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ABSTRACT

In this paper we discuss a modification of the Dudewicz-
Dalal procedure for the problem of selecting the population with
the largest mean from k normal populations with unknown vari-
ances. We derive some inequalities and use them to lower-bound
the probability of correct selection. These bounds are applied
to the determination of the second-stage sample size which is
required in order to achieve a prescribed probability of correct
selection. We discuss the resulting procedure and compare it to

that of Dudewicz and Dalal (1973).

1. INTRODUCTION

Let Xi. be normal and independent random variables from
population m, with mean ¥, and variance 0? (i =1,...,k,
j=1, 2,...). We assume that the My and o, sare unknown.

The ordered ui's are denoted by M) Lo Sy Our geal
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is to select the best population, namely the population associa-

ted with the largest mean u[k]. Let
*) = .. : - *}.
Q(6 ) {(Ul9- 9Uk) u[k] U[k_l] 2_6 }
The problem is to find a rule for which the probability of
correct selection (dencted by P(CS)) will be greater than or
equal to a prescribed number P* throughout Q(&%*), i.e. our

probability requirement is
P(CS) > P* whenever (uy,...,u, ) € Qd%). (1)

A single-stage procedure cannot satisfy this requirement.
(Dudewicz (1971)).

Two-stage procedures for this problem which are generali-
zations of Stein's (1945) two-stage procedures have been given
by Dudewicz and Dalal (1375). Dudewicz and Dalal developed the

following procedure PE(h):

Take an initial sample of N observations from each popu~

0
lation LA and a second sample of size Ni - NO observations

from each T where

B h 2.2
Ni = max{NO +1, [(6*) Si]},

h 1is a constant to be discussed later and Sf is the usual un-
biased estimate of the variance Gf based on the first NO
observations from s i=1,...,k. (Here [y] denotes the

smallest integer > y.) Choose a,, (J = l,...,Ni) that satisfy

1J
Ni Ni
a,, =1, a,. =...=a,_ , and S? z a?_ = (éiﬂz
j=1 ij il lNO i j=1 ij h
N.
for i =1,...,k. Set ?ﬁ = Zjil ainij and select as the "best"

the population which gave rise to the largest of the generalized

¥ . . 2
sample means Xi’ i =1,...,k. They show that for any oi,...,ok

P(cs|py) 2 J 6 Hewn)g(t)as (2)
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provided (u,,-.- ) € q{8%), with equality in (2) holding when-

,uk

= = = - * t
ever up)) ce Hig-1) M k) § (to be called the least

favorable configuration of ul,...,uk), where G and g denote
the distribution function and density, respectively of the t
distribution with NO - 1 degrees of freedom. Thus probability
requirement (1) is satisfied if we apply the procedure PE(h)

with h determined by the integral equation

J 5 een)glt)at = p* . (3)

—o
Following Stein (1945) one may expect that a similar procedure
based on ordinary sample means may be more appealing than the
above procedure. The following procedure called PR(h) is dis-
cussed by Dudewicz and Dalal (1975) and generalizes Stein's con-
siderations in a natural way. The first stage in PR(h) is the
same as in PE(h) above. Then in the second stage take N, - N,

additional observations from each Ty where now

2
Ni max{NO, [(%;J S?]}.

N.
Set X, (l/N)Zjil Xij and select as "best" the population which
yields the largest of the overall sample means ii, i = 1,...,k.
The question whether it is generally true that

P(CS|PR(h)) zP(CS!PE(h)) (4)

was raised by Dudewicz and Dalal and remained open (except for the
case k = 2 in which they showed that (%) holds so that PR is
uniformly better than PE) and thus it is not clear how h should
be determined so that PR will guarantee the probability require-
ment (1). We show that (L) does not hold in general and provide a
new integral equation (13) from which h¥* can be determined so

that PR(h*) will guarantee (1).

We discuss one- and two-stage procedures based on sample means
showing that a procedure which intuitively may seem most reasonable

is sometimes worse than guessing, i.e. may yield P(CS) < 1/k for
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certain configurations of the variances and suitable 3%, Turther-
more a decrease in the variances of the statistics involved may
cause a decrease in P(CS) contrary to statistical iatuition.

We prove some integral inequalities relating {(13) and

i
t3
(1]

compare PR(h*) and PE(h) from <he points of view of sample si

and probability of correct selection. 3Both PR and P_ have some

undesirable properties but it appears tc us that unless one is
interested in very small samples and small P¥, P_ might be the

more efficient procedure, having a larger P(CS) under configura-

tions that differ from the least favorable one.

2. THE PROCEDURE PR(h*)

In this section we show that the procedure PR(h*) (defined

in Section 1) satisfies our probability requirement.
For easy reference we first state the following result due to
Slepian (1962) which is basic in many of our considerations.

