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a b s t r a c t

We show how to construct the best linear unbiased predictor (BLUP) for the continuation
of a curve, and apply the proposed estimator to real-world call center data. Using the
BLUP, we demonstrate prediction of the workload process, both directly and based on
prediction of the arrival counts. The Matlab code and all data sets in the presented
examples are available in the supplementary material.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

Many data sets consist of a finite number of observations, where each of these observations is a sequence of points. It is
often natural to assume that each sequence is a set of noisy measurements of points on a smooth curve. In such cases, it can
be advantageous to address the observations as functional data rather than as a multiple series of data points. This approach
was found useful, for example, in noise reduction, missing data handling, and in producing robust estimations (see the
books of Ramsay and Silverman, 2002, 2005, for a comprehensive treatment of functional data analysis). In this work we
consider the problem of forecasting the continuation of a curve using functional data techniques.

The problem we consider here is relevant to longitudinal data sets, in which each observation consists of a series of
measurements over time that are sampled from an underlying curve, possibly with noise. Examples of such curves are
growth curves of different individuals and arrival rates of calls to a call center or of patients to an emergency room during
different days. We assume that such curves, or measurement series that approximate these curves, were collected
previously. We would like to estimate the continuation of a new curve given its beginning, using the behavior of the
previously collected curves.

The forecasting of curve continuation suggested here is based on finding the best linear unbiased predictor (BLUP)
(Robinson, 1991). We assume that the curves are governed by a small number of underlying functional patterns, possibly
with additional noise. These underlying functional patterns determine the main variation between the different curves.
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The computation of the predictor is performed in two steps. First, the underlying functional patterns’ coefficients are
estimated from the beginning of the new curve, which is defined on the “past” segment. Second, the prediction is obtained
by computing the representation of the curve patterns on the “future” segment. We prove that the resulting estimator is
indeed the BLUP and that it is a smooth continuation of the beginning of the curve (at least in the absence of noise). From a
computational point of view, we discuss the use of B-splines in the representation of the curves on the different segments.
We explain why a B-spline representation ensures an efficient and stable way to compute the mean function and covariance
operators on different partial segments.

We apply the proposed forecasting procedure to call center data. We forecast the continuation of two processes: the
arrival process and the workload process (i.e., the amount of work in the system; see, for example, Aldor-Noiman et al.,
2009). In call centers, the forecast of the arrival process plays an important role in determining staffing levels. Optimization
of the latter is important since salaries account for about 60–70% of the cost of running a call center (Gans et al., 2003).
Usually, call center managers utilize forecasts of the arrival process and knowledge of service times, along with some
understanding of customer patience characteristics (Zeltyn, 2005), to estimate future workload and determine the staffing
level (Aldor-Noiman et al., 2009). The disadvantage of this approach is that the forecast of the workload is not performed
directly, and instead it is obtained using the forecast of the arrival process. Reich (in preparation) showed how the workload
process can be estimated explicitly, thereby enabling direct forecast of the workload. In this work, we forecast the
continuation of both the arrival and workload processes, given past days’ information and the information up to a certain
time of day. Since the actual processes are not smooth, we first approximate these processes with smooth curves. We
compare direct and indirect forecasting results for the workload process. We also compare our results for the arrival process
to those of other forecasting techniques, namely, to the techniques that were introduced by Weinberg et al. (2007) and Shen
and Huang (2008).

This paper has two main contributions. First, we present a novel functional-data prediction method for continuation of a
curve. We show that the proposed method is the best unbiased linear predictor for continuation of a curve. The proposed
estimator is fast and easy to compute, and is a continuous process in time, thus enabling prediction for any given future
time. Second, we demonstrate how to predict the workload process directly, and compare this direct method to the usual
indirect ones that are based on prediction of the arrival process.

Forecasting of the continuation of a function was considered in previous works. Aguilera et al. (1997) proposed to predict
the continuation of the curve by regression of the principal components of the second part of the interval on the principal
components of the first part of the interval. Shen (2009), in the context of time series data, proposed to first forecast the new
curve entirely, and then update this forecast based on the given curve beginning. Both of these methods do not discuss curve
continuity at the point dividing the interval, or optimality of the estimator. In a different context, Yao et al. (2005) proposed
a functional data method for sparse longitudinal data that enables prediction of curves, even if only a few measurements are
available for each curve. Although this method can be used to forecast the continuation of a curve, it was not designed to
optimize such prediction. This is also evident in the case study in Section 4, in which we compare the method of Yao et al.
(2005) to the proposed BLUP.

The paper is organized as follows. The functional model and notation are presented in Section 2. In Section 3 we show
how to construct the BLUP for the continuation of a curve. In Section 4 we apply the estimator to real-world data, comparing
direct and indirect workload forecasting, and our results to other techniques. Concluding remarks appear in Section 5. Proofs
are provided in the Appendix. A link for the code and data sets used for the case study appear in the Supplemental Materials.

2. The functional framework

In this section we present the functional model and notation that will be used for the construction of the BLUP.

2.1. The functional model

Assume that we observe random i.i.d. functions Y ð1Þ;…;Y ðMÞ that are defined on the segment S¼ ½0; T �. We assume that
these functions have a basis expansion with respect to some N-dimensional continuous function space S (N can possibly be
large). For now we do not impose any specific structure on the space S, but in Sections 2.3 and 2.4 we will focus on spline
functional spaces as an important example. Given a new function Y ðMþ1Þ which is observed only on the segment S1 ¼ ½0;U�,
for some 0oUoT , we would like to estimate the continuation of this function on the segment S2 ¼ ½U; T �.

We assume that, up to some noise, the functions fY ðmÞðtÞgm are contained in some low-dimensional subspace of S. More
specifically, we assume that each function can be written as

Y ðmÞðtÞ ¼ μðtÞþ ∑
p

i ¼ 1
hðmÞ
i ϕiðtÞþɛðmÞðtÞ ¼ μðtÞþhðmÞ′ϕðtÞþɛðmÞðtÞ; ð1Þ

where μðtÞAS is the mean function, hðmÞ ¼ ðhðmÞ
1 ;…;hðmÞ

p Þ′ is a random vector with mean zero and covariance matrix
L, ϕðtÞ ¼ ðϕ1ðtÞ;…;ϕpðtÞÞ′ is a vector of orthonormal functions in S; ɛðmÞðtÞ is the noise which is defined to be the part of Y that
is not in the span of the ϕðtÞ. We assume that p, the dimension of the subspace, is much smaller than N, the dimension of
S. Such decomposition can arise, for example, when using principal component analysis for functional data (Ramsay and
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Silverman, 2005, Chapter 8). Finally, note that by definition, the noise term ɛðmÞðtÞ is anything within S that cannot be
explained by the model functions μ and ϕ.

