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A B S T R A C T This paper offers a methodology for coping with information loss following consolida-
tion of data on fatigue crack propagation rates derived from different experiments. It is
customary, both in the literature and in standardization, to consolidate results of several
experiments conducted under similar conditions, using identical materials. This reduces
the ability to implement a probabilistic fracture mechanics approach in order to reliably
calculate the distribution of the number of cycles needed to reach a critical value (CV;
onset of instability or failure). Such reliable calculation requires, among other things, an
estimation of the distribution characteristics of the crack progression curves coefficients
represented by models such as Paris or NASGRO, and an estimation of joint distributions
of equation coefficients representing such models. Consolidated data reduce the ability
to estimate these required distribution characteristics. This work suggests an analytical
approach that uses consolidated data, but enables the information to be treated as if it
were possible to attribute the data to the various experimental specimens from which they
were obtained. Consequently, information required for the evaluation of the distribution
of the number of cycles needed to reach a CV can be obtained.

The proposed approach is generic and can be applied in additional scientific fields that
can benefit from separation of data obtained from different experiments.

Keywords analytical approach; damage tolerance; fatigue; Paris equation; probabilistic
fracture mechanics, reliability; risk.

N O M E N C L A T U R E A = Antilog of the ‘independent’ coefficient in the linear Paris equation
a = Crack length

af = Critical crack length
ai = Initial crack length

da/dN = Fatigue crack propagation rate
COV = Covariance

CV = Critical value
Kc = Fracture toughness

�K = Stress intensity factor range
Nf = Number of cycles to failure

P = Slope coefficient of the Paris curve
SD = Standard deviation

V = Variance
α = Shape coefficient
ε = Error

max = Maximum stress
r = Stress amplitude
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I N T R O D U C T I O N

In this paper, we offer a solution to the problem of in-
formation loss due to consolidated data results of crack
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propagation experiments. Consolidating data prevents the
ability to distinguish between results obtained from differ-
ent specimens. Standardization documents and the litera-
ture frequently use such consolidated data. Consolidated
data significantly reduce the reliability of any evaluation
of the distribution of number of cycles required to reach
a critical value (CV).

The term critical value means a predetermined value such
as catastrophic failure, a certain crack length that is critical
for the said application or a region of instability in crack
propagation rate and so on.

In the framework of development processes, risk assess-
ment, reliability prediction and the planning of main-
tenance policies that are based on a damage tolerance
approach, organizations from all areas of industry fre-
quently apply a fracture mechanistic approach. According
to such an approach, it is sometimes required to estimate
the distribution of the number of fatigue cycles required
to reach a CV.

To predict fatigue failure according to a fracture mecha-
nistic approach, curves are used that describe fatigue crack
propagation rate versus stress intensity factor range, as de-
picted in Fig. 1.

As seen in Fig. 1, there are three distinct regions: Region I
describes the initial crack propagation stage, Region II de-
scribes the monotonous linear propagation of the crack
and Region III describes the instability of crack propaga-
tion until fracture.1

For implementing a fracture mechanistic approach,
models are used to estimate the number of fatigue cycles

Stress Intensity Factor Range,  log  ΔK
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Fig. 1 The three regions of crack propagation.

required to reach a CV. Such models fully or partially de-
scribe the curve presented in Fig. 1 in mathematical terms.
NASGRO2 and Paris3 are examples of such models. For
instance, Eq. 1 describes the model according to the Paris
approach:

da
dN

= A (�K )P , (1)

where da
dN is the increment of fatigue crack propagation

per cycle, �K is the cyclic range of the stress intensity
factor, P is the slope coefficient and A is the independent
coefficient.

Calculations based solely on nominal values are insuffi-
cient, and the significance of the scatter must be addressed.
When the scatter of crack propagation rates in different
materials is compared, considerable variance is observed.
Figure 2, for instance, taken from MIL-HDBK-5J4, il-
lustrates significant scatter in fatigue crack propagation
rates for two different aluminium alloys (2124-T851 and
7050-T7451).

In some materials, significant scatter was seen in obser-
vations of experiments that describe the propagation rates
of cracks obtained from several specimens made of the
same material and tested under similar conditions.

