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1.   Introduction 
Statistical Agencies have to assess the disclosure risk involved in the release of sample micro-data 

when the population is unknown or only partially known based on marginal distributions from current 

population estimates. When the sample is given in the form of a frequency table, disclosure risk arises when 

both the sample and the population have small counts in some cells defined by cross-classifying identifying 

key variables (i.e., sex, age, marital status, ethnicity, place of residence, etc.). This allows an “intruder” who 

has the sample data and access to some information on the population to identify an individual in the sample 

with high probability.  

     Various individual and global disclosure risk measures estimation methods have been proposed in the 

literature based on probabilistic models, see e.g., Bethlehem (1990), Benedetti, Capobianchi and Franconi 

(1998), Skinner and Holmes (1998), Elamir and Skinner (2006), Rinott (2003), Rinott and Shlomo (2006). In 

the context of such methods, the question of computing the variance of a given risk estimator, and a related 

confidence interval is natural, and was raised frequently in conferences.  

     In this paper we present a simple method for calculating approximate confidence intervals for global 

risk measures under probabilistic models. In Section 2 we provide a short description of the Poisson log-

linear model which we use here, and describe our variance estimation procedure, based on the model 

selection method of Skinner and Shlomo (2006) which we briefly review. Section 3 provides simulation 

results based on a real data set drawn from the 2001 UK Census. We conclude in Section 4 with a discussion. 

Calculating precise estimates and confidence interval for global disclosure risk measures is a hard 

problem due to the fact that risk measures are not ordinary parameters. In fact they depend both on the 

sample counts (random, observable data) and on the population counts (unobservable parameters), and 

therefore are not parameters in the classical sense.  Furthermore, model based risk estimation requires 

model selection in order to obtain unbiased risk estimates in a sense described in Section 2, which is a very 

hard problem in the relevant sparse frequency tables, and as a result one must settle for approximations, and 

cannot expect very precise results. 

An agency which considers releasing the sample is interested in the risk of the given sample and a 

confidence interval for it, and not in the potential risk of other samples of this type. As mentioned above, risk 

measures depend both on the sample and the population. A risk measure in a given sample and its variance 

may depend, for example, on the number of sample uniques and population uniques. Given the sample and a 

risk measure estimate, its variability and the need for a confidence interval is due to the fact that the 

population is unknown and assumed random in our model. A confidence interval should provide information 

on how precise the risk estimate is for this sample, and not across all possible random samples. Therefore, 



for the problem at hand, it is natural to provide conditional confidence intervals with a coverage probability 

which is conditional on the given sample. Since our assumed structure is of a Bayesian type, we can consider 

confidence (or credible) intervals based on the posterior distribution of the parameter given the sample. 

However, since this distribution contains unknown parameters which are estimated from the sample, we are 

led naturally to empirical Bayes confidence intervals. For a general discussion of such intervals see, e.g., 

Laird and Louis (1989) and references therein, and for a discussion and references on the issue of estimating 

parameters of the type considered here which involve both the known sample and unknown parameters, with 

a brief discussion of the relevance to disclosure control, see Zhang (2005).  

 

2.   Risk Estimates and Probabilistic Models 
Using the notation of Skinner and Shlomo (2006) and Rinott and Shlomo (2006), let }{ kf=f denote 

an m-way frequency table, which is a sample from a population table }{ kF=F , where ),...,( 1 mkkk =  

indicates a cell and kf  and kF  denote the frequency in the sample and in the population cell k, 

respectively. Formally the sample and population sizes in our models are random and their expectations are 

denoted by n and N, respectively and the number of cells by K. We can either assume that n and N are known, 

or that they are estimated by their natural estimators: the actual sample and population sizes, assumed to be 

known. Throughout this paper, when we write n or N, we formally refer to their expectations.  