Denote the basis of S by b¼ ðb1;…; bNÞ′. Write μðtÞ ¼ bðtÞ′μ and ϕðtÞ ¼ A′bðtÞ, for some N � 1 vector μ and N�p loading
matrix A. Define

XðmÞðtÞ ¼ μðtÞþhðmÞ′ϕðtÞ ¼ bðtÞ′ðμþAhðmÞÞ ð2Þ

to be the noise-free part of Y ðmÞ contained in the low-dimensional subspace spanned by ϕ. With respect to the basis bwe can
write XðmÞðtÞ ¼ bðtÞ′xðmÞ and similarly Y ðmÞðtÞ ¼ bðtÞ′yðmÞ where xðmÞ and yðmÞ are the N � 1 random vectors.

Let the random functions Y ðmÞ
1 and Y ðmÞ

2 be the restrictions of Y ðmÞ to the segments S1 ¼ ½0;U� and S2 ¼ ½U; T �, respectively,
and similarly for XðmÞ

1 and XðmÞ
2 . Let biðtÞ ¼ ðbi1ðtÞ;…; biNi

ðtÞÞ be a basis of Si, the restriction of S to the segment Si. Let μi, x
ðmÞ
i ,

yðmÞ
i and Ai be the coefficient representations of μ, XðmÞ, Y ðmÞ, and A, respectively, in the basis bi.
2.2. The covariance structure

Let uðs; tÞ ¼ CovðXðsÞ;XðtÞÞ and vðs; tÞ ¼ CovðYðsÞ;YðtÞÞ, and let bðsÞ′gbðtÞ and bðsÞ′GbðtÞ be their respective matrix
representations with respect to the basis b. For sASi and tASj, i,j¼1,2, let uijðs; tÞ ¼ biðsÞ′gijbjðtÞ and vijðs; tÞ ¼ biðsÞ′GijbjðtÞ
be the matrix representations of the restriction of the covariance functions to the partial segments. Finally, we define the
operators γij and Γij from Sj to Si, for i,j¼1,2, by

ðγijf ÞðtÞ ¼
Z
Sj
uðs; tÞf ðsÞ ds¼ biðtÞ′gijWjf

ðΓijf ÞðtÞ ¼
Z
Sj
vðs; tÞf ðsÞ ds¼ biðtÞ′GijWjf ; ð3Þ

where Wj ¼
R
Sj
bjðsÞbjðsÞ′ ds, and f is the expansion of the function f in bj . More details on the covariance structure can be

found in the Appendix.
Note that even when given the basis b on the full segment, there is not necessarily an easy and efficient way to compute

the bases b1 and b2. Similarly, there is not necessarily an easy and efficient way to compute the coefficient representations
for the functions XðmÞ

i and Y ðmÞ
i , m¼1,…,M. Also finding the matrices gij and Gij, even given the matrices g and G, can be

challenging. This differs from the Euclidean case, where gij is a submatrix of g. In the following section we represent the
functions XðmÞðtÞ and Y ðmÞðtÞ using appropriate B-spline bases. We show that for B-spline function spaces there is an efficient
way to compute the bases b1 and b2, the vectors of coefficients of XðmÞ

i ðtÞ and Y ðmÞ
i ðtÞ, and the matrices gij and Gij.
2.3. B-spline spaces

Until now we assumed that the random functions XðmÞðtÞ and their noisy version Y ðmÞðtÞ are contained in some N-
dimensional continuous function space S. Here, we suggest that the space S be chosen as a spline space, i.e., a space of
piecewise polynomial functions. The use of splines is common in functional data analysis due to the simplicity of spline
computation, and the ability of splines to approximate smooth functions (see, for example, Ramsay and Silverman, 2005).
There are two more advantages of using finite-dimensional spline functional spaces in our case. First, the functional space
restriction from the whole segment to a partial segment (the “past” segment or the “future” segment) has a natural B-spline
basis that has a lower number of elements. This solves collinearity problems which can render any projection on the partial
segment basis unstable. Second, the knot-insertion algorithm (see, de Boor, 2001, Chapter 11) ensures an efficient and stable
way to compute the mean function and covariance operators on different partial segments. In the following we discuss
shortly spline spaces and the knot-insertion algorithm. We then explain how to use this algorithm in order to restrict
functions in Sk;τ to the subsegments S1 and S2. We refer the reader to de Boor (2001) for more details regarding splines,
B-splines and the knot-insertion algorithm.

Let Sk;τ be a spline space, where k denotes the splines’ order and where τ is a fixed knot sequence on ½0; T �. Let
b¼ ðb1;…; bNÞ′ be the B-spline basis of Sk;τ . Let τ1 and τ2 be knot sequences that agree with τ on the segments ½0;UÞ and ðU; T�,
respectively, and have knot multiplicity of k at U. Let Sk;τi for i¼1,2 be the k-ordered spline space with knot sequence τi, and
let biðtÞ ¼ ðbi1ðtÞ;…; biNi

ðtÞÞ be its corresponding B-spline basis. We wish to represent XðmÞ
i and Y ðmÞ

i (i¼ 1;2; m¼ 1;…;M)
using the representations of XðmÞ and Y ðmÞ.

It is enough to represent the functions XðmÞ
i and Y ðmÞ

i using the bases bi. Recall that XðmÞðtÞ ¼ μðtÞþbðtÞ′AhðmÞ, and
μðtÞ ¼ bðtÞ′μ for some vector of coefficients μ. Using the knot-insertion algorithm we can obtain new vectors μi such that (a)
μðtÞ ¼ biðtÞ′μi for all t on which bi is defined, and (b) μi is obtained from μ by truncation and a change of at most k coefficients.
Similarly, by truncation and a change of at most pk coefficients, we can obtain the loading matrices Ai such that
bðtÞ′A¼ biðtÞ′Ai for all t on which bi is defined. Note that these truncations applied only to the shared components of the
model, i.e., the mean vector, the loading matrices and covariance matrices; the unique coefficients that determine each
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random function are not touched. Hence we obtain

XðmÞ
i ðsÞ ¼ biðsÞ′ðμiþAih

ðmÞÞ ð4Þ
for i¼1,2 and for all sASi. In a similar way, we can write YiðsÞ ¼ biðsÞ′yðmÞ

i .
We now compute the covariance matrices gij and Gij from the covariance matrices g and G. Starting with g, recall that

CovðXðsÞ;XðtÞÞ ¼ bðsÞ′gbðtÞ ¼ bðsÞ′ALA′bðtÞ for some diagonal matrix L. Hence, since bðtÞ′A¼ biðtÞ′Ai, we obtain that

CovðXiðsÞ;XjðtÞÞ ¼ biðsÞ′AiLA
′
jbjðtÞ;

i.e., gij ¼ AiLA
′
j. The computation of Gij is done similarly.

2.4. Estimation of the functional model

In the following we discuss the estimation of random functions XðmÞ and Y ðmÞ, and their restrictions XðmÞ
i and Y ðmÞ

i
(i¼ 1;2; m¼ 1;…;M) from M i.i.d. longitudinal data trajectories. We also discussed the vector of coefficients of the
expectation function μ, the loading matrices A and V, the covariance matrices g and G, as well as their restrictions to
subsegments. While there are many different estimation techniques, we restrict the discussion to smoothing splines. In this
discussion we follow Ramsay and Silverman (2005, Chapter 5).

