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Abbreviated Title: Functional BRK Inequalities

Abstract

The inequality conjectured by van den Berg and Kesten in [9], and proved by Reimer
in [6], states that for A and B events on S, a product of finitely many finite sets, and
P any product measure on S,

P (A�B) ≤ P (A)P (B),

where A�B are the elementary events which lie in both A and B for ‘disjoint reasons.’
This inequality on events is the special case, for indicator functions, of the inequality
having the following formulation. Let X be a random vector with n independent
components, each in some space Si (such as Rd), and set S =

∏n
i=1 Si. Say that the

function f : S → R depends on K ⊆ {1, . . . , n} if f(x) = f(y) whenever xi = yi for all
i ∈ K. Then for any given finite or countable collections of non-negative real valued
functions {fα}α∈A, {gβ}β∈B on S which depend on Kα and Lβ respectively,

E

{
sup

Kα∩Lβ=∅
fα(X)gβ(X)

}
≤ E

{
sup

α
fα(X)

}
E

{
sup

β
gβ(X)

}
.

Related formulations, and functional versions of the dual inequality on events by Kahn,
Saks, and Smyth [4], are also considered. Applications include order statistics, assign-
ment problems, and paths in random graphs.

1 Introduction

For x = (x1, . . . , xn) ∈ S, where S =
∏n

i=1 Si any product space, and K = {k1, . . . , km} ⊆
n := {1, . . . , n}, define

xK = (xk1 , . . . , xkm) and [x]K = {y ∈ S : yK = xK},
0AMS 2000 subject classifications. Primary 60E15
0Key words and phrases: graphs and paths, positive dependence, order statistics.
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the restriction of x to the indicated coordinates, and the collection of all elements in S
which agree with x in those coordinates, respectively. For A,B ⊆ S we say that x ∈ A,y ∈
B disjointly if there exists

K,L ⊆ n, K ∩ L = ∅ such that [x]K ⊆ A and [y]L ⊆ B, (1)

and denote

A�B = {x : x ∈ A,x ∈ B disjointly}. (2)

The operation A�B corresponds to elementary events which are in both A and B for disjoint
‘reasons’ in the sense that inclusion in A and B is determined on disjoint sets of coordinates.

Theorem 1.1 was conjectured in van den Berg and Kesten [9]. It was proved in [9] for A
and B increasing sets and S = {0, 1}n, and it was also demonstrated there that Theorem 1.1
follows from its special case S = {0, 1}n. Using the latter fact, the conjecture was established
in general by Reimer [6].

Theorem 1.1 For P =
∏n

i=1 Pi any product measure on S =
∏n

i=1 Si, Si finite,

P (A�B) ≤ P (A)P (B). (3)

Many useful formulations can be found in van den Berg and Fiebig [8], in addition to the
following motivating example which appeared earlier in [9]. Independently assign a random
direction to each edge e = {vi, vj} of a finite graph, with pe(vi, vj) = 1 − pe(vj, vi) the
probability of the edge e being directed from vertex vi to vj. With V1, V2,W1,W2 sets of
vertices, Theorem 1.1 yields that the product of the probabilities that there exist directed
paths from V1 to V2 (event A) and from W1 to W2 (event B) is an upper bound to the
probability that there exists two disjoint directed paths, one from V1 to V2 and another from
W1 to W2 (event A�B).

The main thrust of this paper is to show how Theorem 1.1 implies inequalities in terms
of functions, of which (3) is the special case of indicators, and similarly for the dual. These
functional inequalities, and their dual, are stated in Theorems 1.2 and 1.5, and their proofs
can be found in Section 3. Applications to order statistics, allocation problems, and ran-
dom graphs are given in Section 2. Specializing to monotone functions, we derive related
inequalities and stochastic orderings in Section 4; these latter results are connected to those
of Alexander [1].

For each i = 1, . . . , n, let (Si, Si) be measurable spaces, and set S =
∏n

i=1 Si and S =⊗n
i=1 Si, the product sigma algebra. Henceforth, all given real valued functions on S, such

as fα, gβ, α ∈ A, β ∈ B are assumed to be (S, B) measurable where B denotes the Borel
sigma algebra of R, and functions on S with values in 2n, such as K(x) in inequality (d)
of Theorem 1.2 below, are assumed to be (S, 22n

) measurable. Measurability issues arise
in definitions (11), (4), and (18), and are settled in Section 5. We also show in Section 5
that Theorem 1.2 applies to the completion of the measure space (S, S) with respect to the
measure P appearing in the theorem; similarly for Theorem 1.5.

For K ⊆ n we say that a function f defined on S depends on K if xK = yK implies
f(x) = f(y). The inequalities in Theorems 1.2 and 1.5 require one of two frameworks, the
first of which is the following.
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Framework 1 {fα(x)}α∈A and {gβ(y)}β∈B are given collections of non-negative functions
on S, such that fα, gβ depend respectively on subsets of n Kα, Lβ in K = {Kα}α∈A and
L = {Lβ}β∈B, where A and B are finite or countable.

The elements of K and L are not assumed to be distinct; we may have, say, Kα = Kγ for
some α �= γ and fα �= fγ. For notational brevity we may write α for Kα; for example, we
may use α ∩ β as an abbreviation for Kα ∩ Lβ, and also xα for xKα .