We assume that the m attributes in the table are the identifying key variables, i.e. variables which are 

accessible to the public or to potential intruders and can be used to identify individuals. Disclosure risk arises 

from cells in which both kf  and kF  are positive and small, and in particular when 1== kk Ff    

(sample and population uniques). We focus here on two global disclosure risk measures which are based on 

sample uniques, but the approach is easily extended to similar measures. We consider 

     ∑ === )1,1(1 kkk FfIτ ,  kkk FfI /1)1(2 ==∑τ ,  

where I denotes the indicator function. Note that 1τ  counts the number of sample uniques which are also 
population uniques and 2τ  is the expected number of correct guesses if each sample unique is matched to a 
randomly chosen individual from the same population cell. Note also that 2,1, =iiτ  involve both the 

sample and the population, and therefore they are not ordinary parameters. 

We consider the case that f is known, and F is an unknown parameter (on which there may be some 
partial information, and a prior family of distributions) and the quantities 1τ  and 2τ  should be estimated. 
The methods discussed in this section consist of modeling the conditional distribution of f|F , estimating 

parameters in this distribution and then using estimates of the form:  

)1|1(ˆ)1(1̂ ====∑ kkkk fFPfIτ ,  ∑ === ]1|/1[ˆ)1(ˆ
2 kkkk fFEfIτ ,             (1) 

where P̂  and Ê denote estimates of the relevant conditional probability and expectation. Note that the 

quantities in (1) are in fact estimates of )|( fE iτ  for 2,1=i  rather than iτ . 
The method described in this paper is based on the Poisson distribution and the use of log-linear models 

to estimate the parameters of the distribution, however other models could be considered with the present 

approach.  

 

2.1 Variance Estimates and Confidence Intervals 
    We first describe the assumptions and method in general, and in Section 2.2, we describe the 
Poisson log-linear model which we shall use.  
    In general we assume that }|{ kk fF are (conditionally) independent with a distribution 

depending on a parameter kλ  which can be estimated from the observations }{ kf . Consider first 

∑ === )1,1(1 kkk FfIτ . Given the sample }{ kf  it is a sum of Bernoulli random variables over 

sample uniques, taking the value one with probability )1|1( == kk fFP . Thus  

        ))1|1(1)(1|1()1()|( 1 ==−====∑ kkkkkk fFPfFPfIVar fτ .              (2) 

As in (1) we estimate the variance of (2) by   

 ))1|1(ˆ1)(1|1(ˆ)1()|( 1 ==−====∑
∧

kkkkkk fFPfFPfIVar fτ ,               (3) 



provided we can estimate the indicated conditional probabilities (see Section 2.2). In a similar way we have 

        ∑ === )1|/1()1()|( 2 kkkk fFVarfIVar fτ ,                                  (4)  

which is estimated by replacing the latter conditional variance by its estimate based on the estimated 

conditional distribution of }|{ kk fF  to yield 

        ∑ ===
∧∧

)1|/1()1()|( 2 kkkk fFVarfIVar fτ .                                (5) 

In order to construct confidence intervals, we use the approximation that conditionally on }{ kf=f , 

)f|( ii E ττ −  is normally distributed with variance as in (2) for 1τ  and (4) for 2τ .  Since we do not 
observe )|( fiE τ  we replace them by their estimates iτ̂  2,1=i  given in (1).  Following Skinner and 

Shlomo (2006), see details in Section 2.2, we assume a Poisson log-linear model, and select the model which 

minimizes the bias (or rather an estimate thereof)  

  )f|(ˆ
iii EB ττ −=                                                  (6)              

and then use the approximate confidence interval of the type 

 

       )|(2ˆ fii Var ττ
∧

± ,                                                         (7)         

where the variance estimates are those of (3) and (5).  Since we replace )f|( iE τ  by iτ̂ , this is a 
reasonable approximation provided iB  is indeed small, and thus the utility of this approximation depends 

on the quality of the model selection and parameter estimation. Here we rely on the method of Skinner and 

Shlomo (2006), however, the approach we present here can be adapted to other models and model selection 

methods.  

