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Abstract

We consider a joint processing of n independent similar sparse re-
gression problems. Each is based on a sample (yi1, xi1) . . . , (yim, xim)
of m i.i.d. observations from yi1 = xT

i1βi + εi1, yi1 ∈ R, xi1 ∈ Rp,
and εi1 ∼ N(0, σ2), say. The dimension p is large enough so that the
empirical risk minimizer is not feasible. We consider, from a Bayesian
point of view, three possible extensions of the lasso. Each of the three
estimators, the lassoes, the group lasso, and the RING lasso, utilizes
different assumptions on the relation between the n vectors β1, . . . , βn.

“. . . and only a star or two set sparsedly in the vault of heaven; and you
will find a sight as stimulating as the hoariest summit of the Alps.” R. L.
Stevenson

1 Introduction

We consider the model

yij = xT
ijβi + εij , i = 1, . . . , n, j = 1, . . . , m,

or in a standard vector form

Yi = XT
i βi + εi, i = 1, . . . , n, (1)

where βi ∈ Rp. The matrix Xi ∈ Rm×p is either deterministic fixed design
matrix, or a sample of m independent Rp random vectors. Finally, εij ,
i = 1, . . . , n, j = 1, . . . , m are (at least uncorrelated with the xs), but
typically assumed to be i.i.d. sub-Gaussian random variables, independent
of the regressors xij . We can consider this as n partially related regression
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models, with m i.i.d. observations on the each model. For simplicity, we
assume that all variables have expectation 0. The fact that the number of
observations does not dependent on i is arbitrary and is assumed only for
the sake of notational simplicity. Let B be the matrix (β1, . . . , βn).

The standard FDA (functional data analysis) is of this form, when the
functions are approximated by their projections on some basis. Here we
have n i.i.d. random functions, and each group can be considered as m
noisy observations, each one is on the value of these functions at a given
value of the argument. Thus,

yij = gi(zij) + εij , (2)

where zij ∈ [0, 1]. The model fits the regression setup of (1), if g(z) =∑p
ℓ=1 βℓhℓ(p) where h1, . . . , hp are in L2(0, 1), and xijℓ = hℓ(zij).
This approach is in the spirit of the empirical Bayes (compound decision)

approach. Note however that the term “empirical Bayes” has a few other
meanings in the literature), cf, [9, 10, 7]. The empirical Bayes approach
to sparsity was considered before, e.g., [13, 3, 4, 6]. However, in these
discussions the compound decision problem was within a single vector, while
we consider the compound decision to be between the vectors, where the
vectors are the basic units. The beauty of the concept of compound decision,
is that we do not have to assume that in reality the units are related. They
are considered as related only because our loss function is additive.

One of the standard tools for finding sparse solutions in a large p small
m situation is the lasso (Tibshirani [11]), and the methods we consider are
possible extensions.

We will make use of the following notation, introducing the lp,q norm of
matrices and sets z of vectors:

Definition 1.1 For a matrix A, ∥A∥p,q =
(∑

i

(∑
j Ap

ij

)q/p
)1/q

. If z1, . . . , zn,
is a collection of vectors, not necessarily of the same length, zij, i = 1, . . . , n,

j = 1, . . . , Ji, then ||{z1, . . . , zn}||p,q =
[∑n

i=1

(∑
j∈Ji

|zij |p
)q/p

]1/q

.

These norms will serve as a penalty on the size of the matrix B = (β1, . . . , βn).
Different norms imply different estimators, each appropriate under different
assumptions.

Within the framework of the compound decision theory, we can have
different scenarios. The first one is that the n groups are considered as
repeated similar models for p variables, and the aim is to choose the variables
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that are useful for all models. The relevant variation of the lasso procedure
in this case is the group lasso introduced by Yuan and Lin [12]:

B̂ = arg min
B

n∑
i=1

m∑
j=1

(yij − xT
ijβi)2 + λ∥BT∥2,1. (3)

Yuan and Lin also showed that in this case the sparsity pattern of variables is
the same (with probability 1). Non-asymptotic inequalities under restricted
eigenvalue type condition for group lasso are given by Lounici et al. [8].

Another possible scenario is where there is no direct relationship be-
tween the groups, and the only way the data are combined together is via
the selection of the common penalty. In this case the sparsity pattern of
the solution for each group are unrelated. We argue that the alternative
formulation of the lasso procedure:

B̂ = arg min
B

n∑
i=1

m∑
j=1

(yij − xT
ijβi)2 + λ∥B∥1,α, (4)

which we refer to as “lassoes” can be more natural than the simple lasso.
The standard choice is α = 1, but we believe that α > 4 is, in fact, more
consistent with a Bayesian point of view.

If we compare (4) to (3) we can see the difference between the prior
assumptions of the lassoes and the group lasso. The basic elements of the
lassoes are the βi’s vector, and we assume a priori that each of them is sparse.
On the other hand, the basic elements of the group lasso are the variables,
and we assume a priori that most of them do not contribute significantly to
any of the regression equation.

We shall also consider a third situation where there is a sparse represen-
tation in some unknown basis, but assumed common to the n groups. The
standard notion of sparsity, as captured by the ℓ0 norm, or by the standard
lasso, the lassoes, and the group lasso, is basis dependent. For example,
when we prefer to leave it a priori open whether the function should be de-
scribed in terms of the standard Haar wavelet basis, a collection of interval
indicators, or a collection of step functions. All these three span the same
linear space, but the true functions may be sparse in only one of them.

