⊆ B, A ∧ B ⊆ A. Then X �TP Y, implies

[X|X ∈ A] �TP [Y|Y ∈ B]. (2.2)

(b) Conversely, if (2.2) holds for all A, B as above then X �TP Y.

Proof.
(a) For all x, y ∈ X , the assumptions imply, with I denoting indicator function,

IA(x)IB(y)�IA(x ∧ y)IB(x ∨ y) and fX(x)fY(y)�fX(x ∧ y)fY(x ∨ y).
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Since fX|A(x) := fX|X∈A(x) = fX(x)IA(x)/P (X ∈ A), we have

fX|A(x)fY|B(y)�fX|A(x ∧ y)fY|B(x ∨ y) for all x, y ∈ X .

(b) Just take (2.2) with A = B = X . �

Remark 2.6. The following are examples where Theorem 2.5 applies. Some special cases
were proved in the literature in various ways, including arguments which require differen-
tiation.

(i) Shaked and Shanthikumar [13, Theorem 4E1, p. 133] consider the special case where
A = B are rectangular sets. In fact any sublattice will do.

(ii) Another special case is when A and B are any sets such that A�B. Singletons are of
special interest.

(iii) An example where we do not necessarily have A�B is the rectangles defined by
A = [a, b], B = [c, d] with a�c, b�d.

(iv) If A is a decreasing set and B an increasing set (namely, their indicators are, respectively,
decreasing and increasing functions), then the conditions hold.

(v) Often there is interest in conditioning on a subset of the variables being in some suitable
set. In this case Theorem 2.5 is applied with A and B in XJ where J is the set of indices
of the variables on which we condition. See (2.4) below.

Note that the sets in (ii) and (iv) above need not be sublattices. It is easy to see that for
[X|X ∈ A] to be MTP2 it is necessary that A be a lattice. Hence (ii) and (iv) can provide
natural examples where the TP order holds without existence the MTP2 condition in one or
both of the ordered variables.

In the special case that X = Y and therefore X is MTP2 we obtain the following result:

Proposition 2.7.
(a) Let A, B ⊆ X satisfy A ∨ B ⊆ B, A ∧ B ⊆ A. Then X MTP2 implies

[X|X ∈ A] �TP [X|X ∈ B].
(b) If for some i ∈ {1, . . . , d} and for all a�b we have

X−i |Xi = a �TP X−i |Xi = b,

then X is MTP2.

Proof. Part (a) is a special case of Theorem 2.5. To prove part (b) note that for s−i , t−i ∈ X−i

the condition implies after simple cancellation

fX(s−i , a)fX(t−i , b)�fX(s−i ∧ t−i , a)fX(s−i ∨ t−i , b).

From this we get easily fX(x)fX(y)�fX(x ∧ y)fX(x ∨ y), for all x, y. �

Remark 2.8. We may say f ≈TP g if

f (x)g(y) = f (x ∧ y)g(x ∨ y) for all x, y ∈ X . (2.3)
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However, as we shall see this condition implies g = f so the notation g ≈TP f is
used only temporarily. Furthermore, as we shall see, in this case f is MTP2, and represents
independent variables.

The following lemma is only partly new (see, e.g. [5] and references therein). It is im-
portant, and so we prove it, also in order to verify the case of equality, which we need later.

Lemma 2.9. Let f �TP g, and define f−i (x−i ) = ∫
f (x)dxi . Then f−i �TP g−i . If

f ≈TP g, then f−i ≈TP g−i .

Proof. Write (x−i , zi) = (x1, . . . , xi−1, zi, xi+1, . . . , xd). Let

a := f (x−i , xi)g(y−i , yi), b := f (x−i , yi)g(y−i , xi),

c := f (x−i ∧ y−i , yi)g(x−i∨y−i , xi), d := f (x−i ∧ y−i , xi)g(x−i∨y−i , yi).