 

2.2  The Poisson Log-Linear Model  
A common assumption in the frequency table literature is )(~ kk PoissonF λ , independently, where 

NFkk =∑  is a random parameter. Binomial (or Poisson) sampling from kF  means that 

),(~| kkkk FBinFf π  independently, where kπ  is the sampling fraction in cell k. By standard 

calculations we then have: 

)(~ kkk Poissonf πλ  and, ))1((~| kkkkk PoissonffF πλ −+ , (8) 

where kk fF |  are conditionally independent.  

Assuming a simple random sample design where Nnk /== ππ  and setting πλµ kk = , Skinner 

and Holmes (1998) and Elamir and Skinner (2006)  proposed using the sample counts }{ kf to fit a log-

linear model: βµ kk x′=log  in order to obtain estimates for the parameters: πµλ /ˆˆ
kk =  . Assuming that 

kf  are the outcomes of independent  )( kPoisson πλ  random variables, the maximum likelihood (MLE) 

estimator β̂  may be obtained by solving the score equations: 0)]exp([ =′−∑ kkkk xxf β .  

Using the second part of (8), it is easy to compute the expected individual disclosure risk measures for 

cell k, defined by: 
)1(

)1|1(
πλ

λ
−−=== k

k
efFP kk , )]1(/[]1[)1|/1(

)1( πλπλ
λ −−== −−

kkk
k

k
efFE . (9) 

Plugging kλ̂ for kλ  in (3) leads to the desired estimates )1|1(ˆ ˆ == kk fFP
kλ  and 

]1|/1[ˆ ˆ =kk fFE
kλ  and then to 1̂τ  and 2τ̂  of (1). 
 

2.3  Model Selection 
Skinner and Shlomo (2006) developed a method of selecting the model for risk estimation based on 

estimating and (approximately) minimizing the bias 2,1, =iBi  of the risk estimates 1̂τ  and 2τ̂ . The 
bias of 2,1,ˆ =iiτ  is estimated by statistics denoted by 2,1,ˆ =iBi  which are asymptotically normal 

with variances which can also be estimated under the model.   

We briefly review the procedure of Skinner and Shlomo (2006), with a slight change of notation. 

Write ∑ == )()1()|( kkk hfIE λτ f and )ˆ()1(ˆ
kkk hfI λτ ==∑  where for 1τ  we take 

)1|1()( === kkk fFPh λ  and )1|1(ˆ)ˆ( === kkk fFPh λ , the estimate of )( kh λ  obtained by 

plugging in the estimated parameters kλ̂ . Similarly for 2τ  set )1|/1()( == kkk fFEh λ and 

)1|/1(ˆ)ˆ( == kkk fFEh λ .  We have the approximation 



∑ −== )]()ˆ()][1([ kkkk hhfIEB λλ .   (10)       

A Taylor expansion of h, leads to the approximation  

]2/)ˆ)(('')ˆ)((')[exp( 2

kkkkkkkkk hhB λλλλλλλπλ −+−−≈∑   

and the relations  kkEf πλ=  and 
222 )ˆ(])ˆ[( kkkkk EffE λλπλπ −=−−  lead to a further 

approximation of B of the form 

)]2/(])ˆ)[(ˆ('')ˆ)(ˆ(')[ˆexp(ˆˆ 2 πλπλλπλλπλ kkkkkkkkkk ffhfhB −−+−−−≈∑ . 

 

The method of Skinner and Shlomo (2006) selects the model which minimizes the standardized bias estimate 

2,1,ˆ/ˆ =ivB ii , where iν̂  are estimates of the variance of iB̂  which will not be discussed here.    