The rotation invariant group (RING) lasso was suggested as a natural
extension of the group lasso to the situation where the proper sparse descrip-
tion of the regression function within a given basis is not known in advance
([2]). The corresponding penalty is the trace norm (or Schatten norm with
p = 1) of the matrix B, which finds the rotation that gives the best sparse
representation of all vectors instantaneously.
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The aim is to discuss the Bayesian interpretation of the three lasso exten-
sions to the compound decision problem setting. Since the lassoes method,
to our knowledge, has not been considered previously, we also present some
theoretical results for it such as sparsity oracle inequalities and the persis-
tency analysis.

The chapter is organised as follows. In Section 2 we introduce the lassoes
method, discuss the Bayesian perspective, perform the persistency analysis
and give the sparsity oracle inequalities. Section 3 is devoted to a Bayesian
perspective on group lasso and Section 4 - to a Bayesian perspective on
RING lasso. All the proofs are given in the Appendix.

2 The lassoes procedure

2.1 Persistency and Bayesian interpretation

The minimal structural relationship we may assume is that the β’s are not
related, except that we believe that there is a bound on the average sparsity
of the β’s. One possible approach would be to consider the problem as a
standard sparse regression problem with nm observations, a single vector of
coefficients β = (βT

1 , . . . , βT
n )T, and a block diagonal design matrix X. This

solution, which corresponds to the solution of (4) with α = 1, imposes very
little on the similarity among β1, . . . , βn. The lassoes procedure discussed
in this section assumes that these vectors are similar, at least in their level
of sparsity.

We assume that each vector of βi, i = 1, . . . , n, solves a different problem,
and these problems are related only through the common penalty in the joint
loss function, which is the sum of the individual losses, see (4).

We want to introduce some notation. We assume that for each i =
1, . . . , n, zij = (yij , x

T
ij)

T, j = 1, . . . , m are i.i.d., sub-Gaussian random vari-
ables, drawn from a distribution Qi. Let zi = (yi, x

T
i )T be an independent

sample from Qi. For any vector a, let ã = (−1, aT)T, and let Σ̃i be the co-
variance matrix of zi and S = (Σ̃1, . . . , Σ̃n). The goal is to find the matrix
B̂ = (β̂1, . . . , β̂n) that minimizes the mean prediction error:

L(B, S) =
n∑

i=1

EQi(yi − xT
i βi)2 =

n∑
i=1

β̃T
i Σ̃iβ̃i. (5)

For p small, the natural approach is empirical risk minimization, that is
replacing Σ̃i in (5) by S̃i, the empirical covariance matrix of zi. However,
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generally speaking, if p is large, empirical risk minimization results in over-
fitting the data. Greenshtein and Ritov [5] suggested (for the standard
n = 1) minimization over a restricted set of possible β’s, in particular, to
either ℓ1 or ℓ0 balls. In fact, their argument is based on the following simple
observations ∣∣β̃T(Σ̃i − S̃i)β̃

∣∣ ≤ ∥Σ̃i − S̃i∥∞∥β̃∥2
1

and

δm ≡ ∥Σ̃i − S̃i∥∞ = Op(m−1/2 log p),

(6)

where ∥A∥∞ = maxi,j |Aij |.
This leads to the natural extension of the single vector lasso to the com-

pound decision problem set up, where we penalize by the sum of the squared
ℓ1 norms of vectors β̃1, . . . , β̃n, and obtain the estimator defined by:

(β̃̂i, . . . , β̃̂n) = arg min
β̃1,...,β̃n

{
m

n∑
i=1

β̃T
i S̃iβ̃i + λm

n∑
i=1

∥β̃i∥2
1

}
= arg min

β̃1,...,β̃n

n∑
i=1

{ m∑
j=1

(yij − xT
ijβi)2 + λm∥β̃i∥2

1

}
.

(7)

Note that when n = 1, the fact that we penalized by the squared ℓ1

norm, and not by the ℓ1 norm itself does not make a difference. To be more
exact, if n = 1, for any λm in (7), there is λ′

m such that the least square
with penalty λ′

m∥β̃1∥1 yields the same value as (7).
Also, (7) may seem as, and numerically it certainly is, n separate prob-

lems, each involving a specific βi. The problems are related however, be-
cause the penalty function is the same for all. They are tied, therefore, by
the chosen value of λn, whether this is done a-priori, or by solving a sin-
gle constraint maximization problem, or if λm is selected a-posteriori by a
method like cross validation.

The prediction error of the lassoes estimator can be bounded in the
following way. In the statement of the theorem, cn is the minimal achievable
risk, while Cn is the risk achieved by a particular sparse solution.

Theorem 2.1 Let βi0, i = 1, . . . , n be n arbitrary vectors and let Cn =
n−1

∑n
i=1 β̃T

i0Σ̃iβ̃i0. Let cn = n−1
∑n

i=1 minβ β̃TΣ̃iβ̃. Then

n∑
i=1

β̃̂T
i Σ̃iβ̃̂i ≤

n∑
i=1

β̃T
i0Σ̃iβ̃i0 + (

λm

m
+ δm)

n∑
i=1

∥β̃i0∥2
1 − (

λm

m
− δm)

n∑
i=1

∥β̃̂i∥2
1,
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where δm = maxi ∥S̃i −Σi∥∞. If also λm/m → 0 and λm/(m1/2 log(np)) →
∞, then

n∑
i=1

∥β̃̂i∥2
1 = Op

(
mn

Cn − cn

λm

)
+
(
1 + O(

m1/2

λm
log(np))

) n∑
i=1

∥β̃i0∥2
1 (8)

and
n∑

i=1

β̃̂T
i Σ̃iβ̃̂i ≤

n∑
i=1

β̃T
i0Σ̃iβ̃i0 +

(
1 + Op(1)

)λm

m

n∑
i=1

∥β̃i0∥2
1.