We assume that the data is given as a set of M longitudinal trajectories

yðmÞ ¼ ðY ðmÞðt1mÞ;…;Y ðmÞðtnmÞÞ; m¼ 1;…;M

where 0rt1mo⋯otnmrT are time points on which the evaluation of Y ðmÞ is given. As before, let Sk;τ be a B-spline space
where k denotes the splines’ order and where τ is a fixed knot sequence on ½0; T �. We estimate the coefficients of Y ðmÞ with
respect to the B-spline basis b using smoothing splines.

Using the coefficient vector representation of the functions Y ð1Þ;…;Y ðmÞ with respect to the basis b we estimate the mean
function μðtÞ and the matrix G as follows. The mean function is estimated by bðtÞ′μ̂ where μ̂ is the mean of the vectors
ŷ ð1Þ

;…; ŷ ðMÞ. Define the matrix C to be an M by N matrix where the m-th row of C is given by ðŷ ðmÞ � μ̂Þ′. Then we define G as
M�1C′C, and consequently the covariance function is given by vðs; tÞ ¼ bðsÞ′GbðtÞ.

We are now ready to estimate the loading matrix A. This is done by performing principal component analysis (PCA) for
functional data (Ramsay and Silverman, 2005, Chapter 8). Let ρ1;…; ρN and ϕ1;…;ϕN be, respectively, the eigenvalues and
eigenfunction of the operator

Γf ðsÞ ¼
Z T

0
vðs; tÞf ðsÞ ds� GWf ;

where W ¼ R T
0 bðsÞbðsÞ′ ds, and f is the expansion of the function f in b. Note that these eigenvalues and eigenfunctions can

be obtained by solving the eigenvalue problem W1=2GW1=2f ¼ ρf and computing ϕðtÞ ¼ bðtÞ′W �1=2f for each eigenvector
(see, Ramsay and Silverman, 2005, Chapter 8.4 for details).

Choosing p, the number of principal components that describe the model is a challenge. There are many techniques and
rules of how to choose p, and we refer the reader to Jolliffe (2002, Chapter 6) for a survey of common techniques. Since our
goal is to predict the continuation of a function, we choose the number of principal components as the number that best
performs the prediction. In the numerical examples this was done using K-fold cross validation.

3. The construction of the BLUP

Given Y1, the noisy version of the first part of the random function X, our goal is to find a good estimator for X2, the
continuation of X1. For simplicity, we restrict the discussion to linear estimators.

Following Robinson (1991), we say that X̂2 is a good linear estimator of X2 given Y1 if the following criteria hold:
(C1)
 X̂2 is a linear function of Y1.

(C2)
 X̂2 is unbiased, i.e., E½X̂2ðtÞ� ¼ μðtÞ.

(C3)
 X̂2 has minimum mean square error among the class of linear unbiased estimators.
Two additional demands regarding the estimator that seem desirable in our context are as follows:
(C4)
 The random function X̂2 lies in the space S2.

(C5)
 When no noise is introduced, i.e., when Y1 ¼ X1, the concatenation of X̂2 to X1 lies in S. In other words, the combined

function

X̂ ¼
X1ðtÞ; 0rtrU
X̂2ðtÞ; UotrT

(

is smooth enough.
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An estimator that fulfills (C1)–(C5) will be referred to as a best linear unbiased predictor (BLUP). In this section we will show
how to construct such a BLUP and prove that it is defined uniquely.
Remark. Note that the definition of an unbiased estimator in (C2) is not the usual definition. A more restrictive criterion is
(C2n)
 X̂2 is unbiased in the following sense: E½X̂2ðtÞjY1� ¼ E½X2ðtÞjY1�.
We will show that when Y is a Gaussian process, i.e., the random vectors h and ϵ are multivariate normal, this criterion is
fulfilled by the proposed BLUP as well.

Define the function

vþ
11ðs; tÞ ¼ b1ðsÞ′W �1

1 Gþ
11W

�1
1 b1ðtÞ;

for every s; tAS1, where Gþ
11 is the Moore–Penrose pseudoinverse of G11. Note that W1 is invertible since it is a Gram matrix

of basis functions (see Sansone, 1991, Theorem 1.5). Define the operator Γþ
11 : S1-S1 by

ðΓþ
11f ÞðtÞ ¼

Z
S1
vþ
11ðs; tÞf ðsÞ ds¼ b1ðtÞ′W �1

1 Gþ
11f ;

where f is the expansion of the function f in the basis b1. We note that when the functional space S1 is infinite-dimensional,
the operator Γ11 needs not to have a bounded pseudo-inverse. However, since we consider S1 to have a finite basis, this
problem does not arise.

We are now ready to define the estimator for X2 given Y1, by

X̂2ðtÞ ¼ μðtÞþγ21Γ
þ
11ðY1�μÞðtÞ ¼ b2ðtÞ′ðμ2þg21G

þ
11ðy1�μ1ÞÞ; ð5Þ

for every tAS2. Then we have

Theorem 1. Let X and its noisy version Y be random functions in an N-dimensional continuous function space S, with basis
expansions (2) and (1), respectively, and with covariance structure (3). Then, the estimator X̂2 meets criteria (C1)–(C5) and is
unique up to equivalence. Moreover, if Y is a Gaussian process, then X̂2 meets criterion (C2n) as well.

See proof in the Appendix.
The estimation of X̂2 has a simpler form when the noise is modeled in the following way. Assume that

Y1ðtÞ ¼ b1ðtÞ′ðμ1þA1hþε1Þ ð6Þ
where ε1 is an N1 � 1 mean zero random vector with s2I covariance matrix and I is the identity matrix. In this case

X̂2ðtÞ ¼ b2ðtÞ′ðμ2þg21ðA1LA
′
1þs2IÞ�1ðx1�μ1ÞÞ ð7Þ

which has a similar structure to the ridge regression estimator (Hoerl and Kennard, 1970). However, it is important to note
the difference between the role that the parameter s2 plays in the different models. In ridge regression, the parameter s2

determines the tradeoff between bias and variance, i.e., the smaller the s2, the smaller the bias (see, Gross, 2003, Chapter 3.4
for details). In our model the estimator X̂2ðtÞ is unbiased when s2 is known. When s2 is not known it can be estimated from
the past data. Since the goal is to estimate X̂2, estimation of s2 can be done using cross validation, where the value of the
parameter is chosen as the one that yields the best prediction for the past data (see also Section 4.3).

Note that the expression in (7) involves inverting an N1 � N1 matrix (A1LA
′
1þs2I); a simpler expression can be obtained

using some matrix algebra (see, Robinson, 1991, Eq. (5.2)). We have

g21ðA1LA
′
1þs2IÞ�1 ¼ A2LA

′
1ðA1LA

′
1þs2IÞ�1 ¼ A2ðA′

1A1þs2L�1Þ�1A′
1;

and hence

X̂2ðtÞ ¼ b2ðtÞ′ðμ2þA2ðA′
1A1þs2L�1Þ�1A′

1ðx1�μ1ÞÞ; ð8Þ
which involves only the inverse of a p� p matrix. This final equation is the form used in the case study that appears in
Section 4.