Note that

f−i (x−i )g−i (y−i ) =
∫ ∫

xi<yi

[a + b] dxi dyi + 1

2

∫ ∫
xi=yi

[a + b] dxi dyi.

With a similar expression holding for f−i (x−i ∧ y−i )g−i (x−i ∨ y−i ) it is easy to see that
we have an inequality in the right direction between the integrals on the regions {xi = yi}
where a = b�c = d , with equality in the case f ≈TP g, and it remains to show that
f �TP g implies∫ ∫

xi<yi

[a + b] dxi dyi �
∫ ∫

xi<yi

[c + d] dxi dyi

and f ≈TP g implies∫ ∫
xi<yi

[a + b] dxi dyi =
∫ ∫

xi<yi

[c + d] dxi dyi.

Now

c + d − (a + b) = 1

d
[(d − a)(d − b) + (cd − ab)].

For xi < yi , the condition f �TP g implies ab�cd and a, b�d with equalities when
f ≈TP g, and the result follows. �

The next result now follows readily from Lemma 2.9 and Theorem 2.5.

Corollary 2.10. Let X �TP Y, then for any I ⊂ {1, . . . , d} we have XI �TP YI , and
more generally, for any I, J ⊂ {1, . . . , d} and AJ , BJ �XJ satisfying AJ ∨ BJ ⊆ BJ ,
AJ ∧ BJ ⊆ AJ , we have

[XI |XJ ∈ AJ ] �TP [YI |YJ ∈ BJ ]. (2.4)

For the case of equality in the TP order condition, i.e. f ≈TP g, we have the following
results. In some sense they indicate that a small gap in the inequality defining the order
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relations suggests near equality in the TP order and near independence in the MTP2 case.
One may expect the opposite if the gaps are large. These results are also useful for the
normal distribution studied in the next section. The proofs are given below.

Proposition 2.11. (a) If X ≈TP X then the components of X are independent.
(b) If X ≈TP Y, then X and Y have the same distribution and independent components.

Remark 2.12. Note that X ≈TP Y is different from the statement that X �TP Y and
Y �TP X. The latter clearly implies that X and Y are identically distributed which shows
antisymmetry of the order relation X �TP Y.

Proof of Proposition 2.11. Part (a): The proof is by induction.
For d = 2, fX(x)fX(y) = fX(x∧y)fX(x∨y) holds for all x, y ∈ X iff for all s1, s2, t1, t2

we have fX(s1, s2)fX(t1, t2) = fX(s1, t2)fX(t1, s2). Integrating with respect to t1 and t2 we
obtain

fX(s1, s2) = fX1(s1)fX2(s2).

For d = 3, we have that fX ≈TP fX implies, that [X1, X2|X3] ≈TP [X1, X2|X3]. Hence
X1 and X2 are conditionally independent, given X3 by the case d = 2 just treated.

Using these facts, and the independence of all pairs of variables again by Lemma 2.9 and
the case d = 2, we have

fX1,X2,X3(s1, s2, s3) = fX1,X2|X3(s1, s2|s3)fX3(s3)

= fX1|X3(s1|s3)fX2|X3(s2|s3)fX3(s3)=fX1(s1)fX2(s2)fX3(s3),

that is, X1, X2, X3 are independent.
Assume for d = n independence of any (n − 1) of the components and conditional

independence of any (n − 1) components, given the remaining one. Then

fX(s) = fX1,...,Xn−1|Xn(s1, . . . , sn−1|sn)fXn(sn)

= fX1|Xn(s1|sn)· · ·fXn−1|Xn(sn−1|sn)fXn(sn)=fX1(s1)· · ·fXn−1(sn−1)fXn(sn).

Part (b): The relation X ≈TP Y implies readily that h(x) := f (x)/g(x) satisfies h(x) =
h(y) whenever x�y. On a lattice this implies that h is constant since for any u, v we have
h(u) = h(u ∨ v) = h(v). It follows that f = g and the rest follows from
Proposition 2.11. �

It is natural to study the possibility of having TP order by positive translation, since it
is the simplest model which implies stochastic order. We will see that this occurs for all
positive translations only in a very special case.