The result is meaningful, although not as strong as may be wished, as
long as Cn − cn → 0, while n−1

∑n
i=1 ∥β̃i0∥2

1 = Op(m1/2). That is, when
there is a relatively sparse approximations to the best regression functions.
Here sparse means only that the ℓ1 norms of vectors is strictly smaller, on
the average, than

√
m. Of course, if the minimizer of β̃TΣ̃iβ̃ itself is sparse,

then by (8) β̃̂1, . . . , β̃̂n are as sparse as the true minimizers.
Also note, that the prescription that the theorem gives for selecting λm,

is sharp: choose λm as close as possible to mδm, or slightly larger than
√

m.

The estimators β̃̂1, . . . , β̃̂m look as if they are the mode of the a-posteriori
distribution of the βi’s when yij |βi ∼ N(xT

ijβi, σ
2), the β1, . . . , βn are a priori

independent, and βi has a prior density proportional to exp(−λm∥β̃i∥2
1/σ2).

This distribution can be constructed as follows. Suppose Ti ∼ N(0, λ−1
m σ2).

Given Ti, let ui1, . . . , uip be distributed uniformly on the simplex {uiℓ ≥
0,
∑n

ℓ=1 uiℓ = |Ti|}. Let si1, . . . , sip be i.i.d. Rademacher random variables
(taking values ±1 with probabilities 0.5), independent of Ti, ui1, . . . , uip.
Finally let βiℓ = uiℓsiℓ, ℓ = 1, . . . , p.

However, this Bayesian point of view is not consistent with the above
suggested value of λm. An appropriate prior should express the beliefs on
the unknown parameter which are by definition conceptually independent
of the amount data to be collected. However, the permitted range of λm

does not depend on the assumed range of ∥β̃i∥, but quite artificially should
be in order between m1/2 and m. That is, the penalty should be increased
with the number of observations on each βi, although at a slower rate than
m. In fact, even if we relax what we mean by “prior”, the value of λm goes
in the ‘wrong’ direction. As m → ∞, one may wish to use weaker a-priori
assumptions, and allow T above to have a-priori second moment going to
infinity, not to 0, as entailed by λm → 0.

The Bayesian inconsistency does not come from the asymptotic setup,
and it does not come from considering a more and more complex model. It
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was presented as asymptotic in m → ∞, because it is clear that asymptot-
ically we get the wrong results, but the phenomena occurs along the way
and not only in the final asymptotic destination. The parameter λ should
be much larger than we believe a priori that ∥β̃i∥−1

1 should be. If λ is
chosen such that the prior distribution have the level of sparsity we believe
in, than the posteriori distribution would not be sparse at all! To obtain a
sparse solution, we should pose a prior which predicts an almost zero vec-
tor β. Also, the problem does not follow from increasing the dimension,
because the asymptotic is in m and not in p, the latter is very large along
the process. We could start the “asymptotic” discussion with m0 observa-
tions per βi ∈ Rp0 , p0 almost exponential in m0. Then we could keep p
constant, while increasing m. We would get the inconsistency much before
m will be O(p0). Finally, the Bayesian inconsistency is not because the real
dimension, the number of non-zero entries of βi, is increasing. In fact, the
inconsistency appears when this number is kept of the same order, and the
prior predicts increasingly sparse vectors (but not fast enough). In short,
the problem is that the considered prior distribution cannot compete with
the likelihood when the dimension of the observations is large (note, just
‘large’, not ‘asymptotically large’).

We would like to consider a more general penalty of the form
∑n

i=1 ∥βi∥α
1 .

A power α ̸= 1 of ℓ1 norm of β as a penalty introduces a priori dependence
between the variables which is not the case for the regular lasso penalty
with α = 1, where all βij are a priori independent. As α increases, the
sparsity of the different vectors tends to be the same—the price for a single
non-sparse vector is higher as α increases. Note that given the value of λm,
the n problems are treated independently. The compound decision problem
is reduced to picking a common level of penalty. When this choice is data
based, the different vectors become dependent. This is the main benefit of
this approach—the selection of the regularization is based on all the mn
observations.

For a proper Bayesian perspective, we need to consider a prior with much
smaller tails than the normal. Suppose for simplicity that cn = Cn (that is,
the “true” regressors are sparse), and maxi ∥βi0∥1 < ∞.

Theorem 2.2 Let βi0 be the minimizer of β̃TΣiβ̃. Suppose maxi ∥βi0∥1 <
∞. Consider the estimators:

(β̃̂i, . . . , β̃̂n) = arg min
β̃1,...,β̃n

{
m

n∑
i=1

β̃T
i S̃iβ̃i + λm

n∑
i=1

∥β̃i∥α
1

}
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for some α > 2. Assume that λn = O(mδm) = O(m1/2 log p). Then

n−1
n∑

i=1

∥β̃̂i∥2
1 = O((mδm/λm)2/(α−2)),

and
n∑

i=1

β̃̂T
i Σ̃iβ̃̂i ≤

n∑
i=1

β̃T
i0Σ̃iβ̃i0 + Op(n(m/λm)2/(α−2)δα/(α−2)

m ).

Note that, if we, the Bayesians, believe that n−1
∑n

i=1 ∥β̃̂i∥2
1

p−→ c, then
λm should also converge to a constant. Theorem 2.2 implies that the es-
timator is persistent if m2δα

n → 0, or α > 4. That is, the prior should
have a very short tails. In fact, if the prior’s tails are short enough, we can
accommodate an increasing value of the β̃̂i’s by taking λm → 0.

The theorem suggests a simple way to select λm based on the data. Note
that n−1

∑n
i=1 ∥β̃̂i∥2

1 is a decreasing function of λ. Hence, we can start with

a very large value of λ and decrease it until n−1
∑n

i=1 ∥β̃̂i∥2
1 ≈ λ−2/α.