 

2.4  Variance Estimates and Confidence Intervals under The Poisson Model  
     Using the second part of (8), we have ))1(exp()1|1( πλ −−=== kkk fFP  and therefore we obtain  

     )]1(ˆexp(1)[1(ˆexp()1()f|( 1 πλπλτ −−−−−==∑
∧

kkkk fIVar .   (11)          

For 2τ  we use (8) again to compute a series approximation of )1|/1( =kk fFVar  as a function of kλ  
and plug in kλ̂  to obtain the estimate ).|( 2 fτ

∧
Var   

Now the confidence intervals of (7) can be computed using 1̂τ  and 2τ̂  of (1) (using (9) as described 
above), and the variance )|( 1 fτ

∧
Var  of (11) and the corresponding )f|( 2τ

∧
Var . 

Taking into account that we have done many different approximations such as Taylor series and normal 

approximations, and used plug-in estimates, we must expect a rather imprecise coverage level of the intervals. 

This will be studied by simulations.  

 
3. A Simulation Study  

We assess the coverage rate and utility of the proposed confidence interval method by three types of 

simulation experiments which we now describe. 

Part 1.  A frequency table of real data taken from the 2001 UK Census representing a population of 
size N was constructed. A random sample of size n was drawn from this population. Since both the 

population and the sample are known, we can compute the true risk measures 1τ and 2τ .  
A model selection procedure as in Section 2.3 was performed on the basis of the sample only, (however, 

due to complexity of computations we sometimes used heuristic algorithms which do not look at all the 

models, similar to the well-known forward or backward selection algorithms). The corresponding parameters 

kλ̂  were estimated. The risk measure estimates 1̂τ  and 2τ̂  of (1) and (9) and the variance )|( 1 fτ
∧

Var  of 

(11) and the corresponding )|( 2 fτ
∧

Var  were then computed along with the resulting confidence intervals 

of (7). Since 1τ  and 2τ  are known, we can see if the confidence intervals cover them, or whether they 
seem to be in the ballpark. This was repeated several times and the results are given in Table 1.  

The error in the coverage rate is due to many approximations as described above and the fact that the 

Census population used cannot be expected to follow any Poisson log-linear model precisely. The next 

simulation is aimed at eliminating the latter reason.  

Part 2.  We chose a log-linear model which fits the population in one of the examples of Part 1, and 
estimated its parameters. Using these parameters we generated a new population using )(~ kk PoissonF λ  

independently. We now have a simulated population which satisfies the assumptions of the model. We 

continue as in Part 1 above, that is, we draw a sample from the generated population, select a model for risk 

estimation and estimate the parameters, construct the confidence intervals, and check their coverage rate by 

repeating the whole experiment 100 times, that is, with the same parameters we generated 99 more 

populations, samples, etc., (except that we did not select a new model for the risk estimation in each 

repetition, but rather used the model selected based on the first sample; this is expected to reduce the 

coverage rate). The intervals are based on a normal approximation, model selection and parameter estimates, 

and are therefore approximate; however, the population now satisfies the assumptions of the model. 

 



     Part 3.  Now we generate the population as in Part 2 and draw a sample. However, the risk estimates 
are computed using the same parameters that were used to generate the population and not their estimates. 

This eliminates another source of noise, and should improve the coverage rate, which is again estimated by 

repeating the experiment 100 times.   

In Table 1, we present results of Part 1 for some real data sets taken from the 2001 UK Census. The 

population size N, the sample size n, the number of cells in the table K and the attributes (key variables) are 

given in each table with the number of categories in each attribute in parentheses. The table shows the 

resulting parameters iτ  and their estimates iτ̂ , the selection parameters ,ˆ/ˆ ii vB and the confidence 

intervals. The confidence intervals contain the true 1τ  in all but one experiment, while 2τ  is contained in 
about 50% of the experiments, however when it is outside the interval, it is very close and the approximation 

seems reasonable and useful. 

Table 1:  Coverage rates for the estimated confidence intervals of the disclosure risk 

measures of samples from a UK Census population as described in Part 1.  