If (X .,Xn) has the multivariate normal distribution with

100
nonsingular covariance matrix I = J}oij)}? j=1° then for any
; i,3=
constants ¢y,...,c ~ the propability Pr(Xl EA TR S Cn> is
strictly increasing as a function of each Ui; for 1 # J In
particular if gij >0, i, J=1,...,n then
n
P Cogennyl ) r
Pri¥; gepseenX e ) > lr_rlp (% = ey)

Proposition 1. The procedure (h*) with h* defined by (13)

PP
below satisfies P(CS) > P* for all (ul,...,uk) € Q&%) and all
2
o

Proof. It is easy to see that the 2(CS)

values of 05,...,0

O

£ ? is minimized

. - &% {the so-called

i
3

over G(8*) when Mpp] T e T upel] T oM

lk~3 )4

least favorable configuration); we shall consider this configura-
tion in the following probability calcualtions. Denote by n<i)

the population having mean Mes (i = 1,...,k). Let U%i) be
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the variances of w(i) and denote by S%i) the sample variances

based on the first No observations from "(i)' Let N(i) be

the total number of observations from "(i) and E(i) the over-
1 s 'F‘— = i =

all sample mean from w(i> sc that dX<i> p[i], i L,...k.

We then have

P(CS) = Pr(i( ) < i( o 1= 1,...,k=1)

i k
- X(i2> - X - 5’2‘) _
[(c(i)/N(i)> + (U(k)/N(k)”

5*
<— 5 1/2,i=l,...,k—l}
[<U(i)/N( )) + (a(k)/N(k))] (5)
Denote b kv
2, - %1y = g - 80 :
i 2 2 1/2
Hos)/Miy) + oM )]
and
Q. = a% f=1,...,k1
(i) 2 2 2 2 /2 ToSaereenT
Has)/8(5)) * (o))
Since Ny > (%:)2S%i) it follows that

2

72 2 Q1)
[(U( )] :

2

. + N
S IAIC LRSS TAIEN
so that (5) implies

P(Cs) > Pr(Z(i) < Qs i= 1,...,k-1). (6)
By standard arguments it follows that under the least favorable
configuration the conditional distribution of 2 sesesl
given S(l)""’s(k) is multivariate normal with means equal to
zero and covariance matrix determined by Var Z(i) =1,
i=1,...,k-1, and for i # Jj, 1,5 = 1,...,k-1

COV(Z(I)’Z(j)) -
TV ik)

l/2[(c

S

2 2
(1Y) 9 00 My
(7)

2 2
[y M)+ ) M)
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Since the variances are constant, the covariances positive, and

since the Q. are functions of 82 ,...,32 and may there-
(1) (1) (k) N

fore be regarded as constants when we condition on S(l)”"’s(k)’

we have by Slepian's inequality

. 2 2
Pr(Z(i) <Qyys 1= l,...,k—l[S(l),...,S(k))
k-1 5 5
> P2 < Qg IS0 80 ) ®

Let ¢ denote the distribution function of a N(0,1) wvariable
2 .
1 I‘Ew e-x /2
Van

i.e. o(t) = dx. Note that the marginal conditional

. . . . 2 2 .
distribution of each Z(i) given S(l)""’s(k) is N(0,1) so
that each Z(i) is independent of S%l>, "S%k)' Thus
2 2 _
Pr(Z(i) < Q(i)[s(l),...,s(k)) = ¢(Q(i)) (9)

Combining (8) and (9) we obtain
Pr(Z(i) < Q(i), i=1,...,k=1)

- . 2
= E{Pr(Z(i) < Qs 1= 1,...,k-1|s(l),...,s(k

E{kﬁl o{q )} E{kﬁl { 2l )1

> =

. (i) . 2 2 2 2 1/2 "
. : 2 2 (10)

The variables Y(i) defined by Y(i) = (No-l)S(i)/o(i),

i=12,...,k, are independent x2 variables with N. - 1 degrees

0
of freedom, and by (6) and (10) we have
: k-1
P(CS) > E{ m o n*
i=1 {(No-l)[(l/Y( )) + (l/Y(k)

)]}1/2 )}. (11)

Note that the expression on the right side of (11) is independent

.,o%k). Let f denote the density of the x2 dis-

i

2
of U(l)"'

tribution with NO - 1 degrees of freedom. Applying the

independence of the Y(i)’ i=1,...,k, we can simplify the above
expression to
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k1
E{ moe( a* 75 )}
=1 {1/ )+ (1Y) 00
k-1 % 1
= HE[ T & a VY, 0]
{ i (i1 L7y ) + (e D2
= J[1 = etaa [ letay.
0t0 {(mm1)[(a/x) + (/v 1 (12)

Thus (11) and (12) imply P(CS) > P*¥ if h* is determined by

the integral equation
or k-1
1 e h? —irix)ex]
0to {(mmL)[(L/x) + (1/y) ]}

3. PROPERTIES OF PR

In this section we point out some undesirable properties of
selection procedures based on sample means. We also answer the
question of comparison of PE and PR raised by Dudewicz and
Dalal (1975) (see eq. (4)) and extend some of their results.