We want to conclude on another role of the parameter α. The parameter
λm controls the average n−1

∑n
i=1 ∥β̃i∥α

1 . When α = 1, we are relatively
flexible and allow some ∥β̃i∥1 to be very large, as long as other are small. If
α is larger, the penalty for ∥β̃i∥1 much larger than the average becomes too
large, and the solution tends to be with all ∥β̃i∥1 being of the same order.

2.2 Restricted eigenvalues condition and oracle inequalities

The above discussion was based on the persistent type of argument. The
results are relatively weak, but in return the conditions are very weak. For
completeness we give much stronger results based on much stronger condi-
tions. We show that the needed coefficient of the penalty function remains
the same, and therefore the Bayesian discussion did not depend on the results
presented above. Before stating the conditions and the resulted inequalities
we introduce some notation and definitions.

For a vector β, let M(β) be the cardinality of its support: M(β) =∑
i 1(βi ̸= 0). Given a matrix ∆ ∈ Rn×p and given a set J = {Ji}, Ji ⊂

{1, . . . , p}, we denote ∆J = {∆i,j , i = 1, . . . , n, j ∈ Ji}. By the complement
Jc of J we denote the set {Jc

1 , . . . , J
c
n}, i.e. the set of complements of Ji’s.

Below, X is np×m block diagonal design matrix, X = diag(X1, X2, . . . , Xn),
and with some abuse of notation, a matrix ∆ = (∆1, . . . ,∆n) may be
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considered as the vector (∆T
1 , . . . ,∆T

n)T. Finally, recall the notation B =
(β1, . . . , βn)

The restricted eigenvalue assumption of Bickel et al. [1] (and Lounici
et al. [8]) can be generalized to incorporate unequal subsets Jis. In the
assumption below, the restriction is given in terms of ℓq,1 norm, q > 1.

Assumption REq(s, c0, κ).

κ = min
{

||XT∆||2√
m||∆J ||2

: max
i

|Ji| 6 s, ∆ ∈ Rn×p \ {0}, ||∆Jc ||q,1 6 c0||∆J ||q,1

}
> 0.

We apply it with q = 1, and in Lounici et al. [8] it was used for q = 2. We
call it a restricted eigenvalue assumption to be consistent with the literature.
In fact, as stated it is a definition of κ as the maximal value that satisfies
the condition, and the only real assumption is that κ is positive. However,
the larger κ is, the more useful the “assumption” is. Discussion of the
normalisation by

√
m can be found in Lounici et al. [8].

For penalty λ
∑

i ||βi||α1 , we have the following inequalities.

Theorem 2.3 Assume yij ∼ N (xT
ijβi, σ

2), and let β̂ be a minimizer of (7),
with

λ > 4Aσ
√

m log(np)

α max(Bα−1, B̂α−1)
,

where α > 1 and A >
√

2, B > maxi ||βi||1 and B̂ > maxi ||β̂i||1, max(B, B̂) >
0 (B may depend on n,m, p, and so can B̂). Suppose that generalized as-
sumption RE1(s, 3, κ) defined above holds,

∑m
j=1 x2

ijℓ = m for all i, ℓ, and
M(βi) 6 s for all i.

Then, with probability at least 1 − (np)1−A2/2,

(a) The root means squared prediction error is bounded by:

1√
nm

||XT(B̂−B)||2 6
√

s

κ
√

m

[
3αλ

2
√

m
max(Bα−1, B̂α−1) + 2Aσ

√
log(np)

]
,

(b) The mean estimation absolute error is bounded by:

1
n
||B − B̂||1 6 4s

mκ2

[
3αλ

2
max(Bα−1, B̂α−1) + 2Aσ

√
m log(np)

]
,
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(c)

M(β̂i) ≤ ∥Xi(βi − β̂i)∥2
2

mϕi, max(
λα||β̂i||α−1

1 /2 − Aσ
√

m log(np)
)2 ,

where ϕi,max is the maximal eigenvalue of XT
i Xi/m.

Note that for α = 1, if we take λ = 2Aσ
√

m log(np), the bounds are of
the same order as for the lasso with np-dimensional β ( up to a constant of
2, cf. Theorem 7.2 in Bickel et al. [1]). For α > 1, we have dependence of
the bounds on the ℓ1 norm of β and β̂.

We can use bounds on the norm of β̂ given in Theorem 2.2 to obtain the
following results.

Theorem 2.4 Assume yij ∼ N (xT
ijβi, σ

2), with maxi ∥βi∥1 6 b where b > 0
can depend on n, m, p. Take some η ∈ (0, 1). Let β̂ be a minimizer of (7),
with

λ =
4Aσ

α bα−1

√
m log(np),

A >
√

2, such that b > cη1/(2(α−1)) for some constant c > 0. Also, assume
that Cn − cn = O(mδn), as defined in Theorem 2.1.

Suppose that generalized assumption RE1(s, 3, κ) defined above holds,∑m
j=1 x2

ijℓ = m for all i, ℓ, and M(βi) 6 s for all i.

Then, for some constant C > 0, with probability at least 1−
(
η + (np)1−A2/2

)
,

(a) The prediction error can be bounded by:

||XT(B̂ − B)||22 6 4A2σ2sn log(np)
κ2

[
1 + 3C

(
b
√

η

)(α−1)/(α−2)
]2

,

(b) The estimation absolute error is bounded by:

||B − B̂||1 6 2Aσsn
√

log(np)
κ2

√
m

[
1 + 3C

(
b
√

η

)(α−1)/(α−2)
]

.