If experimental data for each sample (of identical material
tested under similar conditions) are available, regression
can be performed on the results. Such regressions, with
respect to the mathematical models, enable evaluation of
the curve equation coefficients relevant for each specimen,
defining a distinct curve for each specimen, which is sim-
ilar to the curve depicted in Fig. 1. Crack growth rate is
estimated for the type of material and test conditions, by
referring to several curves obtained from different exper-
iments.

From curve coefficients so obtained, it is possible to esti-
mate the distribution characteristics of the relevant curve
coefficients (Paris, NASGRO, etc.) and the joint distri-
bution of the said coefficients for the type of material
examined.

It is of great importance to take into consideration
the joint distribution of the coefficients. Feng5 for in-
stance, writes that ‘the pair of Paris parameters is mutually
related, and therefore can not be analysed independently’,
and Annis6 claims that ‘parameters estimates are jointly
distributed. . . It is how regression model parameters nat-
urally behave. . . So any realistic simulation must sample
from correlated join density’. In the article, Annis points
out that failure to take the relationship between the Paris
coefficients into consideration can cause a significant mis-
take, which might run to hundreds of percentage points
of error. It is evident that failure to consider the joint dis-
tribution might lead to significant error in estimating the
distribution of the number of fatigue cycles required to
reach a CV.
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Fig. 2 Examples of broad and narrow distributions.

It is often the case, in some of the common data
sources that apply a fracture mechanistic approach, such as
MIL-HNDBK 5J,4 NASGRO2 and AFGROW,7 that
although results of crack propagation experiments are
available in the literature, it is impossible to distinguish
between results obtained from different specimens. This
considerably affects the ability to distinguish between scat-
ter in crack propagation rates that stems from errors and
scatter that stems from physical variability, such as large
variability among specimens. Such loss of information due
to consolidating data detrimentally affects the ability to
estimate the joint distribution relevant to the curve coef-
ficients, which in turn considerably affects the reliability
of simulations run in order to characterize the distribution
of the number of cycles needed to reach a CV.

This paper presents results of work aimed at improving
the ability to cope with the above-mentioned difficulties,
which stem from the practice of data consolidation. In
this paper, a new approach is presented that helps estimate
fatigue crack propagation scatter even when it is impossi-
ble to distinguish between test results obtained from var-
ious specimens.

In the framework of this paper, the proposed ap-
proach was implemented utilizing the Paris equation. The
paper describes the proposed model in detail and explains
the method of estimating the distribution characteristics
of the Paris coefficients and their joint distribution, even
in cases (common in the literature and standardization)
in which consolidated observations and results of crack
propagation experiments are presented.
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In doing so, the stage is set for the estimation of the
distribution of the number of cycles to CV and common
analyses can be executed by applying risk, reliability8 and
damage tolerance9 theories.

Such analyses have both safety and economical implica-
tions for the definition of maintenance-oriented policies
and for hazard/risk management policies.

Assessing the distribution of the number of cycles to fail-
ure is part of the body of work in the field of probabilistic
fracture mechanics.10,11

D I S T R I B U T I O N O F PA R I S C U R V E S

This paper offers a methodology that enables the estima-
tion of the distribution of the number of fatigue cycles
required to reach a CV even when the data analysed is
consolidated.

To demonstrate the suggested approach and for the sake
of simplicity, we treat only the linear region of the curve
(Fig. 1, Region II), although we acknowledge that the ear-
liest stage of crack growth (Fig. 1, Region I) must also be
examined. Because data are derived from experiments that
cover the entire lifespan of the cracking samples – from
initial crack growth up to catastrophic fracture – the af-
fect of the variability of the initial crack growth region on
the variability of the linear region is manifested in the raw
data.

Applying the model over the linear region enables to
estimate the distribution of the number of fatigue cycles
expected until the crack grows from an initial crack (a0)
to its final critical length (af ), when these values are in the
linear region or when the number of cycles in Region III is
negligible compared to the number of cycles in the exam-
ined linear region. Such estimations are frequently called
for when implementing a damage tolerance approach.9

The linear region of Fig. 1 is commonly described and
analysed using the Paris approach.3

The concept described in this paper is generic and the
model can be adjusted to fit more complex, nonlinear
equations, such as the NASGRO equation.2

The proposed methodology suggests the adoption of an
analytical approach whereby the scatter of the linear re-
gions described by Paris curves obtained from each of the
various experiments is employed, rather than executing a
conventional single regression with respect to the entire
set of data obtained from various experiments.12 Figure 3
describes such a scatter of lines (on a log–log scale).