4. Case study

In this section we apply the estimator X̂2 to call center data. We are interested in forecasting the continuation of two
processes: the arrival process and the workload process. The estimators of these two processes play an important role in
determining the staffing level at call centers (see, for example, Aldor-Noiman et al., 2009; Shen and Huang, 2008; Reich, in
preparation). Usually, staffing levels are determined in advance, at least one day ahead. Here we propose a method for
updating the staffing level, given information obtained from the beginning of the day. As noted by Gans et al. (2003) and by
Shen and Huang (2008), such updating is operationally beneficial and feasible. If the forecasting is performed appropriately,
it could result in higher efficiency and service quality: based on the revised forecasts, a manager can adjust staffing levels by
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calling in additional agents or dismissing agents as needed, and by transferring agents from or to other activities such as
email inquiries and faxes.

This section is organized as follows. We first describe the arrival and workload processes (Section 4.1). We then describe
the data (Section 4.2) and the forecast implementation (Section 4.3). The analysis appears in Sections 4.4–4.6. Finally,
confidence bands are discussed in Section 4.7.

4.1. The arrival and workload processes

We define the arrival process of day j, aj(t), as the number of calls that arrive on day j during the time interval ½t�c; t�,
where t varies continuously over time and c is a fixed constant. Note that aj(t) itself is not a continuous function. When the
call volume is large and this function does not change drastically over short time intervals, the function aj(t) can be well
approximated by a smooth function. Moreover, it can be assumed that the function aj(t), for each day j, arises from some
underlying deterministic smooth arrival rate function λðtÞ plus some noise (Weinberg et al., 2007). Using the notation of
Section 2, we assume that a smooth version of aj(t) can be written as λðtÞþ∑p

i ¼ 1h
ðjÞ
i ϕiðtÞþɛðjÞðtÞ. We now describe the

workload process wj(t) for each day j. The function wj(t) counts the number of calls that would have been handled by the call
center on day j at time t, assuming an unlimited number of agents and hence no abandonments. From a management point of
view, the advantage of looking at wj(t) over aj(t) is that wj(t) reflects the number of agents actually needed at each point in
time. However, as opposed to the process aj(t), which is observable in real time, the computation of wj(t), for a specific time
t, involves estimation of call durations for abandoned calls and can be performed only after all calls entered up to time t are
actually served (see the discussion of Aldor-Noiman et al., 2009; Reich, in preparation).

4.2. The data

The data used for the forecasting examples were gathered at a call center of a large U.S. commercial bank. The bank has
various types of operations such as retail banking, consumer lending and private banking. Since the call arrival pattern
varies over different types of services, we restrict attention to retail services, which account for approximately 70% of the
calls (see, Weinberg et al., 2007). The first two examples are of the arrival process and the workload process, for weekdays
between March and October 2003. The data for the first example consists of the arrival counts at 5-min resolutions between
7:00 AM and 9:05 PM (i.e., c¼5 in the definition of aj(t)). The data for the second example consists of an average workload,
also in 5-min resolutions, between 7:00 AM and 9:05 PM. There are 164 days in the data set after excluding some abnormal
days such as holidays. Fig. 1 shows arrival count profiles for different days of the week.

The third example explores the arrival process during weekends between March and October 2003. There are 67 days in
the data set (excluding one day with incomplete data). As can be seen from Fig. 1, the weekend behavior is different from
Fig. 1. Arrival count in 5-min resolutions for three successive weeks, grouped according to weekday (Friday was omitted due to space constraints). Each
color represents a different week. There is a clear difference between workdays, Saturdays, and Sundays. For the working days, it seems that there is a
common pattern. Between 7 AM and 10 AM the call count rises sharply to its peak. Then it decreases gradually until 4 PM. From 4 PM to 5 PM there is a
rapid decrease followed by a more gradual decrease from 5 PM until 12 AM. The call counts are smaller for Saturday and much smaller for Sunday. Note
also that the main activity hours for weekends are 8 AM to 5 PM, as expected.
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that of the working days, and there is a Saturday pattern and a Sunday pattern. The data for this example consists of the
arrival counts at 15-min resolutions between 8 AM and 5 PM. The change in interval length from the previous two examples
is due to the decreased call-counts. The change in day length is due to the low activity in early morning and late afternoon
hours on weekends (see Fig. 1).

In the first and second examples, we used the first 100 weekdays as the training set and the last 64 weekdays as the test
set. For each day from day 101 to day 164, we extracted the same-weekday information from the preceding 100 days. Thus,
for each day of the week we have about 20 training days. For the third example, the test set consists of weekend days 41–67
while the training set for each day consists of its previous 40 weekend days. Thus, similarly, for each day we have about 20
training days. Additionally, we used the data from the start of the day, up to 10 AM and up to 12 PM. All forecasts were
evaluated using the data after 12 PM, which enabled fair comparison between the results of the different cut points (10 AM
and 12 PM). We also compare our results to the mean of the preceding days, from 12 PM on.

For a detailed description of the first example's data, the reader is referred to Weinberg et al. (2007), Section 2. For
an explanation of how the second example's workload process was computed, the reader is referred to Reich (in
preparation). The data for the third example was extracted using SEEStat, which is a software written at the Technion
SEELab.1 We refer the reader to Donin et al. (2006) for a detailed description of the U.S. commercial bank call-center data
from which the data for all three examples was extracted. The U.S. bank call-center data is publicly accessible from the
SEELab server (footnote 1).
4.3. Forecast implementation

The forecast was performed using a Matlab implementation of the BLUP algorithm from Section 3, where we follow the
model discussed in (6). For the implementation we used the Matlab functional data analysis library written by Ramsay and
Silverman.2 We also used the Matlab library Spider for implementing cross-validation.3 The Matlab code, as well as the data
sets, are downloadable (see Supplemental Materials).

In all computations we used cubic-splines, i.e., fourth-order splines. We used knot sequences with a knot every hour. This
means that in the first and the second examples below the dimension of the spaces S, S1, and S2 are 17, 6, and 14,
respectively, for the 10 AM cut point, and 17, 8, and 12, respectively, for the 12 PM cut point. For the third example below,
the dimension of the spaces S, S1, and S2 are 12, 5, and 10, respectively, for the 10 AM cut point, and 12, 7, and 8, respectively,
for the 12 PM cut point.

We used a 5-fold-cross-validation to choose the dimension p of the subspace spanned by X, and the variance s2 (see Eq.
(8)), among the set of pairs

ðs2; pÞ ¼ ð10�2 � 2i; jÞ; iAf0;1;2g; jAf1;2g:
We quantified the results using both Root Mean Squared Error (RMSE) and Average Percent Error (APE), which are defined
as follows. For each day j, let

RMSEj ¼
1
R

∑
R

r ¼ 1
ðN jr�N̂ jrÞ2

� �1=2

; APEj ¼
100
R

∑
R

r ¼ 1

jN jr�N̂ jrj
N jr

;

where N jr is the actual number of calls (mean workload) at the r-th time interval of day j in the arrival (workload) process
application, N̂ jr is the forecast of N jr , and R is the number of intervals. We computed local confidence bands with a 95%
confidence level using cross-validation, as described in Section 4.7.
4.4. First example: arrival process for weekday data

In the first example we would like to predict the arrival process to a call center given the beginning of current day data
and previous days’ data. For the current day data we use two cut points, 10 AM and 12 PM, and also compare it to a forecast
that is based only on the previous days’ data.