(c) Average sparsity of β̂i:

1
n

n∑
i=1

M(β̂i) 6 s
4ϕmax

κ2δ2

[
1 + 3C

(
b
√

η

)1+1/(α−2)
]2

,

where ϕmax is the largest eigenvalue of XTX/m.
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This theorem also tells us how large ℓ1 norm of β can be to ensure good
bounds on the prediction and estimation errors.

Note that under the Gaussian model and fixed design matrix, assumption
Cn − cn = O(mδn) is equivalent to ||B||22 6 Cmδn.

3 Group lasso: Bayesian perspective

Write B = (β1, . . . , βn) = (bT
1 , . . . , bT

p )T. Th group lasso is defined (see Yuan
and Lin [12]) by

B̂ = arg min

[
n∑

i=1

m∑
j=1

(yij − xT
ij βi)2 + λ

p∑
ℓ=1

∥bℓ∥2

]
(9)

Note that (β̂1, . . . , β̂n) are defined as the minimum point of a strictly convex
function, and hence they can be found by equating the gradient of this
function to 0.

Note that (9) is equivalent to the mode of the a-posteriori distribution
when given B, Yij , i = 1, . . . , n, j = 1, . . . , m, are all independent, yij

∣∣ B ∼
N (xT

ij βi, σ
2), and a-priori, b1, . . . , bp, are i.i.d.,

fb(bℓ) ∝ exp
{
−λ̃∥bℓ∥2

}
, ℓ = 1, . . . , p,

where λ̃ = λ/(2σ2). We consider now some property of this prior. For each ℓ,
bℓ have a spherically symmetric distribution. In particular its components
are uncorrelated and have mean 0. However, they are not independent.
Change of variables to a polar system where

Rℓ = ∥bℓ∥2

βℓi = Rℓwℓi, wℓ ∈ Sn−1,

where Sn−1 is the sphere in Rn. Then, clearly,

f(Rℓ, wℓ) = Cn,λRn−1
ℓ e−λ̃Rℓ , Rℓ > 0, (10)

where Cn, λ = λ̃nΓ(n/2)/2Γ(n)πn/2. Thus, Rℓ, wℓ are independent Rℓ ∼
Γ(n, λ̃), and wℓ is uniform over the unit sphere.

The conditional distribution of one of the coordinates of bℓ, say the first,
given the rest has the form

f(bℓ1|bℓ2, . . . , bℓn,
n∑

i=2

b2
ℓi = ρ2) ∝ e−λ̃ρ

√
1+b2

ℓ1/ρ2

11



which for small bℓ1/ρ looks like the normal density with mean 0 and variance
ρ/λ̃, while for large bℓ1/ρ behaves like the exponential distribution with
mean λ̃−1.

The sparsity property of the prior comes from the linear component of
log-density of R. If λ̃ is large and the Y s are small, this component dominates
the log-a-posteriori distribution and hence the maximum will be at 0.

Fix now ℓ ∈ {1, . . . , p}, and consider the estimating equation for bℓ

— the ℓ components of the β’s. Fix the rest of the parameters and let
Ỹ B

ijℓ = yij −
∑

k ̸=ℓ βikxijk. Then b̂ℓi, i = 1, . . . , n, satisfy

0 = −
m∑

j=1

xijℓ(Ỹ B
ijℓ − b̂ℓixijℓ) +

λb̂ℓi√∑
k b̂2

ℓk

, i = 1, . . . , n

= −
m∑

j=1

xijℓ(Ỹ B
ijℓ − b̂ℓixijℓ) + λ∗

ℓ b̂ℓi, say.

Hence

b̂ℓi =

∑m
j=1 xijℓỸ

B
ijℓ

λ∗
ℓ +

∑m
j=1 x2

ijℓ

. (11)

The estimator has an intuitive appeal. It is the least square estimator of bℓi,∑m
j=1 xijℓỸ

B
ijℓ/

∑m
j=1 x2

ijℓ, pulled to 0. It is pulled less to zero as the variance
of bℓ1, . . . , bℓn increases (and λ∗

ℓ is getting smaller), and as the variance of
the LS estimator is lower (i.e., when

∑m
j=1 x2

ijℓ is larger).
If the design is well balanced,

∑m
j=1 x2

ijℓ ≡ m, then we can characterize
the solution as follows. For a fixed ℓ, b̂ℓ1, . . . , b̂ℓn are the least square solution
shrunk toward 0 by the same amount, which depends only on the estimated
variance of b̂ℓ1, . . . , b̂ℓn. In the extreme case, b̂ℓ1 = . . . = b̂ℓn = 0, otherwise
(assuming the error distribution is continuous) they are shrunken toward 0,
but are different from 0.

We can use (11) to solve for λ∗
ℓ( λ

λ∗
ℓ

)2
= ∥b̂ℓ∥2

2 =
n∑

i=1

( ∑m
j=1 xijℓỸ

B
ijℓ

λ∗
ℓ +

∑m
j=1 x2

ijℓ

)2

.

Hence λ∗
ℓ is the solution of

λ2 =
n∑

i=1

(
λ∗

ℓ

∑m
j=1 xijℓỸ

B
ijℓ

λ∗
ℓ +

∑m
j=1 x2

ijℓ

)2

. (12)

12



Note that the RHS is monotone increasing, so (12) has at most a unique
solution. It has no solution if at the limit λ∗

ℓ → ∞, the RHS is still less than
λ2. That is if

λ2 >

n∑
i=1

( m∑
j=1

xijℓỸ
B
ijℓ

)2

then b̂ℓ = 0. In particular if

λ2 >

n∑
i=1

( m∑
j=1

xijℓYijℓ

)2
, ℓ = 1, . . . , p

Then all the random effect vectors are 0. In the balanced case the RHS is
Op(mn log(p)). By (10), this means that if we want that the estimator will
be 0 if the underlined true parameters are 0, then the prior should prescribe
that bℓ has norm which is O(m−1). This conclusion is supported by the
recommended value of λ given, e.g. in [8].