The second framework needed is

Framework 2 f and g are two given non-negative functions, and K and L any collections
of subsets of n. With P a probability measure on (S, S) define for K ∈ K, L ∈ L,

f
K

(x) = ess inf
y∈[x]K

f(y), and g
L
(x) = ess inf

y∈[x]L
g(y). (4)

Our functional extension of the BKR inequality (3) is

Theorem 1.2 Let X = (X1, . . . , Xn) ∈ S be a random vector and P a probability measure
on (S, S) such that X1, . . . , Xn are independent. The following inequalities hold.

1. Under framework 1,

E

{
sup

α∩β=∅
fα(X)gβ(X)

}
≤ E

{
sup

α
fα(X)

}
E

{
sup

β
gβ(X)

}
. (a)

2. Under framework 2,

E

⎧⎨⎩ max
K∩L=∅

K∈K,L∈L
f

K
(X)g

L
(X)

⎫⎬⎭ ≤ E {f(X)} E {g(X)} . (b)

The special case of inequality (b) where K = L are the collections of all subsets implies it in
general.

In previous work the � operation was defined only for finite product spaces. Note,
however, that (2) applies on any product space. Further, with f(x) and g(x) the indica-
tor functions of A and B respectively, we can equivalently express A�B as the set whose
indicator function is given by

1A�B(x) = max
K∩L=∅

f
K

(x)g
L
(x), (5)

where f
K

, g
L

are given in (4). Therefore, inequality (b) of Theorem 1.2 specialized to the
case that K = L are all subsets of n and f and g are indicators, says that the original BKR
inequality for events in finite spaces extends to more general spaces.

The following is a straightforward generalization of Theorem 1.2, stated here only for
inequality (a) . Note that in (6) below, for large m the pairwise constraints αi ∩ αj = ∅ are
more restrictive, making the inequality less sharp.
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Theorem 1.3 Let X ∈ S be a random vector with independent coordinates. Then for given
finite or countable collections of non-negative functions {fi,α}α∈Ai

depending on {Ki,α}α∈Ai
,

i = 1, . . . ,m,

E

⎧⎪⎨⎪⎩ sup
(α1,...,αn)∈A1×···×An

αk∩αl=∅, k �=l

m∏
i=1

fi,αi
(X)

⎫⎪⎬⎪⎭ ≤
m∏

i=1

E

{
sup
α∈Ai

fi,α(X)

}
. (6)

Next we describe an inequality of Kahn, Saks, and Smyth [4], which may be considered
dual to the BKR inequality (3), and provide a function version. We use simpler notation,
more compatible with (3). With ‘disjointly’ defined in (1), denote

A♦B = {(x,y) : x ∈ A,y ∈ B disjointly}. (7)

The following, which we call the KSS inequality, is dual to Theorem 1.1 and is given in [4].

Theorem 1.4 If P denotes the uniform measure over {0, 1}n×{0, 1}n, then for any (A,B) ⊆
{0, 1}n × {0, 1}n,

(P × P )(A♦B) ≤ P (A ∩ B). (8)

Our functional extension of the KSS inequality is as follows.

Theorem 1.5 Let X = (X1, . . . , Xn) ∈ S be a random vector, P any probability measure on
(S, S) such that X1, . . . , Xn are independent, and Y an independent copy of X. The following
inequalities hold.

1. Under framework 1,

E

{
sup

α∩β=∅
fα(X)gβ(Y)

}
≤ E

{
sup
α,β

fα(X)gβ(X)

}
. (a′)

2. Under framework 2,

E

⎧⎨⎩ max
K∩L=∅

K∈K,L∈L
f

K
(X)g

L
(Y)

⎫⎬⎭ ≤ E {f(X)g(X)} . (b′)

In [4] the (implicit) ♦ operation was defined only on {0, 1}n × {0, 1}n. Note, however,
that (7) applies on any product space. Further, with f(x) and g(x) the indicator functions of
A and B respectively, we can equivalently express A♦B as the set whose indicator function
is given by

1A♦B(x,y) = max
K∩L=∅

f
K

(x)g
L
(y), (9)

where f
K

, g
L

are given in (4). Therefore, inequality (a ′) of Theorem 1.5 specialized to the
case that K = L are all subsets of n and f and g are indicators, says that the original KSS
inequality for events in {0, 1}n extends to more general spaces. Note by (5) and (9) that

1A�B(x) = 1A♦B(x,x).
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We next discuss further formulations of Theorems 1.2 and 1.5 which are of independent
interest, and will be used in the proof. Under Framework 1, for any K and L subsets of n,
define

f̃K(x) = sup
α:Kα⊆K

fα(x) and g̃L(x) = sup
β:Lβ⊆L

gβ(x). (10)

For any given functions K(x) and L(x), under Framework 1, extend (10) to

f̃K(x)(x) = sup
α:Kα⊆K(x)

fα(x) and g̃L(x)(x) = sup
β:Lβ⊆L(x)

gβ(x), (11)

and under Framework 2, extend (4) to

f
K(x)

(x) = ess inf
y∈[x]K(x)

f(y), and g
L(x)

(x) = ess inf
y∈[x]L(x)

g(y). (12)

Proposition 1.1 In Framework 1, inequality (a) of Theorem 1.2 and inequalities (c) and
(d) below are equivalent.

E

{
max

K∩L=∅
f̃K(X)g̃L(X)

}
≤ E

{
sup

α
fα(X)

}
E

{
sup

β
gβ(X)

}
. (c)

E
{

f̃K(X)(X)g̃L(X)(X)
}
≤ E

{
sup

α
fα(X)

}
E

{
sup

β
gβ(X)

}
, (d)

holding for any given K(x) and L(x) such that K(x) ∩ L(x) = ∅.
In Framework 2, inequality (b) of Theorem 1.2 and inequality (e) below are equivalent.