In the rest of the section we consider the case that our space X is Rd . The following
result unifies Theorems 1.C.5 and 1.C.22 of [13] and extends them to the multivariate case
needed here.

Lemma 2.13. A random vector X in Rd with independent components satisfies X �TP
X + µ for all µ�0 if and only if the marginal densities fXi

of the components of X are
log-concave.
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Proof. Note that by independence X is MTP2, and in this case by Lemma 2.2 we just
need to prove that X �TP X + µ is equivalent to monotonicity of the likelihood ratio.
Thus we show that h(t) := fX+µ(t)/fX(t) is increasing in t for all µ�0 if and only if the
densities of the independent components of X are log-concave. Note that log-concavity of
the marginals fXi

is equivalent to having all fXi
(t − �)/fXi

(t) increasing in t, for all ��0.
Writing h(t) = fX(t − µ)/fX(t) where fX is a product, we see that log-concavity implies
the monotonicity of h. Conversely, by taking µ which vanishes in all but the ith coordinate,
monotonicity of h implies log-concavity of fXi

. �

Theorem 2.14.
(a) A random vector X ∈ Rd satisfies X �TP X + µ for all µ�0 if and only if X has

independent components with log-concave marginals.
(b) If X has independent components with log-concave marginals then X �TP X + Y for

any random variable Y�0 independent of X.

Proof.
(a) First we show that under the conditions of the proposition

fX(a)fX(b) = fX(a ∧ b)fX(a ∨ b) (2.5)

for all a, b ∈ Rd .
Note that X satisfies X �TP X + µ if and only if

fX(s)fX(t − µ)�fX(s ∧ t)fX((s ∨ t) − µ) (2.6)

for all s, t ∈ Rd . The choice µ = 0 in (2.6) gives inequality in (2.5) in one direction.
To get the reverse direction, given any a, b ∈ Rd , choose in (2.6) s = a ∨ b, t = a
and µ which vanishes in the coordinates where b�a, and equals a − b on the other
coordinates. It is then easy to see that t − µ = a ∧ b, b = (s ∨ t) − µ and a = s ∧ t,
and with s = a ∨ b inequality (2.6) implies

fX(a ∧ b)fX(a ∨ b)�fX(b)fX(a).

Independence now follows from Proposition 2.11, and the rest of part (a) follows from
Lemma 2.13.

(b) This follows by setting y = µ in (2.6) and integrating the condition with respect to
FY(dy) on both sides. �

In the following result part (a) is well known and very useful in verifying the MTP2
property (see [7,5]). Part (b), whose proof is similar to that of (a), shows that the same holds
in the MTP2 case for the TP order.

Proposition 2.15.
(a) Suppose f (x)f (y) 	= implies f (u)f (v) 	= 0 for all x ∧ y�u, v�x ∨ y. Then the

condition f TP2 in every pair of variables, with other variables held fixed, implies f
MTP2.

(b) Let either f or g be MTP2 satisfying the above condition on the support, and suppose
also that f (x)g(y) 	= 0 implies f (u)g(v) 	= 0 for all x ∧ y�u, v�x ∨ y. The relation
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f �TP g holds if the required inequality is verified for every pair of variables with the
others fixed.

3. Multinormal vectors

In this section we study some properties of the TP order for multinormal distributions.
Let X ∼ N(0, �). The mean is arbitrary so we set it to be zero. We also assume that �
is a nonsingular correlation matrix. Henceforth when we write expressions like A�B for
vectors or matrices of the same dimension, we mean entry-wise inequalities.

For properties of the multinormal distribution the reader is referred to [14].
In order to state our results we need to define some cones through M-matrices.

Definition 3.1. A symmetric square matrix is called an M-matrix if its off-diagonal elements
are nonpositive.