4 RING lasso: Bayesian perspective

Let A =
∑

cixix
T
i , be a positive semi-definite matrix, where x1, x2, . . . is

an orthonormal basis of eigenvectors. Then, we define Aγ =
∑

cγ
i xix

T
i . We

consider now as penalty the function

|||B|||1 = trace
{( n∑

i=1

βiβ
T
i

)1/2
}

,

where B = (β1, . . . , βn) = (bT
1 , . . . , bT

p )T. This is also known as trace norm

or Schatten norm with p = 1. Note that |||B|||1 =
∑

c
1/2
i where c1, . . . , cp

are the eigenvalues of BBT =
∑n

i=1 βiβ
T
i (including multiplicities), i.e. this

is the ℓ1 norm on the singular values of B. |||B|||1 is a convex function of B.
In this section we study the estimator defined by

B̂ = arg min
B∈Rp×n

{
n∑

i=1

(yij − xT
ijβi)2 + λ|||B|||1.} (13)

We refer to this problem as RING (Rotation INvariant Group) lasso. See
[2] for more details.

We consider now the penalty for βk for a fixed k. Let A = n−1
∑

k ̸=i βkβ
T
k ,

and write the spectral value decomposition n−1
∑n

k=1 βkβ
T
k =

∑
cjxjx

T
j

13



where {xj} is an orthonormal basis of eigenvectors. Using Taylor expansion
for not too big βi, we get

trace
(
(nA + βiβ

T
i )1/2

)
≈

√
n trace(A1/2) +

p∑
j=1

xT
j βiβ

T
i xj

2c
1/2
j

=
√

n trace(A1/2) +
1
2
βT

i

(∑
c
−1/2
j xjx

T
j

)
βi

=
√

n trace(A1/2) +
1
2
βT

i A−1/2βi

Hence the estimator is if βi has a prior of N (0, nσ2/λA1/2). Note that the
prior is only related to the estimated variance of β, and A appears with the
power of 1/2. Now A is not really the estimated variance of β, only the
variance of the estimates, hence it should be inflated, and the square root
takes care of that. Finally, note that eventually, if βi is very large relative
to nA, then the penalty become ∥β∥, so the “prior” looks like normal for
the center of the distribution and has exponential tails.

A better way to look on the penalty from a Bayesian perspective is to
consider it as prior on the n × p matrix B = (β1, . . . , βn). Recall that the
penalty is invariant to the rotation of the matrix B. In fact, |||B|||1 =
|||TBU |||1, where T and U are n × n and p × p rotation matrices. Now,
this means that if b1, . . . , bp are orthonormal set of eigenvectors of BTB and
γij = bT

j βi — the PCA of β1, . . . , βn, then |||B|||1 =
∑p

j=1

(∑n
i=1 γ2

ij

)1/2 —
the RING lasso penalty in terms of the principal components. The “prior”
is then proportional to e−λ̃

∑p
j=1 ∥γ·j∥2 where λ̃ = λ/(2σ2). Namely, we can

obtain a random B from the prior by the following procedure:

1. Sample r1, . . . , rp independently from Γ(n, λ̃) distribution.

2. For each j = 1, . . . , p sample γ1j , . . . , γnj independently and uniformly
on the sphere with radius rj .

3. Sample an orthonormal base χ1, . . . , χp ”uniformly”.

4. Construct βi =
∑p

j=1 γijχj .

14



A Appendix

Proof of Theorem 2.1. Note that by the definition of β̃̂i and (6).

mncn + λm

n∑
i=1

∥β̃̂i∥2
1

≤ m

n∑
i=1

β̃̂T
i Σ̃iβ̃̂i + λm

n∑
i=1

∥β̃̂i∥2
1

≤ m
n∑

i=1

β̃̂T
i S̃iβ̃̂i + (λm + mδm)

n∑
i=1

∥β̃̂i∥2
1

≤ m

n∑
i=1

β̃T
i0S̃iβ̃i0 + λm

n∑
i=1

∥β̃i0∥2
1 + mδm

n∑
i=1

∥β̃̂i∥2
1

≤ m

n∑
i=1

β̃T
i0Σ̃iβ̃i0 + (λm + mδm)

n∑
i=1

∥β̃i0∥2
1 + mδm

n∑
i=1

∥β̃̂i∥2
1

= mnCn + (λm + mδm)
n∑

i=1

∥β̃i0∥2
1 + mδm

n∑
i=1

∥β̃̂i∥2
1.

(14)

Comparing the LHS with the RHS of (14), noting that mδm ≪ λm:

n∑
i=1

∥β̃̂i∥2
1 ≤ mn

Cn − cn

λm − mδm
+

λm + mδm

λm − mδm

n∑
i=1

∥β̃i0∥2
1.

By (6) and (7):

n∑
i=1

β̃̂T
i Σ̃iβ̃̂i ≤

n∑
i=1

β̃̂T
i S̃iβ̃̂i + δm

n∑
i=1

∥β̃̂i∥2
1

≤
n∑

i=1

β̃T
i0S̃iβ̃i0 +

λm

m

n∑
i=1

∥β̃i0∥2
1 −

λm

m

n∑
i=1

∥β̃̂i∥2
1 + δm

n∑
i=1

∥β̃̂i∥2
1

≤
n∑

i=1

β̃T
i0Σ̃iβ̃i0 + (

λm

m
+ δm)

n∑
i=1

∥β̃i0∥2
1 − (

λm

m
− δm)

n∑
i=1

∥β̃̂i∥2
1

≤
n∑

i=1

β̃T
i0Σ̃iβ̃i0 + (

λm

m
+ δm)

n∑
i=1

∥β̃i0∥2
1.