Consider a one-stage procedure for the problem of identifying
the normal population having largest mean, variances unknown,

where N observations are taken from each population and the

popwlation yielding the largest of the sample means ii,...,Xk
. " 1 = = = - %
is selected as "'best’. Assume u[l] ey u[k-l] u[k] §

where &% 1is small to be specified below, and consider a configu-
ration of the variances such that c?l) = Leeey = c%k-l) > c%k), c%i)

denoting as before the variance associated with the population having
2 2
mean Mpsy. Denote 8 = O(i)/c(k) >1. For k > 2 we have:

Proposition 2. Under these conditions the procedure performs worse

than guessing without any observations, i.e. P(CS) < % .

Proof. With notation as above
5*
Pr Z(.) < s 1= 1,000,k-17,

i 2
(1)

i=1,...,k=1)

(o7, /M) + (o5 ,/MI2

1
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and for &% =0

P(cs) = Pr(Z(i> <0, 1i=1,...,k-1),

where (Z(l)""’z(k-l)) is multivariate normally distributed witn
means equal to zero and covariance matrix determined by
2 s 2 A
) <°<i> )‘”‘/W'\ )"/'
= = —— ——. T
Var Z(i) 1, Cov(Z(i),Z(j) > L e 2
U(v\ Ty -
£ VK .
= (8+1)7" < 1/2, I <i# ) <r-1
Let (Ul,...,Uk_l) ve a (k-l)-variate normal random vector such-
that E(Ui) =0, Var(Ui) = 1 and COV(Ui, U%) =1/2,

v

1 < i#j < k~1. Then we have

Pr(z p <0, 1= l,...,k=1) < Pr(U, <0, i =1,...,c-1)

(i

k-l(x)d¢(x) = 1/k,

(o~
=I [o:}
-0
where the strict inequality follows from Slepian's (1962) inequalizy.
By continuity of P(CS) in &* we have for some &% > 0 and tne
configuration described before Proposition 2 P(CS) < 1/k. Moreover

letting O?i) - o and G? ) bounded or G%K> - o in such a way

K
/c?k> >, (1) and (15) imply
k-1

that 6 = 02.
(i)

Pr(Xi;y <Xy 1= 1ye..5k=1) = (1/2

so that for large values of the variances we can have

p(cs) < (1/2)%7t +

and clearly (1/2)%7%
Remark 1. For k > 2 there exist values of h and configurations
of the parameters such that P(CS}PR(h)) < P(CS]PE(h)), showing

that (4) is not universally true.

Proof: TFirst note that (4) and (2) would imply

1 1

P(CS[PR(h)) z'{m? “S(t+h)g(t)dt > =

As h - 0 the probability of drawing a second sample in PR(h)
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tends to O and hence P(CS{PR(h)) will tend to the P(C3)

of the one-stage procedure described above, and it follows from
the preceding discussion that for some h > 0 and certain con-
figurations of parameters we have P(CS{PR(h)) < %-. This
contradicts the above inequality and we conclude that (L) does
not hold for sufficiently small values of h when k > 2.

Note that the argument holds even when PR(h) and PE(h) are
compared with different initial sample sizes.

Remark 2. Assume u[ = u[ ] - §* and consider

S IR K
two configurations of variances c(l)""’g(k) and °El)""’“?k)
such that O(i) = Ozi)’ i=1,...,k-1, and o K) < ozk). Then
for some 6% and h we have P(CS}PR(h)) < P'(CSIPR(h)) where
the probability on the lefi-hand side is under O(l)""’o(k)

and on the right-hand side under OE .,ozk) (i.e. increasing

ye o
a variance sometimes increases the pigbability of correct selection).
This follows from the fact that the covariances in (15) increase

in U(k) and thus by Slepian's result increasing G(k) will
increase the P(CS) of the aforementioned one-stage procedure

for small values of §&%*. Letting h - 0, P(CS|PR(h)) tends to
P(CS) of the one-stage procedure implying that for some small

é* and h, P(CS|PR(h)) < P'(CS|PR(h)).