Using Proposition 2.15 it is easy to see [6] that a multinormal X is MTP2 if and only if
�−1 is an M-matrix. Then � has nonnegative elements. This can be proved either directly,
or resorting to the fact that MTP2 implies association.

It is easy to see, e.g., [11], that for multinormal vectors, X �TP Y can hold only if X and Y
have the same covariance matrix and therefore one is a translation of the other. Thus below
we fully characterize the TP order of multinormal vectors by considering the translation
case.

Given a matrix � whose inverse �−1 is an M-matrix, consider the cone

C� = {µ ∈ Rd : µT�−1 �0} = {µ ∈ Rd : there exists a�0 such that µ = aT�}.
Since for such a � all entries are nonnegative, it follows that µ�0. For � = I the cone C�
is the whole positive orthant, and it is the largest possible cone.

Theorem 3.2. Let X be a multinormal random vector.
(a) If for some µ ∈ Rd we have X �TP X + µ, then X is MTP2.
(b) For X MTP2, we have X �TP X + µ iff µ ∈ C�.

Lemma 3.3. Let X = (X1, X2) be a bivariate normal random vector. If for some µ ∈ R2

we have X �TP X + µ, then �[X1, X2]�0.

Proof. Set � = �[X1, X2]. Without loss of generality we can assume that E[X] = 0. In
general X �TP X+µ iff fX(s)fX+µ(t)�fX(s∧ t)fX+µ(s∨ t), which in the normal case
is equivalent to

(s ∨ t − µ)T�−1(s ∨ t − µ) + (s ∧ t)T�−1(s ∧ t)
−(t − µ)T�−1(t − µ) − sT�−1s�0. (3.1)

Define M(s, t) := (s ∨ t)T�−1(s ∨ t) + (s ∧ t)T�−1(s ∧ t) − sT�−1s − tT�−1t.
Then the left-hand side of (3.1) becomes

M(s, t) − 2µT�−1(s ∨ t) + 2µT�−1t = M(s, t) − 2µT�−1(s − t)+.
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Let now s1 < t1 and s2 > t2. Then, up to a positive constant, the latter expression becomes

�(s1s2 + t1t2 − s1t2 − t1s2)−(�2 − ��1)(s2 − t2)=(s2 − t2)(�(s1 − t1 + �1) − �2).

If � is negative, it is always possible to find s1, t1 that make the above expression
positive. �

Call �ij ·K the partial correlation coefficient

�ij ·K = Cov[Xi, Xj |XK ]
(Var[Xi |XK ]Var[Xj |XK ])1/2 .

Lemma 3.4. For K ⊂ {1, . . . , d} and i, j /∈ K we have

X �TP X + µ,

implies �ij ·K �0.

Proof. By Corollary 2.10 we have that [(Xi, Xj )|XK ] �TP [(Xi + �i , Xj + �j )|XK ]. The
result follows now from Lemma 3.3. �

Lemma 3.5 (Karlin and Rinott [6]). Let X ∼ N (µ, �), with � positive definite. The par-
tial correlation coefficient �ij ·K is nonnegative for all (i, j) and K = {1, . . . , d} \ {i, j} if
and only if X is MTP2.

Proof. Let �−1 = � = [�ij ]. It suffices to show that �ij ·K �0 implies �i,j �0 for i 	= j .
Taking i = 1, j = 2, let �12 be the upper corner 2 × 2 submatrix of �. Then the covariance
matrix of (X1, X2) conditioned on the remaining variables is �−1

12 . If its off diagonal element,
�12·{3,...,d} is nonnegative then �21 �0. �

Proof of Theorem 3.2.
(a) The result follows from Lemmas 3.4 and 3.5.
(b) Use Lemma 2.2 and the fact that fX+µ(x)/fX(x) = c exp{µT�−1x} is increasing in x

iff µT�−1 �0. �

4. Properties of the cone C�

We now study some properties of the cones introduced in Section 3.

Proposition 4.1. We have C�1 ⊆ C�2 if and only if �1�
−1
2 �0.