(15)

The result follows. �
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Proof of Theorem 2.2. The proof is similar to the proof of Theorem 2.1.
Similar to (14) we obtain:

mncn + λm

n∑
i=1

∥β̃̂i∥α
1

≤ m
n∑

i=1

β̃̂T
i Σ̃iβ̃̂i + λm

n∑
i=1

∥β̃̂i∥α
1

≤ m

n∑
i=1

β̃̂T
i S̃iβ̃̂i + λm

n∑
i=1

∥β̃̂i∥α
1 + mδm

n∑
i=1

∥β̃̂i∥2
1

≤ m

n∑
i=1

β̃T
i0S̃iβ̃i0 + λm

n∑
i=1

∥β̃i0∥α
1 + mδm

n∑
i=1

∥β̃̂i∥2
1

≤ m

n∑
i=1

β̃T
i0Σ̃iβ̃i0 + λm

n∑
i=1

∥β̃i0∥α
1 + mδm

n∑
i=1

∥β̃i0∥2
1 + mδm

n∑
i=1

∥β̃̂i∥2
1

= mncn + λm

n∑
i=1

∥β̃i0∥α
1 + mδm

n∑
i=1

∥β̃i0∥2
1 + mδm

n∑
i=1

∥β̃̂i∥2
1.

That is,

n∑
i=1

(λm∥β̃̂i∥α
1 − mδm∥β̃̂i∥2

1) ≤ λm

n∑
i=1

∥β̃i0∥α
1 + mδm

n∑
i=1

∥β̃i0∥2
1

= O(mnδm).

(16)

It is easy to see that the maximum of
∑n

i=1 ∥β̃̂i∥2
1 subject to the constraint

(16) is achieved when ∥β̃̂1∥2
1 = · · · = ∥β̃̂n∥2

1. That is when ∥β̃̂i∥2
1 solves

λmuα − mδmu2 = O(mδm). As λn = O(mδm), the solution satisfies u =
O(mδm/λm)1/(α−2).

Hence we can conclude from (16)

n∑
i=1

∥β̃̂i∥2
2 = O(n(mδm/λm)2/(α−2))

We now proceed similar to (15)

n∑
i=1

β̃̂T
i Σ̃iβ̃̂i ≤

n∑
i=1

β̃̂T
i S̃iβ̃i + δm

n∑
i=1

∥β̃̂i∥2
1
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≤
n∑

i=1

β̃T
i0S̃iβ̃i0 +

λm

m

n∑
i=1

∥β̃i0∥α
1 − λm

m

n∑
i=1

∥β̃̂i∥α
1 + δm

n∑
i=1

∥β̃̂i∥2
1

≤
n∑

i=1

β̃T
i0Σ̃iβ̃i0 +

λm

m

n∑
i=1

∥β̃i0∥α
1 + δm

n∑
i=1

∥β̃i0∥2
1 + δm

n∑
i=1

∥β̃̂i∥2
1

≤
n∑

i=1

β̃T
i0Σ̃iβ̃i0 + Op(n(m/λm)2/(α−2)δα/(α−2)

m ),

since λn = O(mδm).
�

Proof of Theorem 2.3. The proof follows that of Lemma 3.1 in Lounici et
al. [8].

We start with (a) and (b). Since β̂ minimizes (7), then, ∀β

n∑
i=1

||Yi − XT
i β̂i||22 + λ

n∑
i=1

∥β̂i∥α
1 ≤

n∑
i=1

||Yi − XT
i βi||22 + λ

n∑
i=1

∥βi∥α
1 ,

and hence, for Yi = XT
i βi + εi,

n∑
i=1

||XT
i (β̂i − βi)||22 6

n∑
i=1

[
2εT

i XT
i (βi − β̂i) + λ(||βi||α1 − ||β̂i||α1 )

]
.

Denote Viℓ =
∑m

j=1 xijℓεij ∼ N (0,mσ2), and introduce event Ai =∩p
ℓ=1{|Viℓ| ≤ µ}, for some µ > 0. Then

P (Ac
i ) ≤

p∑
ℓ=1

P (|Viℓ| > µ)

=
p∑

ℓ=1

2
[
1 − Φ

{
µ/(σ

√
m)
}]

≤ p exp
{
−µ2/(2mσ2)

}
.

For A = ∩n
i=1Ai, due to independence,

P (Ac) =
n∑

i=1

P (Ac
i ) 6 pn exp

{
−µ2/(2mσ2)

}
.

Thus, if µ is large enough, P (Ac) is small, e.g., for µ = σA
(
m log(np)

)1/2,
A >

√
2, we have P (Ac) ≤ (np)1−A2/2.
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On event A, for some ν > 0,

n∑
i=1

[
||Xi(β̂i − βi)||22 + ν||βi − β̂i||1

]
6

n∑
i=1

[
2µ||βi − β̂i||1 + λ(||βi||21 − ||β̂i||21) + ν||βi − β̂i||1

]
=

n∑
i=1

m∑
j=1

[
α λ max(||βi||α−1

1 , ||β̂i||α−1
1 )(|βij | − |β̂ij |) + (ν + 2µ)|βij − β̂ij |

]
6

n∑
i=1

m∑
j=1

[
α λ max(Bα−1, B̂α−1)(|βij | − |β̂ij |) + (ν + 2µ)|βij − β̂ij |

]
,

due to inequality |xα−yα| 6 α|x−y|max(|x|α−1, |y|α−1) which holds for α >
1 and any x and y. To simplify the notation, denote C = α max(Bα−1, B̂α−1).