E
{

f
K(X)

(X)g
L(X)

(X)
}
≤ E {f(X)}E{g(X)} , (e)

holding for given K(x) ∈ K and L(x) ∈ L such that K(x) ∩ L(x) = ∅.

It is easy to see from (10) and (11) that a restriction of K or K(x) to K and L or L(x)
to L would not change the quantities on the left hand sides of (c) and (d).

The special case of inequality (e) with K = L = 2n and L(x) = Kc(x) , where Kc denotes
the complement of K, yields the inequality in general, that is, (e) is equivalent to

E
{

f
K(X)

(X)g
Kc(X)

(X)
}
≤ E {f(X)}E{g(X)}

for any given K(x). A similar comment holds for (c) and (d).

Proposition 1.2 In Framework 1, inequality (a ′) of Theorem 1.5 and inequalities (c ′) and
(d ′) below are equivalent.

E

{
max
K,L

f̃K(X)g̃L(Y)

}
≤ E

{
sup

α∩β=∅
fα(X)gβ(X)

}
. (c ′)

E
{

f̃K(X,Y)(X)g̃L(X,Y)(Y)
}
≤ E

{
sup

α∩β=∅
fα(X)gβ(X)

}
, (d ′)
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holding for any given K(x,y) and L(x,y) replacing K(x) and L(x) in (11) respectively, and
satisfying K(x,y) ∩ L(x,y) = ∅.

In Framework 2 inequality (b ′) of Theorem 1.5 and inequality (e ′) below are equivalent.

E
{

f
K(X,Y)

(X)g
L(X,Y)

(Y)
}
≤ E {f(X)g(X)} , (e ′)

holding for given K(x,y) ∈ K and L(x,y) ∈ L, replacing K(x) and L(x) in (12), respec-
tively.

2 Applications

Example 2.1 Order Statistics Type Inequalities Let X = (X1, . . . , Xn) be a vector of
independent non-negative random variables with associated order statistics X[n] ≤ · · · ≤ X[1].
Let A = B be the collection of all the singleton subsets α ∈ n and fα(x) = gα(x) = xα. Then

max
α

fα(X) = X[1], max
α∩β=∅

fα(X)gβ(X) = X[1]X[2],

and inequality (a) of Theorem 1.2 provides the middle inequality in the string

EX[1]EX[2] ≤ EX[1]X[2] ≤ (EX[1])
2 ≤ EX2

[1].

The leftmost inequality is true since order statistics are always positively correlated (moreover
they are associated as defined by Esary et al [2], and even MTP2, see Karlin and Rinott [5]);
the rightmost inequality follows from Jensen.

Theorem 1.2 allows a large variety of extensions of this basic order statistics inequality.
For example, taking A and B to be all k and l subsets of n respectively, then with

fα(x) =
∏
j∈α

xj and gβ(x) =
∏
j∈β

xj (13)

we derive

E

(
k+l∏
j=1

X[j]

)
≤ E

(
k∏

j=1

X[j]

)
E

(
l∏

j=1

X[j]

)
.

Dropping the non-negativity assumption on X1, . . . , Xn, we have for all t > 0,

Eet(X[1]+X[2]) ≤ [EetX[1] ]2 = EetX[1]EetY[1] = Eet(X[1]+Y[1]),

with Yi’s being independent copies of the Xi’s. Likewise, for all t > 0,

Ee−t(X[n]+X[n−1]) ≤ [Ee−tX[n] ]2 = Ee−tX[n]Ee−tY[n] = Ee−t(X[n]+Y[n]).

Moment generating function and Laplace orders are discussed in Shaked and Shanthikumar
[7].

Returning to non-negative variables, a variation of (13) follows by replacing products with
sums, that is,

fα(x) =
∑
j∈α

xj and gβ(x) =
∑
j∈β

xj, (14)
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which for, k = l = 2 say, yields

E max
{i,j,k,l}={1,2,3,4}

(X[i] + X[j])(X[k] + X[l]) ≤ [E(X[1] + X[2])]
2.

Though the maximizing indices on the left hand side will be {1, 2, 3, 4} as indicated, the
choice is not fixed and depends on the X’s; however, by a simple majorization argument,
(X[1] + X[2])(X[3] + X[4]) is not maximal apart from degenerate cases.

Definition (13) and (14) are special cases where f and g are increasing non-negative
functions of k and l variables and

fα(x) = f(xα) and gβ(x) = g(xβ); (15)

when f and g are symmetric,

E max
{i1,...,ik,j1,...,j l}={1,...,k+l}

f(X[i1], . . . , X[ik])g(X[j1], . . . , X[j l]) ≤ Ef(X[1], . . . , X[k])Eg(X[1], . . . , X[l]).

We now give an example which demonstrates that these order statistics type inequalities
can be considered in higher dimensions. Let X1, . . . ,Xn be independent vectors in Rm, and
for α, β ⊆ n with |α| = |β| = 3 let fα and gβ be given as in (15), where f(x1,x2,x3) =
g(x1,x2,x3) is, say, the area of the triangle formed by the given three vectors. Theorem 1.2
gives that the expected greatest product of the areas of two triangles with distinct vertices is
bounded above by the square of the expectation of the largest triangular area.