L., INEQUALITIES AND THEIR APPLICATIONS TO A COMPARISON OF i

PR AND PE
We compare the procedure PR with h determined by (13) and
PE both taken with initial sample of NO observations from each

population.

4.1 Comparison of h

Recall that h is the constant appearing in the determination

of the second sample size in PR and PE.

Proposition 3. The value of h* determined by (13) to guarantee

the probability requirement (1) with the procedure PR(h*) is

larger than the value of h determined by (3) needed to guarantee
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the probability reguirement (1) by PE(h) for any P¥*, k > 2,

For k = 2 the two values coincide.

Proof. Comparing the integral expressions in (13) and (3) from
which the values of h are determined this proposition is equi-
valent to the relation:

@

f Y ern)g(t)at > J [ X
B! L 0

-0

[l (=2

;0}1/2)f(x)dxj t(y)dy
y (16)
with equality holding for k = 2, and strict inequality for k > 2.

{(No-l)(§-+

In order to prove (16) define Zi to be N(0,1) variables and
Sf to be x2 variables with NO - 1 degrees of freedom all in-
dependently distributed, i = 1,...,k. Setting

%} = zi/[sf/(No-l)]l/g, i=1,...,k, the E; are independent t
variables with N. -~ 1 degrees of freedom. We have

]
2
o3
A
&
+
o
=

i
H
~

]
=

= E{Pr(
{ -0 (/s (2/s0) 112

h

<
- L/sd)+(1/8])]

» 1=
e

k-1

( h
E Mo ,
i=1 \{(No-l)[(1/sf)+(1/si)]}1/2>

v

where the last inequélity follows from Slepian's inequality with
strict inequality for k > 2 and clearly equality holding for
k = 2. as in (12) the last expression reduces to the right-hand
side of (16).

In the next Proposition 4 we give a lower bound to the integral
of equation (13). The lower bound will be applied to the procedure
PR(h) as stated in Proposition 5.
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Y a )e(x)dax) F L e(y ) ay
olo {(n -1 {{1/x) + (1/y)] %/2 J
> (] G(t+h)g(:)dt>k-l_

Proof. This follows from Jensen's inequality (in the form

‘2X)%)  and the case k = 2 equality of (16).

Propositions 1 and & imply that

(2 > (f Glr+n)e(t)an)*t

-0

P(cs P

thus proving

Proposition 5. The probability requirement (1) will be satisfied

PR(h) if n is determined from the eguation

o

? Glt+n)glt)ar = (pa)t/ (Bl (17)

-

This determination of h will of course yield larger values
of h than those of h* obtained by (13), the difference becoming
less significant for large value of P#, Dudewicz and Dalal (1975)
presented tables for the integral in (17) and by Proposition 5
these tables can be applied for a conservative determination of h‘

in PR(h) for any k.

Numerical comparisons indicate that for large values of P¥
(P* > 0.75) the difference between the values of h as deter-
mined from (3), (13) and (17) is small and thus the difference
in the second-stage sample sizes between PR and PE due to
the different determination of h in these procgdures may not

be very significant.

4.2 Comparison of Sample Size

Denote by NiE) and N§R> the sample sizes in PE and

PR’ respectively. Here NiE) is determined witﬁ h satisfying
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(R)

(3), and Ni is determined with h* satisfying (13). By
Proposition 3 we have h* > h. Recall that
(E) h 2,2
N = mex{Ng + 1, [(3,)%51)

and

R h 2,2 .

Ni - max{NO, [(Ey) Si]}, i= 1,000k

If the same No initial observations in each population are
used for both procedures we have NiR) +1> NgE) (that is
PR(h*) cannot save more than one observation per population
over P_). We thus have

E
Proposition 6. ENiR) + 1> EN£E>, .o
()

The relation between ENiR) and ENi depends on the un-

i=1 . K.

known values of the variances. If NO remains fixed, letting

cf 4+ 0 wehave MR N, and ng) - N+ 1 and thus for

i
small values of cf we have
AT
EN{R) < EN‘L)
i i
Letting g, == We see that the relation h(R> > h(E) implies

EN{R) > ENgE)
i =771

for large values of' of

4.3 Comparison of P(CS)

We compare the probability of correct selection of PR and

PE under the least favorable configuration. For the procedure

PE we have P(CS|PE) = P* for any values of the variances, while

as follows clearly from previous sections P(CS{PR) -1 as
o, =0, i=1,...,k, for any fixed é* >0 so that the P(C3)

of PR will exceed that of PE when variances are small.

Similarly when N, - =, §* > 0 fixed then P(CS|PR) -+ 1

and we conclude that for large W will have a larger P(CS)

P
0> R

than PE for any fixed configuration of the rest ¢of the parameters.
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