Denote Ji = J(βi) = {j : βij ̸= 0}, M(βi) = |J(βi)|. For each i and
j ∈ J(βi), the expression in square brackets is bounded above by

[λC + ν + 2µ] |βij − β̂ij |,

and for j ∈ Jc(β), the expression in square brackets is bounded above by 0,
as long as ν + 2µ 6 λC:

−λC|β̂ij | + (ν + 2µ)|β̂ij | 6 0.

This condition is satisfied if ν + 2µ 6 λC.
Hence, on A, for ν + 2µ 6 λC,

n∑
i=1

[
||XT

i (β̂i − βi)||22 + ν||βi − β̂i||1
]

6
n∑

i=1

[λC + 2µ + ν]||(βi − β̂i)Ji ||1.

This implies that

n∑
i=1

||Xi(β̂i − βi)||22 6 [λC + ν + 2µ]||(β − β̂)J ||1,

as well as that

||β − β̂||1 6
[
1 +

2µ

ν
+

λ

ν
C
]
||(β − β̂)J ||1.
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Take ν = λC/2, hence we need to assume that 2µ 6 λC/2:

n∑
i=1

||XT
i (β̂i − βi)||22 6

[
3λ

2
C + 2µ

]
||(β − β̂)J ||1,

||β − β̂||1 6
[
3 +

4µ

λC

]
||(β − β̂)J ||1 6 4||(β − β̂)J ||1.

(17)

which implies

||(β − β̂)Jc ||1 6 3||(β − β̂)J ||1.

Due to the generalized restricted eigenvalue assumption RE1(s, 3, κ),
||XT(β − β̂)||2 > κ

√
m||(β − β̂)J ||2, and hence, using (17),

||XT(β̂ − β)||22 6
[
3λ

2
C + 2µ

]√
nM(β)||(β̂ − β)J ||2

6
[
3λ

2
C + 2µ

] √
nM(β)
κ
√

m
||XT(β̂ − β)||2,

where M(β) = maxi M(βi), implying that

||XT(β̂ − β)||2 6
[
3λ

2
C + 2µ

] √
nM(β)
κ
√

m

=

√
nM(β)
κ
√

m

[
3λ

2
C + 2Aσ

√
m log(np)

]
.

Also,

||β − β̂||1 6 4||(β − β̂)J ||1 6 4

√
nM(β)√

mκ
||XT(β − β̂)||2

6 4nM(β)
mκ2

[
3λ

2
C + 2Aσ

√
m log(np)

]
.

Hence, a) and b) of the theorem are proved.
(c) For i, ℓ: β̂iℓ ̸= 0, we have

2Xi·ℓ(Yi − XT
i β̂i) = λαsgn (β̂iℓ)||β̂i||α−1

1 ,

By the triangle inequality,∑
ℓ: β̂iℓ ̸=0

||Xi·ℓX
T
i (βi − β̂i)||22 >

∑
ℓ: β̂iℓ ̸=0

(
||Xi·ℓ(Yi − XT

i β̂i)||2 − ||Xi·ℓ(Yi − XT
i βi)||2

)2
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≥
∑

ℓ:β̂iℓ ̸=0

(
α λ||β̂i||α−1

1 /2 − µ
)2

= M(β̂i)(α λ||β̂i||α−1
1 /2 − µ)2.

Thus,

M(β̂i) ≤ ∥Xi(βi − β̂i)∥2
2

mϕi, max(
λα||β̂i||α−1

1 /2 − µ
)2 .

Theorem is proved. �

Proof of Theorem 2.4. To satisfy the conditions of Theorem 2.3, we can take
B = b and λ = 4Aσ

αbα−1

√
m log(np). By Lemma A.1 in Bochkina & Ritov ([2]),

λ

mδn
=

4Aσ

αbα−1

√
log(np)

m

√
mη

2eV log(n(p + 1)2)
= C

√
η

αbα−1
6 C1,

hence assumption λ = O(mδn) of Theorem 2.2 is satisfied.
From the proof of Theorem 2.3, it follows that

∥β̂i∥1 = O
(
(mδn/λn)1/(α−2)

)
= O

((
bα−1

√
η

)1/(α−2)
)

.

Hence, we can take B = b and B̂ = C
(

bα−1
√

η

)1/(α−2)
for some C > 0, and

apply Theorem 2.3. Then max(1, B̂/B) is bounded by

max

[
1, C

b(α−1)/(α−2)−1

η1/(2(α−2))

]
= max

[
1, C

b1/(α−2)

η1/(2(α−2))

]
=
(

Cb
√

η

)1/(α−2)

,

since Cb√
η > C2

η1/(2(α−1))
√

η > C2η
−(α−2)/(2(α−1)) is large for small η.

Thus,

3αλ

2
√

m
max(Bα−1, B̂α−1) + 2Aσ

√
log(np)

6 6ACσ
√

log(np)
b(α−1)/(α−2)

η(α−1)/(2(α−2))
+ 2Aσ

√
log(np)

= 2Aσ
√

log(np)

[
3C

(
b
√

η

)(α−1)/(α−2)

+ 1

]
,
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and, applying Theorem 2.3, we obtain (a) and (b).
c) Apply c) in Theorem 2.3, summing over i ∈ I:∑

i∈I
M(β̂i) ≤ ∥XT(β − β̂)∥2

2

mϕmax

(µδ)2

≤ 4snϕmax

κ2 δ2

[
1 + 3C

(
b
√

η

)(α−1)/(α−2)
]2

.

�
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