To explore the dual inequality in these settings, let X be a vector of independent variables
with support contained in [0, 1], and Y an independent copy. With A = B the collections of
all singletons α in n, and fα(x) = xα, gβ(x) = 1 − xβ, inequality (a ′) of Theorem 1.5 gives

E

{
max
α �=β

Xα(1 − Yβ)

}
≤ EX[1](1 − X[n]). (16)

Note that maxα �=β Xα(1− Yβ) �= X[1](1− Y[n]); the right hand side might be larger because of
the restriction α �= β. Removing the restriction α �= β reverses (16), that is,

EX[1](1−X[n]) ≤ EX[1]E(1−X[n]) = EX[1]E(1−Y[n]) = EX[1](1−Y[n]) = E

{
max
α,β

Xα(1 − Yβ)

}
,

where the inequality follows by the negative association of X[1] and 1 − X[n].
Following our treatment of applications of Theorem 1.2 we can extend (16) as follows:

with A and B the collection of all k and l subsets of n respectively, and

fα(x) =
∏
j∈α

xj and gβ(x) =
∏
j∈β

(1 − xj),

we obtain

E

{
max
α∩β=∅

∏
i∈α,j∈β

Xi(1 − Yj)

}
≤ E

{ ∏
1≤i≤k,1≤j≤l

X[i](1 − X[n−j+1])

}
.
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We now consider resource allocation problems of the following type. Suppose that two
projects A and B have to be completed using n available resources represented by the
components of a vector x. Each resource can be used for at most one project, and an
allocation is given by a specification of disjoint subsets of resources. For any given subsets
α, β ⊆ n, let fα(x) and gβ(x) count the number of ways that projects A and B can be
completed using the resources xα and xβ respectively. The exact definitions of the projects
and the counts are immaterial; in particular larger sets do not necessarily imply more ways to
carry out a project. For an allocation α, β, α∩ β = ∅, the total number of ways to carry out
the two projects together is the product fα(x)gβ(x). When the resources are independent
variables, inequality (a) of Theorem 1.2 bounds the expected maximal number of ways of
completing A and B together, by the product of the expectations of the maximal number
of ways of completing each project alone. The bound is simple in the sense that it does
not require understanding of the relation between the two projects. In particular, it can be
computed without knowledge of the optimal allocation of resources.

Example 2.2 With J a list of tasks, consider fulfilling task lists A and B from J , (not
necessarily disjoint) in two distant cities using n workers. For worker i ∈ n, let xi ⊆ 2J

be the collection of possible assignments of tasks for worker i; a worker may be able to fill
more than one task. For α, β ⊆ n, let fα(x) equal the number of ways the collection of
workers α can complete A, and gβ(x) the number of ways the collection β can complete B.
When the qualifications Xi, i ∈ n are independent, Theorem 1.2 bounds the expectation of
the maximal number of ways of fulfilling the task requirements in both cities, by the product
of the expectations of the maximal numbers of ways that the requirements in each collection
can be separately satisfied.

Example 2.3 Paths on Graphs Consider a graph G with n fixed vertices vj, j = 1, . . . , n
in V, an arbitrary space, where for each pair of vertices the existence of the edge {vi, vj} is
determined independently using a probability rule based on vi, vj, perhaps depending only on
d({vi, vj}) for some function d. Let X = {X{i,j}} where X{i,j} is the indicator that there
exists an edge between vi and vj. For instance, with V = Rm and Z{i,j}, 1 ≤ i, j ≤ n
independent non-negative variables, we may take

X{i,j} = 1(d({vi,vj}) < Z{i,j}) where d({vi,vj}) = ||vi − vj||.

Note that since the variables Z{i,j} do not have to be identically distributed, we can set Zi,i = 0
and avoid self loops should we wish to do so.

Let a path in the graph G from u to w be any ordered tuple of vertices vi1 , . . . , vip with
vi1 = u, vip = w and X{ik,ik+1} = 1 for k = 1, . . . , p − 1, and having all edges {vik , vik+1

}
distinct. For U, V and W subsets of {v1, . . . , vn} and α, β ⊆ {{i, j} : 1 ≤ i, j ≤ n}, let fα(X)
be the number of paths in the graph from U to V which use only edges {vi, vj} for {i, j} ∈ α;
in the same manner, let gβ(X) be the number of paths in the graph from V to W which use
only edges {vi, vj} for {i, j} ∈ β.

The “projects” A and B in this framework are to create paths from U to V using α,
and from V to W using β, respectively, which combine together, when α∩ β = ∅, to give the
overall project of creating a path from U to W passing through V . As the product fα(X)gβ(X)
for α∩β = ∅ is the number of paths from U to W via V for the given allocation, Theorem 1.2
provides a bound on the expected maximal number of such paths over all allocations in terms

8



of the product of the expectations of the maximal number of paths from U to W and from
W to V when the paths are created separately. Though finding the optimal allocation may be
tedious, the upper bound can be computed simply, for this case in particular by monotonicity
of fα(x), gβ(x) in α and β for fixed x, implying that the maximal number of paths created
separately is attained when using all available edges, i.e. at α = β = n. However, the result
holds even in situations where the existence of more edges does not lead to more paths, that
is, in cases where the functions fα, gβ are not monotone in α and β. One such example
would be a situation where the existence of a particular edge mandates that all paths use it.

This example easily generalizes to paths with multiple waypoints. We may also consider
directed graphs where for i < j the directed edge from vi to vj exists when Xij = 1, from
vj to vi when Xij = −1 and Xij = 0 when no edge exists, with Xij independent. Returning
to the graph example following the statement of Theorem 1.1, inequality (a) of Theorem 1.2
provides a bound on the expected maximal number of paths from V1 to V2 and W1 to W2 using
disjoint edges.