Proof. The relation C�1 ⊆ C�2 implies that for µ = a�1 with a�0 there exists b�0 such
that µ = b�2. Thus for all a�0 there exists b�0 such that a�1�

−1
2 = b. This is equivalent

to saying that �1�
−1
2 �0. �

For

�� =
(

1 �
� 1

)
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it is easy to see that the extreme rays of the cone C�� are generated by the points (1, �) and
(1, 1/�).

In this particular case Proposition 4.1 yields C��′ ⊆ C�� if and only if ���′. This suggests
that as dependence increases, the cones decrease. This agrees with the finding of the previous
section that the cone is maximal and contains all µ�0 for independent variables.

Proposition 4.2. The relation �2 � �1 defined as �1�
−1
2 �0 defines a partial order on

correlation matrices.

Proof. Reflexivity: If �2 = �1 then �2 � �1 since �1�
−1
2 = I�0.

Antisymmetry: Suppose that S := �1�
−1
2 �0 and T := �2�

−1
1 �0. Since ST = I, it

follows that no column of S contains more than one positive element. Since S is nonsingular,
each of its rows contains at least one positive element. This implies that S can be written as
the product of a diagonal matrix and a permutation matrix. By reversing rows and columns
the same argument leads to the fact that T has a similar structure.

We have �1 = S�2. Given the structure of S, if one of the positive elements of S is equal
to � 	= 1, then one of the row of �1 will be equal to � times a row of �2. This prevents
�1 from being a correlation matrix. Hence S must be a permutation matrix. But, if it is not
the identity, then a row of �1 will be equal to a different row of �2, which again is not
compatible with the fact that �1 is a nonsingular correlation matrix. This implies that S is
the identity.

Transitivity: This is trivial since �1�
−1
2 �0 and �2�

−1
3 �0 implies �1�

−1
3 �0. �

The next result shows that as the cones decrease, the correlations increase, and we see
the connection between the cone size and the strength of positive dependence.

Proposition 4.3. If �1 and �2 are correlation matrices such that their inverses are M-
matrices, and �1�

−1
2 �0, then entry-wise �1 ��2.

Proof. The relation �1�
−1
2 �0 can be written as �1 = A�2 with A�0. Set �1 = [�ij ],

�2 = [�ij ], and A = [aij ] .
We have to show that

�ij =
∑

�

ai���j ��ij . (4.1)

Note that �ii = ∑
� ai���i = 1, and so inequality (4.1) becomes

∑
� ai���j �

∑
� ai���i�ij .

Using the fact that ai� �0, we now prove that the latter inequality holds term by term.
For � = j we have 1 = �jj ��ji�ij by the fact that �2 is positive definite. For � 	= j we

have to show ��j ���i�ij . We form the covariance matrix of (Xi, X�, Xj )⎛
⎝ 1 �i� �ij

��i 1 ��j

�ji �j� 1

⎞
⎠ .

Since the inverse of the above matrix is an M-matrix, by computing minors, we see that
indeed ��j ���i�ij . We comment that it suffices to assume that every 3-subvector has the
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MTP2 property. Note that we used the fact that MTP2 is preserved under taking marginals
(in this case of order 3), and that in the normal case MTP2 is equivalent to the inverse of
the covariance being an M-matrix. �

Remark 4.4. The converse of Proposition 4.3 is not true, that is, there exist correlation
matrices �1 and �2 such that their inverses are M-matrices and �1 ��2, that do not satisfy
the inequality �1�

−1
2 �0.

For instance take

�1 =
⎛
⎝ 1.0 0.55 0.6

0.55 1.0 0.8
0.6 0.8 1.0

⎞
⎠ , �2 =

⎛
⎝ 1.0 0.5 0.6

0.5 1.0 0.8
0.6 0.8 1.0

⎞
⎠ .

Simple algebra shows that they are indeed correlation matrices whose inverses are M-
matrices, and �1 ��2. Nevertheless �1�

−1
2 is not nonnegative.
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