 

Model 1τ  1̂τ  11
ˆ/ˆ vB  )|ˆ(2ˆ

11 fττ v±  
2τ  2τ̂  22

ˆ/ˆ vB

 

)|ˆ(2ˆ
22 fττ v±  

Example 1: N=1,468,255  K=5,563,080 

area(3),sex(2),age(101),marital status(6),ethnicity(17),work status(10),religion(9) 

 n= 7,341 212  195.7 1.31 178.8 - 212.6 444.3 421.4 0.80 410.4 - 432.4 

 n=14,683 359 384.0 1.10 360.6 - 407.4 783.5 800.3 0.74 784.9 - 815.7 

Example 2: N=1,468,255  K=618,120 

area(3),sex(2),age(101),marital status(6),ethnicity(17),work status(10) 

 n= 7,341 88 87.4 0.87 75.3 - 99.5 225.2 211.8 1.16 203.9 - 219.7 

 n=14,683 167 167.5 -0.17 150.4 - 184.6 408.1 423.2 0.53 411.9 - 434.7 

 n=14,683 147 171.5 0.60 154.4 - 188.6 403.6 413.3 0.57 402.2 - 424.4 

 n=14,683 180 190.0 0.90 172.9 - 207.1 435.6 423.6 0.27 412.6 - 434.6 

Example 3: N=1,468,255  K=741,744 

area(36),sex(2),age(101),marital status(6),ethnicity(17) 

 n=14,683 142 142.2 0.09 126.4 - 158.0 379.0 376.2 1.51 365.7 - 386.7 

 n=14,683  136 135.7 1.02 120.1 - 151.3 364.2 366.0 0.55 355.6 - 376.4 

 n=14,683 152 146.5 -0.65 130.7 - 162.3 373.0 373.5 -0.03 363.0 - 384.0 

Example 4: N=944,793  K=412,080 

area(2),sex(2),age(101),marital status(6),ethnicity(17),work status(10) 

 n= 9,448   159 152.2 0.88 136.5 - 167.9 355.9 343.3 1.73 332.1 - 354.5 

 n=18,896  263 277.0 -0.27 255.7 - 298.3 628.9 638.1 0.92 625.8 - 650.9 

Example 5: N=51,620,597,  K=443,520(*) 

region (11), age (96), sex (2), number of residents(7), marital status(6), number of cars(5) 

 n= 16,651 18.0 18.6 -0.21 13.0 - 24.2 83.0 83.9 0.06 29.9 - 87.9 

 n= 54,560  24 33.8 1.24 25 - 42.6 220.3 211.0 0.54 204.6 - 217.4 

 n=119,618  64 74.4 0.56 61.6 - 87.2 446.6 441.7 0.03 432.4 - 451.0 

 n=357,888  211 189.5 -0.08 168.4 - 210.6 1193.8 1147.2 0.21 1131.6 - 1162.8 

(*) These samples are based on a complex survey design based on clustered samples. 



 

Table 2 shows the results of the simulations in Part 2. The data was generated using the model which 

was selected in the first experiment of Example 2 of Table 1 among those based on n=14,683. This model 

contains six interaction terms, {area*work status}, {sex*work status}, {age*marital status}, {sex*marital 

status}, {age*ethnicity}, {age*work status} and parameters estimated from the whole original population. 

For each population generated, a sample of n=14,683 was selected and the risk measures estimated. We 

selected separate models for the estimated risk measures 1τ  and 2τ  in order to ensure a small (and 
positive) ii vB ˆ/ˆ , i=1,2 statistic for each of the measures as described in Skinner and Shlomo (2006). 

Based on the chosen model the experiment was repeated a further 99 times as described in Part 2. The 

models chosen were:  

• For 1τ , the following interactions were included in the model: {area*age}, {area*ethnicity}, 
{area*work status}, {sex*marital status}, {sex*work status}, {age*marital status}, {age*ethnicity}, 

{marital status*ethnicity}, {ethnicity*work status}. This produced for a true 2561 =τ  an estimate of 

)30.0ˆ/ˆ(1.246ˆ
111 == vBτ . 