For application of the dual inequality, consider for example two directed graphs on the
same vertex set, determined by equally distributed and independent collections of edge indi-
cators X and Y, each having independent (but not necessarily identically distributed) com-
ponents. Let α, β ⊆ {(i, j) : 1 ≤ i < j ≤ n}, and fα(X) be the number of directed paths
in the first graph from U to V which use only X edges (vi, vj) with (i, j) ∈ α; in the same
manner, let gβ(Y) be the number of directed paths in the second graph from V back to U
which use only Y edges (vi, vj) with (i, j) ∈ β. Consider the expected maximal number of
paths, over all α and β with α∩ β = ∅, to go from U to V using the X edges α at most once
and returning to U from V using the Y edges β at most once. Then Theorem 1.5 implies
that this expectation is bounded by the expected maximal number of paths, over all α and β,
to move from U to V using α, and then returning to U using β, all with X edges, but where
vertices used on the forward trip may now be used for the return.

3 Proofs of Proposition 1.1 and Theorem 1.2

Proof of Proposition 1.1: We show (a) ⇒ (c) ⇒ (d) ⇒ (a) and (b) ⇔ (e).

(a) ⇒ (c): Apply inequality (a) to the finite collections {f̃K}K∈K, {g̃L}L∈L and use

sup
α∩β=∅

fα(x)gβ(x) = max
K∩L=∅

(
sup

Kα⊆K,Lβ⊆L
fα(x)gβ(x)

)

= max
K∩L=∅

(
sup

Kα⊆K
fα(x) sup

Lβ⊆L
gβ(x)

)
= max

K∩L=∅
f̃K(x)g̃L(x). (17)

(c) ⇒ (d): Apply f̃K(x)(x)g̃L(x)(x) ≤ maxK∩L=∅ f̃K(x)g̃L(x).

(d) ⇒ (a): Note that the right hand side of (17) equals f̃K(x)(x)g̃L(x)(x) for some K(x) and
L(x) with K(x) ∩ L(x) = ∅.
(b) ⇒ (e): Apply f

K(x)
(x)g

L(x)
(x) ≤ maxK∩L=∅ f

K
(x)g

L
(x).

(e) ⇒ (b): Use the fact that there exist some disjoint K(x), L(x) taking values in the subsets
of n such that

max
K∩L=∅

f
K

(x)g
L
(x) ≤ f

K(x)
(x)g

L(x)
(x). (18)
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Our next objective proving the inequalities of Framework 1, to be accomplished in Lemma
3.6. We start with a simple extension of (3), expressed in terms of indicator functions, from
finite spaces to spaces endowed with finite sigma algebras.

Lemma 3.1 Let Q be any probability product measure on H, a finite product sigma algebra.
Then, inequality (a) holds when expectations are taken with respect to Q, and {fα}α∈A, {gβ}β∈B
are H measurable indicator functions.

Proof: First note that (3) implies Q(A�B) ≤ Q(A)Q(B), by a trivial identification between
the atoms of finite sigma algebras. Let A and B be defined by their indicator functions

1A(x) = max
α

fα(x), 1B(x) = max
β

gβ(x).

Then

max
α∩β=∅

fα(x)gβ(x) ≤ max
α∩β=∅

1A(x)Kα1B(x)Lβ
≤ max

K∩L=∅
1A(x)K1B(x)L = 1A�B(x), (19)

where the first inequality holds since fα(x) ≤ 1A(x)Kα and therefore fα(x) = fα(x)Kα ≤
1A(x)Kα , and the last equality is (5), and hence

EQ

{
max
α∩β=∅

fα(X)gβ(X)

}
= Q(A�B) ≤ Q(A)Q(B) = EQ

{
max

α
fα(X)

}
EQ

{
max

β
gβ(X)

}
.

For C =
∏n

i=1 Ci, where Ci are finite collections of elements of Si, let FC be the product
sub-sigma algebra of S generated by C. Then

S = FJ with J =
⋃
C
FC, (20)

where the union is over all finite C, and FJ denotes the sigma algebra generated by the
algebra J consisting of the rectangular sets.

We say a collection of functions is FP if it generates a finite product sub-sigma algebra
of S; note that a finite union of FP collections is FP.

Lemma 3.2 Inequality (a) is true for P any probability product measure on (S, S), and
{fα}α∈A, {gβ}β∈B, any finite collections of FP indicator functions.

Proof: Let H be the sigma algebra generated by {fα}α∈A, {gβ}β∈B, and Q := P |H, the
restriction of P to the finite product sigma algebra H. For h an H measurable indicator
function, that is, for h(x) = 1A(x) for some A ∈ H, we have

EQh = Q(A) = P (A) = EP h. (21)

Since the product of H measurable indicators is an H measurable indicator, and the same
is true for the maximum, we have by Lemma 3.1 and (21),

EP

{
max
α∩β=∅

fα(X)gβ(X)

}
= EQ

{
max
α∩β=∅

fα(X)gβ(X)

}
≤ EQ

{
max

α
fα(X)

}
EQ

{
max

β
gβ(X)

}
= EP

{
max

α
fα(X)

}
EP

{
max

β
gβ(X)

}
.

Next we drop the restriction that the collection of indicator functions be FP.
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Lemma 3.3 Inequality (a) is true for any probability product measure P and finite collec-
tions {fα}α∈A and {gβ}β∈B of S measurable indicator functions.