Forecasting the arrival process for the first example data was studied by both Weinberg et al. (2007) and Shen and Huang
(2008). Weinberg et al. assumed that the day patterns behave according to an autoregressive model. The algorithm they
suggest starts by forecasting the current day based on previous days’ data. The algorithm estimates the parameters in the
autoregressive model using Bayesian techniques. An update for the continuation of the current day's forecast is obtained by
conditioning on the data of the current day up to the cut point. We refer to this algorithm as Bayesian update (BU) for short.
Similarly, the algorithm by Shen and Huang assumes an autoregressive model and gives a forecast for the current day. They
then update this forecast using least-square penalization, assuming an underlying discrete process. We will refer to this
algorithm as penalized least square (PLS). Yao et al. (2005) developed a functional data method for sparse longitudinal data
1 SEELab: The Technion Laboratory for Service Enterprize Engineering. Webpage: http://ie.technion.ac.il/Labs/Serveng.
2 The functional data analysis Matlab library can be downloaded from ftp://ego.psych.mcgill.ca/pub/ramsay/FDAfuns/Matlab/.
3 The Matlab library Spider can be downloaded from http://people.kyb.tuebingen.mpg.de/spider/.

http://ie.technion.ac.il/Labs/Serveng
ftp://ego.psych.mcgill.ca/pub/ramsay/FDAfuns/Matlab/
http://people.kyb.tuebingen.mpg.de/spider/


Table 1
Summary of statistics (minimum, lower quartile (Q1), median, mean, upper quartile (Q3), maximum) of RMSE for the forecast based on the mean of the
previous days (mean), and BU, PLS, PACE, and BLUP, using data up to 10 AM and up to 12 PM for the call arrival data set. The results for BU and PLS were
taken from the original papers. No maximum and minimum results were given for PLS. The table shows that the RMSE of BU, PLS, and BLUP, given the 10
AM data, is smaller than of previous days’mean, and it decreases further given 12 PM data. For the 12 PM data, the BLUP obtains the lowest RMSE in almost
all categories. The prediction of the PACE algorithm does not improve as more information is gathered.

Example 1 Mean 10:00 AM 12:00 PM

RMSE BLUP BU PLS PACE BLUP BU PLS PACE BLUP

Minimum 12.37 11.08 11.44 11.67 11.07 11.42 12.05
Q1 14.07 14.00 13.31 14.57 13.48 13.56 13.33 14.62 13.17
Median 16.13 15.50 14.87 17.51 14.40 14.80 14.60 17.58 14.17
Mean 18.95 17.86 16.48 21.28 16.80 16.59 16.13 21.37 15.99
Q3 21.06 19.87 17.26 23.37 18.22 16.58 16.39 23.84 16.23
Maximum 68.60 57.72 78.18 49.51 53.66 78.55 49.24
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that can handle continuation of a curve. This method, which we applied using the Matlab library PACE,4 is referred to
as PACE.

Comparison between the results of all four algorithms for the first data set appears in Table 1. Note that for BU, PLS, and
BLUP, and all of the categories there is improvement in the 10 AM and 12 PM forecasts over the forecast based solely on past
days. For these algorithms, the RMSE mean decreases by about 5–13% for the 10 AM forecast, and by 12–15% for the 12 PM
forecast, depending on the algorithm. The fact that there is no improvement for PACE may be because this algorithmwas not
designed to optimize such prediction. It should be noted that the algorithms by Weinberg et al. and by Shen and Huang use
information from all 100 previous days and the knowledge of the previous day call counts. For the methods that were
designed for i.i.d. data, i.e., BLUP and PACE, we used only the same weekday information (� 20 days instead of 100), and the
previous day's information is not part of its training set.

The forecasting results for the week that follows Labor Day appear in Fig. 2. It can be seen that for the Tuesday that
follows Labor Day (Monday) the call counts are much higher than usual. This is captured, to some degree, by the 10 AM
forecast and much better by the 12 PM forecast. The same phenomenon occurs, with less strength, during the Wednesday
and Thursday following Labor Day, until on Friday all the forecasts become roughly the same. It seems that the power of the
continuation-of-curve forecasting is exactly for such situations, in which the call counts are substantially different than
usual throughout the day, due to either predictable events, such as holidays, or unpredictable events.
4.5. Second example: workload process for weekday data

The second example consists of the workload process for weekday data for the same period as the first example. We
forecast the workload process based on these sets of data: previous days’ data, up to 10 AM data, and up to 12 PM data. We
refer to this forecast as a direct workload forecast since we use past workload estimation as the basis for the forecast. An
alternative (and simpler) workload forecasting method was proposed by Aldor-Noiman et al. (2009). Aldor-Noiman et al.
(2009, Eq. (21)) suggest to forecast the workload by multiplying the forecasted arrival rate by the estimated average service
time. We refer to this method as indirect workload forecasting.

For the indirect workload forecasting, one first needs to forecast the arrival rates. In this example, we estimated these
quantities using the BLUP estimator. We note that the arrival rates could have been forecasted using other estimators.
However, our goal is to compare between direct and indirect methods, and not between different estimators.

Comparison between the two methods appears in Table 2. Following Aldor-Noiman et al. (2009), we estimated the
average service time over a 30-min period for indirect workload computations. Note that the direct workload forecast
results are slightly better than the indirect workload forecast in most of the categories. Also note that in almost all
categories, there is an improvement in the 10 AM and 12 PM forecasts over the forecast based solely on past days. The RMSE
mean decreases by about 16% (8%) for the 10 AM forecast, and by 16% (13%) for the 12 PM forecast for the direct (indirect)
forecast. Fig. 3 presents a visual comparison between the direct and the indirect forecast methods on a specific day. The two
forecasts look roughly the same, which is also true for all other days in this data set.

While in this example there is no significant difference between the direct and indirect workload forecasts, we expect
these methods to obtain different forecasts when the arrival rate changes during an average service time. This is true, for
example, for arrival and service of patients in emergency rooms. The arrival rates of patients to emergency rooms can
change within an hour while the time that a patient spends in emergency room (the “service time”) is typically on the order
of hours. As pointed out by Rozenshmidt (2008, Section 6), in such cases, forecasting the workload by the arrival count
multiplied by the average service time may not be accurate. This is because the number of customers in the system is
4 The Matlab library PACE can be downloaded from http://www.stat.ucdavis.edu/PACE/.

http://www.stat.ucdavis.edu/PACE/


Fig. 2. Forecasting results for the week following Labor Day (September 2–5, 2003) for the call arrival process of the first example. Labor Day itself
(Monday) does not appear since holiday data is not included in the data set. The black dots represent the true call counts in 5-min resolutions. The forecasts
based on previous days, 10 AM data, and 12 PM data are represented by the blue, red, and green lines, respectively. (For interpretation of the references to
color in this figure caption, the reader is referred to the web version of this paper.)