The proposed approach is based on the fact that, accord-
ing to the common method, Paris curve data are based on
consolidated experimental results from several specimens.
In general, specimens may vary with respect to both their
metallurgical and geometrical properties as well as the
variance in experiment conditions.
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Fig. 3 Schematic scatter of lines (on a log–log scale) representing
the linear zones for the different specimens.

As mentioned in the Introduction, the Paris equation is
traditionally described as follows:

da
dN

= A (�K )P . (1)

We refer to the scatter of the two coefficients in the Paris
equation, that is, the slope coefficient, P, and the indepen-
dent coefficient, A.

Taking logarithms of both sides yields the following lin-
ear equation, which describes the Paris linear region on a
log–log scale (Region II in Fig. 1):

Log
da
dN

= Log(A ) + P · Log(�K ). (2)

When transitioning from a single Paris equation to the
distribution of Paris curves, the calculation continues as
follows. For a specific value of �K , the variance of the
linear lines can be formulated as

V
[

Log
da
dN

]
= V[Log(A)] + [Log(�K )]2∗V(P )

+ 2∗[Log(�K )]∗COV (Log(A), P ) + V(ε),

(3)

where V is the variance, COV is the covariance and ε is the
measurement error. Equation 3 describes a parabolic re-
lationship between V [Log(da/dN )] and Log(�K ), where
V [Log(A)], V (P), COV (Log(A),P) and V(ε) constitute the
coefficients of the parabolic equation.

This mathematical operation enables the coefficients de-
scribed in Eq. 3 to be obtained, namely V [Log(A)], V (P)
and COV (Log(A),P), which give an indication as to the
scatter of the Paris curve coefficients and the joint dis-
tribution between the said coefficients. Determination of
these values facilitates the ability to estimate the distribu-
tion of the number of cycles to CV. By extracting the above
coefficients from Eq. 3, the stage is set for estimating the
desired data, even when the data are consolidated.
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Fig. 4 Consolidated data obtained from experiments on specimens
of aluminium alloy 2124-T851.

The following procedure is used to extract the variances
of P, Log(A) and their covariance COV (Log(A),P) from
Eq. 3:� Consolidated crack propagation data are plotted.

The consolidated data available in the literature and stan-
dardization documents are plotted as a graph with axes as
shown in Fig. 1. As mentioned above, the data are obtained
from different specimens, made of the same material and
tested under similar conditions.

Figure 4 presents consolidated data for aluminium al-
loy 2124-T851. Note that it is impossible from the con-
solidated data presented, to relate the data to any of the
specimens from which they were obtained.� Observations located at the extremities are neglected.

In order to ensure that the observations that consti-
tute the basis for calculation are taken only from the lin-
ear region of the curve, experimental observations at the
extremities of the curve are neglected. Figure 4 describes
the linear region data (Region II in green) relative to the
entire data set.� The horizontal axis (�K ) is divided into intervals.

The horizontal axis (�K ) is divided into intervals. In
order to increase the probability that each interval will in-
clude observation points that originate from experiments
with different specimens (i.e. independent data points),
we minimize the size of the intervals on the horizontal
axis (�K ) to ensure that each interval includes at least two
observations. It is obvious that the crack length and the
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Fig. 5 Implementing the analytical approach to crack propagation
data obtained from experiments with aluminium alloy 2124-T851.
Note the division of the �K axis into small intervals and indication
of 2 SD range for each interval.

resulting stress intensity increase with the progression of
the experiment. Thus, the smaller the interval (�K ) that
includes observations with various values of crack propa-
gation rate, the lower the probability that the observations
will belong to the same specimen.

Figure 5 shows the division of the linear region into small
intervals over the vertical axis (�K ). Red lines are located
in the middle of each interval. Observations are marked
in blue and green alternately, whereby same-coloured ob-
servations belong to the same interval.� V [Log(da/dN )] is calculated.