Proof: For R,S subsets of A ∪ B satisfying R ∩ S = ∅ and R ∪ S = A ∪ B, we pro-
ceed by induction on the cardinality of the set S in the statement I(R,S): inequality
(a) is true when {fα}α∈R∩A, {gβ}β∈R∩B are finite FP collections of indicator functions, and
{fα}α∈S∩A, {gβ}β∈S∩B are any finite collections of S measurable indicators. Lemma 3.2 shows
that I(A∪B, ∅) is true, and the conclusion of the present lemma is I(∅,A∪B). Assume for
some such R,S with S �= A∪B, that I(R,S) is true. For γ ∈ R with, say γ ∈ A, let M be the
collection of all sets A ⊆ S such that (a) holds for fγ = 1A, when {fα}α∈R∩A\{γ}, {gβ}β∈R∩B
is a finite FP collections of indicators, and {fα}α∈S∩A, {gβ}β∈S∩B any collection of S mea-
surable indicators. The singleton collection fγ is FP for A ∈ J as in (20). Therefore, for
A ∈ J , the union fγ, {fα}α∈R∩A\{γ}, {gβ}β∈R∩B is FP. By the induction hypothesis, J ⊆ M.
Since M is a monotone class and J is an algebra which generates S, the monotone class
theorem implies S ⊆ M. This completes the induction.

At this point we have proved the BKR inequality (3) on a general space (S, S). To
move to the functional inequalities we begin to relax the requirement that the functions be
indicators.

Lemma 3.4 Inequality (d) is true for any product measure P and finite collections of S

measurable functions {fα}α∈A and {gβ}β∈B which assume finitely many non-negative values.

Proof: We prove (d) by induction on m and l, the number of values taken on by the
collections {fα}α∈A, {gβ}β∈B respectively. By by Lemma 3.3 inequality (a) is true for finite
collections of measurable indicators, and hence by Proposition 1.1, so is (d). Now the base
case m = 2, l = 2 follows readily by extending from indicators to two valued functions by
linear transformation.

Assume the result is true for some m and l at least 2, and consider a collection {fα}α∈A
assuming the values 0 ≤ a1 < . . . < am+1; a similar argument applies to induct on l. For
some k, 2 ≤ k ≤ m, define

Aα,k = {x : fα(x) = ak},
and for ak−1 ≤ a ≤ ak+1, let

ha
α(x) = fα(x) + (a − ak)1Aα,k

(x),

the function fα with the value of ak replaced by a. We shall prove that for all a ∈ [ak−1, ak+1]
inequality (d) holds with {ha

α}α∈A replacing {fα}α∈A. By the induction hypothesis we know
it holds at the endpoints, that is, for a ∈ {ak−1, ak+1}, since then the collection {ha

α}α∈A
takes on m values; the case a = ak suffices to prove the lemma, as that reduces to (d).

Given Γ(x), a function with values in 2A, with some abuse of notation denote

f̃Γ(x)(x) = sup
α:α∈Γ(x)

fα(x). (22)

Note that f̃K(x)(x) in (11) corresponds to Γ(x) = {α : Kα ⊆ K(x)}, and similarly for
g̃L(x)(x); for measurability issues see Section 5. For any given function Γ(x) with values in
2A, we have for all a ∈ [ak−1, ak+1],

CΓ := {x : h̃a
Γ(x)(x) = a, f̃Γ(x)(x) �∈ {ak−1, ak+1}} = {x : f̃Γ(x)(x) = ak},

11



showing that CΓ does not depend on a, and for x ∈ Cc
Γ, the value supα∈Γ(x) ha

α(x) = aj, for
some j �= k, which again does not depend on a.

Letting D = CΓ for Γ(x) = A, the right hand side of (d), with {ha
α}α∈A replacing {fα}α∈A,

equals aδ + λ, where

δ = P (D)

∫
sup

β
gβ(x)dP (x) and λ =

∫
Dc

sup
α

ha
α(x)dP (x)

∫
sup

β
gβ(x)dP (x)

do not depend on a. Now, letting E = CΓ for Γ(x) = {α : Kα = K(x)}, the left hand side
of (d), with {ha

α}α∈A replacing {fα}α∈A, equals aθ + η, where

θ =

∫
E

g̃L(x)(x)dP (x) and η =

∫
Ec

h̃a
K(x)(x)g̃L(x)(x)dP (x)

do not depend on a. When a ∈ {ak−1, ak+1} the collection hα, α ∈ A takes on m values, so
by the induction hypotheses,

aθ + η ≤ aδ + λ, for a ∈ {ak−1, ak+1}. (23)

By taking a convex combination, we see that inequality (23) holds for all a ∈ [ak−1, ak+1], so
in particular for ak, completing the induction.

Lemma 3.5 Inequality (d) is true for any probability product measure P and finite collec-
tions of non-negative S measurable functions {fα}α∈A and {gβ}β∈B.

Proof: Lemma 3.4 shows that the result is true for simple functions. By approximating the
functions fα, gβ below by simple functions, fα,k ↑ fα, gβ,k ↑ gβ as k ↑ ∞, and applying the
monotone convergence theorem, we have the result for arbitrary non-negative functions.

Lemma 3.6 Inequality (d) holds for countable collections of non-negative S measurable
functions {fα}α∈A and {gβ}β∈B.