Table 2
Summary of statistics (minimum, lower quartile (Q1), median, mean, upper quartile (Q3), maximum) of RMSE for the forecast based on the mean of the
previous days’ data, up to 10 AM data and up to 12 PM data, for the workload data set, for both the indirect and the direct forecast methods using the BLUP.

Example 2 Day ahead 10:00 AM 12:00 PM

RMSE Workload (by
arrivals)

Workload
(explicitly)

Workload (by
arrivals)

Workload
(explicitly)

Workload (by
arrivals)

Workload
(explicitly)

Minimum 8.41 8.39 8.00 7.80 7.94 8.31
Q1 10.59 10.80 10.14 10.03 10.24 10.00
Median 11.99 12.29 11.60 10.97 11.39 11.27
Mean 15.79 15.96 14.60 13.36 13.95 13.24
Q3 15.08 15.34 14.33 14.16 13.65 13.20
Maximum 96.06 94.69 96.30 55.97 93.75 56.01
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cumulative, while the arrival count counts only those who arrive in the current time interval. Thus, if the arrival count is
lower than it was in the previous time interval and the average service time is long, the workload is underestimated.
Similarly, if the arrival count is larger than the previous one, the workload is overestimated. Analyzing emergency room data
would be interesting, but it is beyond the scope of this paper.

4.6. Third example: arrival process for weekend data

The third example is that of the weekend arrivals. The main difference between the first two examples and this one is
that the data in this example cannot be considered as data from successive days, due to the six day difference between any
Sunday and its successive Saturday. Note that the models considered by Weinberg et al. (2007) and Shen and Huang (2008)
have an autoregressive structure, and hence are not directly applicable. Nevertheless, it would have been interesting to
compare the performance of the BU and PLS prediction methods on this data. Since we do not have access to the code, the
comparison to these methods was done only for the first example.

We forecasted arrival rate for the weekend data using both the BLUP and the PACE estimators. Note that even when the
autoregressive structure does not hold, the results appearing in Table 3 reveal that forecasting for this data set is still
beneficial. Indeed, for the BLUP method, the RMSE mean decreases by about 15% for the 10 AM forecast, and by 24% for the
12 PM forecast. These results are impressive since the curves in this example begin an hour later than the curves in the
previous two examples.



Fig. 3. Workload forecasting for Friday, September 5, 2003, using both the direct and the indirect methods. The black curve represents the workload
process estimated after observing the data gathered throughout the day. The blue and red curves represent the workload forecasts for the indirect and
direct forecasts, respectively, given data up to 12 PM. (For interpretation of the references to color in this figure caption, the reader is referred to the web
version of this paper.)

Table 3
Summary of statistics (minimum, lower quartile (Q1), median, mean, upper quartile (Q3), maximum) of RMSE for the forecast based on the mean of the
previous days (mean), and PACE and BLUP using data up to 10 AM and up to 12 PM for the call arrival data set. The table shows that for BLUP there is an
improvement in the prediction's RMSE given the 10 AM data, and further improvement given 12 PM data. The prediction of the PACE algorithm does not
improve as more information is gathered.

Example 3 Mean 10:00 AM 12:00 PM

RMSE BLUP PACE BLUP PACE BLUP

Minimum 4.30 3.72 3.46 3.72 3.47
Q1 5.70 5.78 4.77 5.81 4.97
Median 9.01 7.03 6.27 7.07 6.13
Mean 8.87 8.35 7.53 8.43 6.71
Q3 10.56 10.45 9.13 10.7 7.71
Maximum 16.74 21.92 18.42 22.09 17.26
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4.7. Confidence bands

Confidence bands are important for two main reasons. First, they enable one to assess the accuracy of the prediction.
Second, which is more specific to our discussion, they enable one to choose the earliest cut point that provides a satisfying
prediction. Clearly, the earlier the cut point time, the less accurate the prediction and hence the wider the confidence band.
Using the width of the confidence band as a measure, one can determine the earliest cut point which provides the needed
accuracy level.

We computed (local) confidence bands in the following way. We first estimated D̂ðtÞ � VarðX2ðtÞjY1Þ1=2. We then define
the confidence band as the pair of functions

ðX̂2ðtÞ�CD̂ðtÞ; X̂2ðtÞþCD̂ðtÞÞ; ð9Þ

where C is chosen using cross-validation. We omit the details.
Following Weinberg et al. (2007), we introduce the 95% confidence band coverage (COVER) and the average 95%

confidence band width (WIDTH). Specifically, for each day j, let

COVERj ¼
1
R

∑
R

r ¼ 1
I FL;jroN jroFU;jr
� �

WIDTHj ¼
1
R

∑
R

r ¼ 1
FU;jr�FL;jr
� �

;

where ðFL;jr ; FU;jrÞ is the confidence band of day j, evaluated at the beginning of the r-th interval. The mean coverage and
mean width, for all three examples, are presented in Table 4. First, note that for all three examples, the width of the
confidence band narrows down as more information is revealed. In other words, the width of the confidence band for the 12
PM forecast is narrower than the width for the 10 AM forecast which, in turn, is narrower than the width for the previous
days’ mean. We also see that the mean coverage becomes more accurate as more information is revealed. Fig. 4 depicts the
confidence bands for the arrival process on a particular Sunday. Note that the 10 AM forecast confidence band is narrower
than the confidence band for the mean of the previous days’ forecast. Moreover, at 12 PM, when more information on this
particular day becomes available, the confidence band narrows down even more and captures the underlying behavior.



Fig. 4. Confidence bands for Sunday, August 17, 2003. The black dots represent the true call counts in 15-min resolutions. The confidence bands based on
the mean of previous days, 10 AM data, and 12 PM data are represented by the blue, red, and green lines, respectively. (For interpretation of the references
to color in this figure caption, the reader is referred to the web version of this paper.)

Table 4
The mean confidence band coverage and the mean width for the forecasts based on the previous days’ mean, the 10 AM cut and the 12 PM cut for the
arrival process on the working days data set (Example 1), the workload process on the working days data set (Example 2) and the arrival process on the
weekend data set (Example 3).

Data Confidence band coverage Confidence band width

Example 1 (%) Example 2 (%) Example 3 (%) Example 1 (%) Example 2 (%) Example 3 (%)

Mean 93.8 91.4 98.9 82.75 63.93 51.02
10:00 AM 94.3 92.9 95.7 76.38 53.98 39.34
12:00 PM 95.0 93.2 94.4 74.76 54.60 30.49
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Summarizing, using call center data, we demonstrated that forecasting of curve continuation can be achieved
successfully by the proposed BLUP. We also showed that confidence bands for such forecasts can be obtained using
cross-validation.

5. Concluding remarks

In this work we forecasted the continuation of both the arrival and workload process using the best linear unbiased
predictor (BLUP) for the continuation of a curve. We had shown that the proposed BLUP is a fast and simple alternative to
existing methods for predicting the continuation of both the arrival and the workload functions.