• For 2τ , the following interactions were included in the model: {area*work status}, {sex*marital status}, 
{sex*work status}, {age*ethnicity}, {age*work status}, {marital status*ethnicity}. This produced for a 

true 2.5042 =τ  an estimate of )98.0ˆ/ˆ(3.504ˆ
222 == vBτ . 

 

As shown in Table 2, 74% of the repeated samples had the true risk measure 1τ  within the confidence 
interval of )f|(ˆ2ˆ

11 ττ arV± , and 93% in the interval of )|(ˆ3ˆ
11 fττ arV± . The results for the risk 

measure 2τ  are similar. From these results, we suggest using confidence intervals based on three standard 
deviations, say, in order to take into account the numerous approximations of the method.  

 

Table 2:  Coverage rates for the confidence intervals of the disclosure risk measures for 

Part 2. 

 

Number of samples within confidence interval out of 100 Disclosure risk 

measures 

  

 

)f|(2 iVar τ
∧

±  

 

)|(5.2 fiVar τ
∧

±  

 

)|(3 fiVar τ
∧

±  

1τ  74%  89%  93%   

2τ   76% 84% 93%  

 
For Part 3 one should expect coverage close to 95% for confidence intervals of ±  two standard 

deviations, since the only approximations are that of iτ  to the normal, and the strong law approximation of 
replacing the risk measure by its expectation based on the true (rather than estimated as in Part 2) parameters. 

These are good approximations in the presence of a large number of sample uniques. Indeed we obtained that 

the percentage of samples that were in the confidence interval out of 100 repeated experiments was 95% for 

1τ  and 94% for 2τ .  
 

4. Discussion  
     The precision of an estimate is often described by a confidence interval. For risk measures estimates, 
confidence intervals would allow to compare the risk in different samples, and to identify samples which are 

significantly more risky than others. 

We presented a method of computing approximate confidence intervals for estimated risk measures of a 

given sample. The risk measures involve both the given sample and the unknown population which is 

modeled as random. The confidence level is conditional on the given sample. The method is based on a 

Poisson log-linear model, and the model selection procedure of Skinner and Shlomo (2006). Besides the 

assumptions of the model, the method involves various approximations such as a normal approximation to a 



sum of random variables, the approximations involved in the model selection procedure and the subsequent 

parameter estimation, and in using plug-in estimators of the risk measure and their variances.  

Nevertheless, the simulations indicate that these rough approximations yield reasonable results, and 

given a risk measure estimate for a given sample, we can obtain a useful measure on its precision by using 

the proposed confidence intervals.  

The method was tried also on other models such as the Poisson and Negative Binomial smoothing 

polynomial described in Rinott and Shlomo (2006). Our impression is that given a good model selection 

procedure, which in the latter paper means selection of the degree of the smoothing polynomial and 

neighborhood sizes (or weights) for the fit, confidence intervals can be constructed in the same way. In fact 

the present approach applies to any probabilistic approach, such as Argus, see Benedetti, et al. (1998), in 

cases where its assumptions are realistic, and provided it comes with a method which yields roughly 

unbiased estimates. 
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RÉSUMÉ (ABSTRACT)   
Nous étudions l'évaluation du risque de révélation d'un échantillon de micro-données sous forme d'une table de 

fréquence. Lorsque l'on calcule des estimateurs de mesures de risque, la question de leur précision se pose 

naturellement. Nous répondons à cette question en fournissant des estimateurs de la variance et des intervalles de 

confiance approchés pour une certaine classe d'estimateurs de mesure de risque basés sur la structure de la table et sur 

un modèle probabiliste Bayésien. Les intervalles sont basés sur la distribution a posteriori de la mesure de risque 

estimée, qui implique une estimation de paramètres, et sont par conséquent des intervalles de Bayes empiriques.  

Les niveaux de couverture approchés de ces intervalles sont fonction de l'échantillon. Une étude par simulation 

sur des données synthétiques et des données réelles montre l'utilité de la méthode. 

 