Proof: Apply Lemma 3.5 to the finite collections {f̃K}K∈2n and {g̃L}L∈2n defined in (10);
setting ϕK = f̃K , for the left hand side of (d) use

f̃K(x)(x) = sup
α:Kα⊆K(x)

fα(x) = sup
K⊆K(x)

sup
α:Kα⊆K

fα(x) = sup
K⊆K(x)

f̃K(x) = ϕ̃(x)K(x),

and on the right hand side use

sup
K

f̃K(x) = sup
α

fα(x).

At this point we have completed proving all inequalities pertaining to Framework 1. The
next proposition connects the two frameworks and completes the proofs of Theorem 1.2 and
Proposition 1.1.

Proposition 3.1 Inequality (a) holds in Framework 1 for all collections {fα}α∈A, {gβ}β∈B
of given functions, if and only if inequality (b) holds in Framework 2 for all given functions
f and g and collections K and L.

12



Proof:
(a) ⇒ (b). Given f , g, K and L apply inequality (a) to the collections {f

K
(x)}K∈K and

{g
L
(x)}L∈L as in (4), and use

max
K∈K

f
K

(x) ≤ f(x) and max
L∈L

g
L
(x) ≤ g(x) a.e.

(b) ⇒ (a): Given collections of functions fα, gβ depending on Kα, Lβ, define

f(x) = sup
α

fα(x) and g(x) = sup
β

gβ(x). (24)

Now letting f
K

, g
L

be as in (4), we have

fα(x) = fα(x)Kα ≤ f
Kα

(x) and likewise gβ(x) ≤ g
Lβ

(x).

Now, for α, β disjoint,

fα(x)gβ(x) ≤ f
Kα

(x)g
Lβ

(x) ≤ max
K∩L=∅

f
K

(x)g
L
(x).

Taking supremum on the left hand side and then expectation, the result now follows using
(24).

3.1 The Dual Inequality

The dual inequality (8) is stated only for uniform measure on {0, 1}n × {0, 1}n. In order to
parallel the proof of Theorem 1.2, we first need an analog of Theorem 1.1, showing that (8)
is true for any product measure on a discrete finite product space S. This generalization
was done for A�B in [8]. For A♦B, Lemma 3.4 of [8] carries over with minimal changes,
e.g. one again considers a function f : S ′ → S between finite product spaces, but now

(f × f)−1(A♦B) =
⋃

C1,C2

{
(f × f)−1(C1 × C2)

}
,

where the union is over all C1, C2 such that C1 is a maximal cylinder of A, C2 is a maximal
cylinder of B, and C1 ⊥ C2. Now Lemma 3.5 of [8] and the transformation f constructed
there can be applied to prove the generalization of (8) to discrete spaces.

The proof of Theorem 1.5 and Proposition 1.2 follows in a nearly identical manner to
that of Theorem 1.2 and Proposition 1.1. To prove (d ′) , consider

CΓ = {(x,y) : h̃a
Γ(x,y)(x) = a, f̃Γ(x,y)(x) �∈ {ak−1, ak+1}} = {(x,y) : f̃Γ(x,y)(x) = ak}.

Setting D = CΓ for Γ(x,y) = {α : Kα = K(x,y)} we can write the left hand side of (d ′) as
aθ + η, with

θ =

∫
D

g̃L(x,y)(y)dP (x)dP (y) and η =

∫
Dc

h̃a
K(x,y)(x)g̃L(x,y)(y)dP (x)dP (y),

and using E = CΓ for Γ = A, the right hand side becomes aδ + λ, where

δ =

∫
D

sup
β

gβ(x)dP (x) and λ =

∫
Dc

sup
α,β

ha
α(x)gβ(x)dP (x)

with θ, η, δ and λ not depending on a.

13



4 A PQD ordering inequality

Consider a collection {fα(x)}m
α=1 of functions which are all increasing or all decreasing in

each component of x = (x1, . . . , xn) ∈ Rn. Let X = (X1, . . . , Xn) ∈ Rn be a vector of
independent random variables, Y = (Y1, . . . , Yn) an independent copy of X, and for each
α = 1, . . . ,m, let Kα ⊆ n, and

Zα = (Z1,α, . . . , Zn,α), (25)

where Zi,α = Yi if i ∈ Kα, and Zi,α = Xi, if i �∈ Kα. Now let

U = (f1(Z1), . . . , fm(Zm)) and V = (f1(X1), . . . , fm(Xm)). (26)

Inequalities between vectors below are coordinate-wise. When (27) below holds, we say that
the components of V are more ‘Positively Quadrant Dependent’ than those of U, and write
U ≤PQD V.

Theorem 4.1 For every c = (c1, . . . , cm) ∈ Rm,

P (U ≥ c) ≤ P (V ≥ c) and P (U ≤ c) ≤ P (V ≤ c). (27)

Proof: For k ∈ {0, . . . , n} let Kk
α = Kα ∩ {0, . . . , k}, and with Kα replaced by Kk

α, let Zk
α

be defined as in (25), and Uk be defined as in (26). We prove the first inequality in (27)
by induction on k in P (Uk ≥ c) ≤ P (V ≥ c); the second follows in the same manner. The
inequality is trivially true, with equality, when k = 0, since then Kk

α = ∅ and Zα = X for all
α ∈ n. Now assume the inequality is true for 0 ≤ k < n and set

B = {α : k + 1 ∈ Kα}.