As discussed in Feldman et al. (2008) and Reich (in preparation), the workload process is a more appropriate candidate
than the arrival process, as a basis for determining staffing levels in call centers. This work, along with Aldor-Noiman et al.
(2009) and Reich (in preparation), is the first step in exploring direct forecasting of the workload process, but more remains
to be done (see, for example, Whitt, 1999; Zeltyn et al., 2011).
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Appendix A. Proofs

Before we start the proofs, we need some additional notation. Recall that YðtÞ ¼ XðtÞþɛðtÞ where we assumed that ɛ is the
part of Y that is not contained in the subspace spanned by the functions ϕ (see Section 2). Write ɛðtÞ ¼ bðtÞ′Bϵ for an N� q
loading matrix B and a q�1 random vector ϵ. Let Σ be the covariance matrix of ϵ and note that G, the covariance matrix of Y,
can be written as ALA′þBΣB′.

Let Ai and Bi, i¼1,2, be matrices such that for all tASi, XðtÞ ¼ biðtÞ′ðμiþAihÞ and YðtÞ ¼ biðtÞ′ðμiþAihþBiϵÞ. Ai and Bi are the
loading matrices adapted to the basis bi. Using the above notation we have gij ¼ AiLA

′
j and Gij ¼ ðAiLA

′
jþBiΣB

′
jÞ.

We need the following two lemmas.

Lemma 2. Let T be an n� p matrix of rank s and let L be a p� p positive definite diagonal matrix. Then the following assertions
are true
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1.
 T ′TðT ′TÞþ T ′¼ T ′;

2.
 T ′LTðT′LTÞþ T ′¼ T ′.
The proof is technical and thus omitted.
The following lemma justifies the notation of Γþ

11 as a pseudoinverse operator.

Lemma 3. With probability one, Γ11Γ
þ
11ðY1�μÞ ¼ Γþ

11Γ11ðY1�μÞ ¼ Y1�μ.

Proof. Write Y1ðtÞ�μðtÞ ¼ b1ðtÞ′ðA1hþB1ϵÞ. Hence,
ðΓ11Γ

þ
11ðA1hþB1ϵÞÞðtÞ ¼ b1ðtÞ′G11W1W

�1
1 Gþ

11ðA1hþB1ϵÞ ¼ b1ðtÞ′G11G
þ
11ðA1hþB1ϵÞ

¼ b1ðtÞ′½A1;B1�
L 0
0 Σ

� � A′
1

B′
1

" #
½A1;B1�

L 0
0 Σ

� � A′
1

B′
1

" # !þ
A1h
B1ϵ

" #

and the result follows from Lemma 2. □

We are now ready to prove Theorem 1.

Proof of Theorem 1. We show that (C1)–(C5) hold, one by one.
(C1) holds because X̂2 is indeed a linear transformation of Y1 as can be seen from (2).
(C2) holds since

E½X̂2ðtÞ� ¼ b2ðtÞ′ðμ2þg21G
þ
11ðE½y1�μ1�ÞÞ ¼ b2ðtÞ′μ2 ¼ μðtÞ:

(C3) states that X̂2 should minimize the mean square error among all the unbiased linear estimators. Let ~X2 be another
linear unbiased estimator. Then we can write ~X2 ¼ ð ~X2� X̂2Þþ X̂2. Since both ~X2 and X̂2 are unbiased, ~X2� X̂2 is an unbiased
linear estimator of zero, hence it is of the form b2ðtÞ′Dðy1�μ1Þ for an N2 � N1 matrix D. Moreover, it can be shown that
CovðX2� X̂2; ~X2� X̂2Þ ¼ 0. Indeed,

CovððX2� X̂2ÞðsÞ; ð ~X2� X̂2ÞðtÞÞ ¼ E½ðX2� X̂2ÞðsÞð ~X2� X̂2ÞðtÞ� ¼ b2ðsÞ′E½ðx2�μ2Þðy1�μ1Þ′�D′b2ðtÞ
�b2ðsÞ′E½μ2þg21G

þ
11ðy1�μ1Þðy1�μ1Þ′�D′b2ðtÞb2ðsÞ′ðg21D′þg21G

þ
11G11D′ÞÞb2ðtÞ ¼ 0;

where the last equality follows from Lemma 3.
To see that X̂2 minimizes the mean square error, note that

E½ðX2� ~X2Þ2ðtÞ� ¼ E½ðX2� X̂2Þ2ðtÞ�þE½ð ~X2� X̂2Þ2ðtÞ�þ2E½ðX2� X̂2ÞðtÞðX̂2� ~X2ÞðtÞ�
¼ E½ðX2� X̂2Þ2ðtÞ�þE½ð ~X2� X̂2Þ2ðtÞ�ZE½ðX2� X̂2Þ2ðtÞ�;

which proves that X̂2 minimizes the mean square error and is unique up to equivalence.
(C4) holds by construction.
(C5) states that when no noise is introduced, X̂2 is a smooth continuation of X1 in the sense that the combined function is

in the space S. First, note that by Lemma 3

X1ðtÞ ¼ b1ðtÞ′ðμ1þG11G
þ
11ðx1�μ1ÞÞ ¼ b1ðtÞ′ðμ1þA1ðLA′

1G
þ
11Þðx1�μ1ÞÞ:

By definition we also have

X̂2ðtÞ ¼ b2ðtÞ′ðμ2þg21G
þ
11ðx1�μ1ÞÞ ¼ b2ðtÞ′ðμ2þA2ðLA′

1G
þ
11Þðx1�μ1ÞÞ:

Define X̂ ðtÞ ¼ bðtÞ′ðμðtÞþAðLA′
1G

þ
11Þðx1�μ1ÞÞ. It follows from the definitions of μi;Ai and bi that X̂ ðtÞ agrees with X1 on S1 and

with X̂2 on S2. Since X̂AS, the result follows.
Finally, if Y is a Gaussian process, then y1 and x2 are normally distributed such that Varðy1Þ ¼ G11 and Covðx2; y1Þ ¼ g21.

Following Marsaglia (1964) we obtain

E½X2ðtÞjY1� ¼ bðtÞ′E½x2jy1� ¼ bðtÞ′ðμ2þg21G
þ
11ðy1�μ1ÞÞ ¼ X̂2ðtÞ ¼ E½X̂2ðtÞjY1� ðA:1Þ

and criterion (C2n) is met. □

Appendix B. Supplementary material

Supplementary data associated with this article can be found in the online version at http://dx.doi.org.10.1016/j.jspi.2013.
11.006.