For each interval on the horizontal axis (�K ), the vari-
ance of the observations with respect to the vertical axis
is calculated. The length of the red lines located in the
middle of the interval (Fig. 5) represents the range of
two standard deviations based on a calculation of the
V [Log(da/dN )] for each interval.� Linear regression is executed.

Linear regression along the �K axis of the calculated
results, V [Log(da/dN )], is performed in order to estimate
the parabolic equation (Eq. 3) coefficients. Such linear
regression enables the extraction of the following values:
V (log(A)), V (P) and COV (Log(A),P).

This procedure completes the description of the extrac-
tion of values from Eq. 3. It is noted that although our
analysis is based on consolidated data, we have nonethe-
less succeeded in extracting the distribution characteristic
of the Paris curve coefficients and their joint distribution.
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Figure 5 presents the parabolic curves that surround
the observations (yellow and green). Coefficients of the
parabolic curves (Eq. 3) were extracted for consolidated
experiment data of crack propagation rate in aluminium
alloy 2124-T851.

Substituting the coefficients into Eq. 3 results in the
variance equation V [Log(da/dN )] for the aluminium
examined. The parabolic curves (Fig. 5) describe the range
of two standard deviations calculated based on Eq. 3.

E S T I M AT I N G T H E D I S T R I B U T I O N O F T H E
N U M B E R O F C Y C L E S T O FA I L U R E B A S E D
O N C O N S O L I D AT E D D ATA

After extracting the relevant coefficients from Eq. 3, we
use the said coefficients to estimate the distribution of the
number of cycles to failure, even when using consolidated
data.

In order to calculate the number of cycles to failure, Nf ,
the equation describing the Paris curve (Eq. 1) must be
integrated. An example of such integration using a simple
computation was given by Dieter,13 who described the
evolution of fatigue cracking under specific conditions.

The critical crack length, af , at which catastrophic failure
will occur (life termination) can be calculated from the
following equation:

a f =
(

1
π

) (
Kc

6max α

)2

. (4)

Following Dieter’s example, the total number of cycles
(Nf ) required to grow the crack to critical size, and thus
cause failure, is given by:

Nf = (a f )−
p
2 +1 − (ai )−

p
2 +1(

− p
2

+ 1
)

A σr p π
p
2 α p

. (5)

In order to reliably predict the distribution of the number
of cycles to failure, Nf , based on consolidated data, it is
insufficient to calculate a specific (discrete) value of Nf .
Rather, the scatter must be considered as well and a simu-
lation performed (such as Monte Carlo simulation) based
on Eq. 5, which includes the Paris curve coefficients (A,
P). To implement the simulation and based on the values
extracted from Eq. 3, the distribution characteristic of the
Paris equation coefficients (A, P) are used and the joint
distribution between them is taken into consideration.

Equation 5 indicates that in order to compute the num-
ber of cycles to failure, values of A must be used rather
than values of Log(A) extracted from Eq. 3. Thus, log(A)
must be converted into a value of A. Note, that the con-
version of Log(A) to A is not trivial, but rather involves
the conversion of the variance of A and the covariance,
V [log(A)] and COV [log(A),P], respectively.

To convert the values of log(A), extracted from Eq. 3 in
previous stages, into a value of A, as required in Eq. 5, the
following procedure is executed:� New simulations are performed based on the following

calculated distribution data derived from Eq. 3: V (P),
V (log(A)), COV (log(A),P) and mean values P and log(A).
These simulations are used to calculate additional Paris
curves that fit the above-mentioned distribution charac-
teristics.

In the simulation, we use the conventional assumption
that log(A) and P are normally distributed.6� For each line obtained from the simulations, the log(A)

coefficient is converted to A.

Thus, vectors A and P are obtained according to the
Paris curve scatter, and the joint distribution between the
two Paris equation coefficients is taken into considera-
tion. Based on these vectors, Eq. 5 can be applied a great
number of times and thus, the distribution of the num-
ber of fatigue cycles required to reach failure, Nf , can be
estimated. In other words, a method was presented that
enables estimation of the distribution of the number of cy-
cles required to reach a CV (failure) despite the existence
of consolidated data.