Then

P (Uk+1 ≥ c)

= P (f1(Z
k+1
1 ) ≥ c1, . . . , fm(Zk+1

m ) ≥ cm)

= E[P (f1(Z
k+1
1 ) ≥ c1, . . . , fm(Zk+1

m ) ≥ cm|Xl, Yl, l �= k + 1)]

= E[P (fα(Zk
α) ≥ cα, α �∈ B|Xl, Yl, l �= k + 1)P (fα(Zk+1

α ) ≥ cα, α ∈ B|Xl, Yl, l �= k + 1)]

= E[P (fα(Zk
α) ≥ cα, α �∈ B|Xl, Yl, l �= k + 1)P (fα(Zk

α) ≥ cα, α ∈ B|Xl, Yl, l �= k + 1)]

= E[P (fα(Zk
α) ≥ cα, α �∈ B|Xl, l �= k + 1)P (fα(Zk

α) ≥ cα, α ∈ B|Xl, l �= k + 1)]

≤ E[P (f1(Z
k
1) ≥ c1, . . . , fm(Zk

m) ≥ cm)|Xl, l �= k + 1]

= P (Uk ≥ c) ≤ P (V ≥ c),

where the third equality follows from the independence of Xk+1 and Yk+1 and the forth from
the fact that {fα(Zk

α)}α∈B has the same distribution when either only Xk+1 or only Yk+1

appears in the k + 1st coordinate; the first inequality follows from the fact that conditioned
on Xl, l �= k + 1, the variables fα(Zk

α) are all increasing functions of Xk+1 and are therefore
(conditionally) associated, and the second inequality is the induction hypothesis.

Taking c = (c, . . . , c) we immediately have

14



Corollary 4.1

P (max
α

fα(Zα) ≤ c) ≤ P (max
α

fα(X) ≤ c) or equivalently max
α

fα(X)≤ST max
α

fα(Zα).

Application 1. Consider the framework of Theorem 1.2, with fα(x), gβ(x), α ∈ A, β ∈ B
all increasing or all decreasing functions which depend on coordinates Kα, Lβ. Define D to
be a collection of functions

D = {fα(X) + gβ(X) : Kα ∩ Lβ = ∅},

and for Y = (Y1, . . . , Yn) as above, set

D∗ = {fα(X) + gβ(Y) : Kα ∩ Lβ = ∅}.

By Theorem 4.1 we have
D∗ ≤PQD D.

Applying Corollary 4.1,

max
α∩β=∅

{fα(X) + gβ(X)} ≤ST max
α∩β=∅

{fα(X) + gβ(Y)}.

Exponentiating the last relation and replacing efα by fα, using obvious properties of the
max, we obtain

max
α∩β=∅

{fα(X)gβ(X)} ≤ST max
α∩β=∅

{fα(X)gβ(Y)}. (28)

and therefore

E{ max
α∩β=∅

fα(X)gβ(X)} ≤ E{ max
α∩β=∅

fα(X)gβ(Y)} ≤ E{max
α

f(X)}E{max
β

g(X)},

for nonnegative monotone functions fα and gβ. Thus the relation (28) is stronger than the
BKR inequality for monotone sets, which was proved in [9]. Alexander [1] presents similar
functional versions in this context.

As an example we return to order statistics as in Section 2.1. From (28) we get, for
example, that

X[1]X[2] ≤ST X[1]Y[2] ∨ Y[1]X[2].

Generalizing by using the functions (13), we obtain for any p + q = m,

m∏
j=1

X[j] ≤ST max
{i1,...,ip}∪{j1,...,jq}={1,...,m}

∏
X[iq ]Y[jq ].

5 Appendix on Measurability

In this section we briefly deal with various measurability issues. The measurability of the
function defined in (11) can be seen from

f̃K(x)(x) =
∑
K

f̃K(x)1(K(x) = K),
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since the given function K(x) is assumed measurable. Similarly for (22),

f̃Γ(x)(x) =
∑

A∈2A
sup
α∈A

fα(x)1(Γ(x) = A).

We next prove that given a non-negative, (S, B) measurable function f : S → R and any
K ⊆ n, the function defined in (4) is (S, B) measurable. Letting

fr(x) = min(f(x), r)

and dP (xL) be the marginal of P on the coordinates xL, we have

lim
p→∞

(∫
(r − fr(x))pdP (xKc)

)1/p

= ess sup
y∈[x]K

(r − fr(y)) = r − ess inf
y∈[x]K

fr(y).

Tonelli’s theorem (see e.g. [3]) now implies that ess infy∈[x]K fr(y) is measurable. Letting
r ↑ ∞ shows that (4) is measurable.

The only complication regarding measurability of the pair (K(x), L(x)) in (18) is that
the maximum may not be uniquely attained, since otherwise we would simply have

{x : K(x) = K,L(x) = L} =
⋂

K′∩L′=∅
{x : f

K
(x)g

L
(x) ≥ f

K′(x)g
L′(x)},

a finite intersection of measurable sets, so measurable. To handle the problem of non-
uniqueness, let ≺ be an arbitrary total order on the finite collection of subsets of n × n, so
that when the max is not unique we can choose (K(x), L(x)) to be the first disjoint pair
that attains the maximum. Then {x : K(x) = K,L(x) = L} = F ∩ G where

F =
⋂

(K′,L′)≺(K,L)

K′∩L′=∅

{x : f
K

(x)g
L
(x) > f

K′(x)g
L′(x)}

and
G =

⋂
(K′,L′)�(K,L)

K′∩L′=∅

{x : f
K

(x)g
L
(x) ≥ f

K′(x)g
L′(x)}

and again measurability follows.
Finally, since all integrals in the inequalities are unchanged by modifications on P null

sets, the results hold for (S, S̄), the completion of (S, S) with respect to P .
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