References

Aguilera, A.M., Ocaña, F.A., Valderrama, M.J., 1997. An approximated principal component prediction model for continuous-time stochastic processes. Appl.
Stochastic Models Data Anal. 13 (2), 61–72.

http://dx.doi.org.10.1016/j.jspi.2013.11.006
http://dx.doi.org.10.1016/j.jspi.2013.11.006
http://refhub.elsevier.com/S0378-3758(13)00292-9/sbref1
http://refhub.elsevier.com/S0378-3758(13)00292-9/sbref1


Y. Goldberg et al. / Journal of Statistical Planning and Inference 147 (2014) 53–65 65
Aldor-Noiman, S., Feigin, P.D., Mandelbaum, A., 2009. Workload forecasting for a call center: methodology and a case study. Ann. Appl. Stat. 3 (4),
1403–1447.

de Boor, C., 2001. A Practical Guide to Splines, Applied Mathematical Sciences, revised ed. Springer-Verlag, New York.
Donin, O., Feigin, P.D., Mandelbaum, A., Zeltyn, S., Trofimov, V., Ishay, E., Khudiakov, P., Nadjharov, E., 2006. The Call Center of “US Bank”. Available at 〈http://

ie.technion.ac.il/Labs/Serveng/files/The_Call_Center_of_US_Bank.pdf〉.
Feldman, Z., Mandelbaum, A., Massey, W.A., Whitt, W., 2008. Staffing of time-varying queues to achieve time-stable performance. Management Sci. 54 (2),

324–338.
Gans, N., Koole, G., Mandelbaum, A., 2003. Telephone call centers: tutorial, review, and research prospects. Manufacturing Ser. Oper. Management 5 (2),

79–141.
Gross, J., 2003. Linear Regression. Springer.
Hoerl, A.E., Kennard, R.W., 1970. Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12 (1), 55–67.
Jolliffe, I.T., 2002. Principal Component Analysis, 2nd ed. Springer.
Marsaglia, G., 1964. Conditional means and covariances of normal variables with singular covariance matrix. J. Amer. Statist. Assoc. 59 (308), 1203–1204.
Ramsay, J., Silverman, B.W., 2002. Applied Functional Data Analysis: Methods and Case Studies. Springer Series in Statistics, 2nd ed. Springer-Verlag,

New York.
Ramsay, J., Silverman, B.W., 2005. Functional Data Analysis. Springer Series in Statistics. Springer-Verlag, New York.
Reich, M., 2012. The Workload Process: Modelling, Inference and Applications M.Sc. thesis. Technion. 〈http://ie.technion.ac.il/serveng/References/

Michael_Reich_Thesis_withlinks.pdf〉.
Robinson, G.K., 1991. That BLUP is a good thing: the estimation of random effects. Statist. Sci. 6 (1), 15–32.
Rozenshmidt, L., 2008. On Priority Queues with Impatient Customers: Stationary and Time-Varying Analysis (Master's thesis). Technion—Israel Institute of

Technology. Available at 〈http://iew3.technion.ac.il/serveng/References/thesis_Luba_Eng.pdf〉.
Sansone, G., 1991. Orthogonal Functions, revised ed. Dover Publications, New York.
Shen, H., 2009. On modeling and forecasting time series of smooth curves. Technometrics 51 (3), 227–238.
Shen, H., Huang, J.Z., 2008. Interday forecasting and intraday updating of call center arrivals. Manufacturing Ser. Oper. Management 10 (3), 391–410.
Weinberg, J., Brown, L.D., Stroud, J.R., 2007. Bayesian forecasting of an inhomogeneous Poisson process with applications to call center data. J. Amer. Statist.

Assoc. 102.
Whitt, W., 1999. Dynamic staffing in a telephone call center aiming to immediately answer all calls. Oper. Res. Lett. 24 (5), 205–212.
Yao, F., Müller, H.G., Wang, J.L., 2005. Functional data analysis for sparse longitudinal data. J. Amer. Statist. Assoc. 100, 577–590.
Zeltyn, S., 2005. Call Centers with Impatient Customers: Exact Analysis and Many-Server Asymptotics of the M/M/nþG Queue (Ph.D. thesis). Technion—

Israel Institute of Technology. Available at 〈http://ie.technion.ac.il/serveng/References/references.html〉.
Zeltyn, S., Marmor, Y.N., Mandelbaum, A., Carmeli, B., Greenshpan, O., Mesika, Y., Wasserkrug, S., Vortman, P., Shtub, A., Lauterman, T., Schwartz, D.,

Moskovitch, K., Tzafrir, S., Basis, F., 2011. Simulation-based models of emergency departments: operational tactical and strategic staffing. ACM Trans.
Model. Comput. Simul. 21 (4).

http://refhub.elsevier.com/S0378-3758(13)00292-9/sbref2
http://refhub.elsevier.com/S0378-3758(13)00292-9/sbref2
http://refhub.elsevier.com/S0378-3758(13)00292-9/sbref3
http://ie.technion.ac.il/Labs/Serveng/files/The_Call_Center_of_US_Bank.pdf
http://ie.technion.ac.il/Labs/Serveng/files/The_Call_Center_of_US_Bank.pdf
http://refhub.elsevier.com/S0378-3758(13)00292-9/sbref5
http://refhub.elsevier.com/S0378-3758(13)00292-9/sbref5
http://refhub.elsevier.com/S0378-3758(13)00292-9/sbref6
http://refhub.elsevier.com/S0378-3758(13)00292-9/sbref6
http://refhub.elsevier.com/S0378-3758(13)00292-9/sbref7
http://refhub.elsevier.com/S0378-3758(13)00292-9/sbref8
http://refhub.elsevier.com/S0378-3758(13)00292-9/sbref9
http://refhub.elsevier.com/S0378-3758(13)00292-9/sbref10
http://refhub.elsevier.com/S0378-3758(13)00292-9/sbref11
http://refhub.elsevier.com/S0378-3758(13)00292-9/sbref11
http://refhub.elsevier.com/S0378-3758(13)00292-9/sbref12
http://ie.technion.ac.il/serveng/References/references.html
http://ie.technion.ac.il/serveng/References/references.html
http://refhub.elsevier.com/S0378-3758(13)00292-9/sbref14
http://iew3.technion.ac.il/serveng/References/thesis_Luba_Eng.pdf
http://refhub.elsevier.com/S0378-3758(13)00292-9/sbref16
http://refhub.elsevier.com/S0378-3758(13)00292-9/sbref17
http://refhub.elsevier.com/S0378-3758(13)00292-9/sbref18
http://refhub.elsevier.com/S0378-3758(13)00292-9/sbref19
http://refhub.elsevier.com/S0378-3758(13)00292-9/sbref19
http://refhub.elsevier.com/S0378-3758(13)00292-9/sbref20
http://refhub.elsevier.com/S0378-3758(13)00292-9/sbref21
http://ie.technion.ac.il/serveng/References/references.html
http://refhub.elsevier.com/S0378-3758(13)00292-9/sbref23
http://refhub.elsevier.com/S0378-3758(13)00292-9/sbref23
http://refhub.elsevier.com/S0378-3758(13)00292-9/sbref23

	Predicting the continuation of a function with applications to call center data
	Introduction
	The functional framework
	The functional model
	The covariance structure
	B-spline spaces
	Estimation of the functional model

	The construction of the BLUP
	Case study
	The arrival and workload processes
	The data
	Forecast implementation
	First example: arrival process for weekday data
	Second example: workload process for weekday data
	Third example: arrival process for weekend data
	Confidence bands

	Concluding remarks
	Acknowledgments
	Proofs
	Supplementary material
	References