A D D I T I O N A L I N S I G H T S A N D L I M I TAT I O N S� The concept described in this paper is generic. The model
described can be adjusted to fit more complex, nonlinear,
equations such as the NASGRO equation.2� The illustration we presented of the implementation of
the methodology deals with the linear region of the Paris
equation. It can be applied when using a damage tolerance
approach, which requires an estimation of the distribution
of number of cycles to reach CV when the crack already
exists and its further growth takes place in the linear region
of the Paris equation. This approach can be helpful, for
example, in the planning of maintenance activities.14� We assume that the scatter in the crack propagation ex-
periment results, which stems from measurement errors
and from the experiment itself, is significantly less than
the ‘natural’ scatter that results from the variance in the
properties of the materials of the different specimens.

Note that even without this last assumption, the joint
distribution and variance of slope can still be estimated.� Due to difficulties in obtaining raw data from crack propa-

gation rate experiments, it is often the case that researchers
who apply a fracture mechanics approach, must work with
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graphical data that include consolidated experiment re-
sults (without detailed raw data). Such a graph is presented
in Fig. 24 and in the ASM Handbook.15 The proposed
methodology can be applied in such cases as well. The pa-
rameters required to simulate the distribution of the num-
ber of cycles required to reach a CV, can be initially esti-
mated by dividing the horizontal axis, �K , into small inter-
vals and then, for each interval, V [Log(da/dN )] is estimated
from the amplitude and scatter of observations within each
interval (with respect to the vertical axis). The subsequent
calculation steps are identical to those presented above.
Naturally, the method can be applied in cases in which the
graphs are not overly ‘cluttered’; that is, in cases in which
variability can be estimated along the vertical axis for in-
tervals defined on the horizontal axis.� The analytical approach presented in this paper is valid for
other applications and additional scientific domains that re-
quire distinction between results obtained from different
specimens or sources. The proposed approach may be ap-
plied when consolidated data are present and when a math-
ematical model exists (such as the Paris equation, Eq. 2)
that describes the regularity of an examined phenomenon.
When information is sought on regularity derived from
the model in specific cases (for instance, aluminium alloy
2124-T851), experiments are performed on specimens of
those specific materials. The coefficients of the equation
described in the model are extracted from the experimen-
tal observations. Thus, information can be gathered that
indicates the regularity of the said phenomenon in specific
cases. Naturally, many areas of research meet the criteria
mentioned, such as creep models1 and models that address
the delamination rate in composite materials.16

Consolidated data are common in the literature and stan-
dardization documentation for several reasons. First, over
the years researchers were not meticulous about saving
results from the specific experiments they conducted on
different specimens and sufficed with the consolidation of
data, performing a single regression on the entire set of
consolidated data. Another instance in which consolidated
data may exist is when it is not possible to attribute the ob-
ject from which experimental observations were obtained
to the experimental observations themselves. In other ar-
eas of science there are instances in which, throughout
the entire duration of the experiment, experimental ob-
servations obtained from an object cannot be attributed to
the object subject of the experiment. This situation may
arise, for example, in cases in which an experiment is per-
formed on cells or particles, which are difficult to identify
and track during the experiment itself. In such cases, ob-
servations are obtained, each of which originates from a
different object. The approach offered in this paper en-
ables extraction of the relevant curve coefficients and their
joint distribution in such cases as well. Thus, in appropri-

ate cases, it is possible to estimate the scatter involved in
reaching a CV.

S U M M A R Y

The proposed analytical approach enables calculation of
the distribution of Paris equation coefficients (A, P) as well
as the joint distribution between them, even when avail-
able data are consolidated. These values are required to
estimate the distribution of the number of cycles required
to reach a CV, which is essential, for example, in the fields
of reliability, risk assessment and damage tolerance.

The proposed model is based on the realization that con-
solidated data on fatigue crack propagation rates (vs. �K )
can be attributed to several individual curves (Paris curves)
that originate from different specimens.

The concept described in this paper is generic and the
model can be adjusted to fit more complex, nonlinear,
equations such as the NASGRO equation.

The proposed approach constitutes a generic solution in
cases in which distinction between results obtained from
different experiments provides further statistical insights.
As such it can be employed in various scientific disci-
plines.
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