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Abstract

Let Zi = (Y i, Xi
1, ..., X

i
m), i = 1, ..., n, be i.i.d. random vectors,

Zi ∼ F, F ∈ F . It is desired to predict Y by
∑

βjXj , where
(β1, ..., βm) ∈ Bn ⊆ Rm, under a prediction loss. Suppose that m =
nα, α > 1, i.e., there are many more explanatory variables than ob-
servations. We consider sets Bn restricted by the maximal number of
non-zero coefficients of their members, or by their l1 radius. We study
the following asymptotic question: How ‘large’ may the set Bn be, so
that it is still possible to select empirically a predictor whose risk under
F is close to that of the best predictor in the set. Sharp bounds for
orders of magnitudes are given under various assumptions on F . Algo-
rithmic complexity of the ensuing procedures is also studied. The main
message of this paper and the implications of the above derived orders
are that under various sparsity assumptions on the optimal predictor
there is “asymptotically no harm” in introducing many more explana-
tory variables than observations. Furthermore, such practice can be
beneficial in comparison with a procedure that screens in advance a
small subset of explanatory variables. Another main result is that
’Lasso’-type procedures, i.e., optimization under l1 constraint, could
be efficient in finding optimal sparse predictors in high dimensions.

Running head: Persistence and Predictor Selection. Key words: Consis-
tency, Lasso, regression, variable selection.
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1 Introduction

In practice, when modeling statistical phenomena, we tend to adopt more
flexible models (e.g., with more parameters) as we get more observations.
This practice suggests studying asymptotics of triangular arrays, i.e., when
the model assumed for the observations Z1, ..., Zn depends on n. Yet trian-
gular array formulation is hardly studied in statistics. The standard mathe-
matical statistical paradigm is the existence of a “true” model, and behavior
of estimators is studied as the number of observations increases, while the
model is kept fixed. We do not adopt this paradigm. We consider the
problem of predictor selection in a given complex situation, and not that
of estimation of a metaphysical unknown parameter, which may exist, but
may not exist. In fact, the definitions of the predictor and of the parameter
are intimately tied. Our parameter of interest is the best predictor out of
a restricted class of potential predictors. A triangular array formulation is
natural to our approach.

Consider now the setting of linear predictors in a triangular array. For
simplicity, we will denote Z1

n, ..., Zn
n of a triangular array simply as Z1, ..., Zn.

Our study is dedicated to the case where the collection Fn is of distributions
of m + 1 dimensional i.i.d. vectors Zi = (Y i, Xi

1, ..., X
i
m), i = 1, ..., n, where

m = nα, α ≥ 1. The set of predictors, i.e., the set {gβ ;β ∈ Rm} of functions
of the explanatory variables, is of the form gβ = gβ(X1, ..., Xm) =

∑m
i=1 βjXj

where β ranges over all m dimensional vectors. Denote:

LF (β) = EF (Y −
m∑

j=1

βjXj)2. (1)

The set of all possible predictors is too large for estimation. Minimization
of the empirical analogue of (1) is essentially unrelated to the minimization
of (1) itself. We will search for natural subsets Bn ⊂ Rm, so that the task
of selecting (nearly) an optimal predictor from Bn is not too ambitious, and
can be done empirically. It is, of course, desired that those sets will be as
large as possible to include better predictors. Finally, the procedures that
search for a predictor, i.e., the “estimation procedures”, should be feasible
in term of their algorithmic complexity.

In our setting a sequence of predictor selection procedures becomes a
basic object. Given a set of predictors Bn and a distribution Fn, let β∗Fn

=
arg minβ∈Bn LFn(β).

Definition 1 Given a sequence of sets of predictors Bn, the sequence of
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procedures β̂n, is called persistent, if for every sequence Fn ∈ Fn:

LFn(β̂n)− LFn(β∗Fn
)

p−→ 0.

Remark 1 In the definition of persistence, we consider the distance be-
tween LFn(β̂n) and LFn(β∗Fn

), rather than the more common l2 distance
between β̂n and β∗Fn

. This is the more relevant distance to study in pre-
dictor selection. For example, we do not have to worry about colinearity.
A consistent estimation of the parameter β is impossible, unless we assume
that the matrix of the explanatory variables is not close to singularity.

Remark 2 The persistence criterion should have an appeal in particular
in situations where LFn(β∗Fn

) does not approach 0. When LFn(β∗Fn
) could

approach 0, a more delicate asymptotic study of rates of convergence, etc.,
becomes relevant. Yet in most situations and models (nearly) perfect pre-
diction is impossible, thus convergence to 0 of LFn(β∗Fn

) does not hold.

A study of consistency (in the conventional sense of l2 distance) in a
triangular array setting in regression problems was conducted by Huber
(1973) and by Portnoy (1984) (see also references there). They studied the
problem of coefficients estimation under the setup Yi =

∑
βjXij + εi, where

εi are i.i.d., Eεi = 0, and m = m(n) increases with n. Their setup is more
conventional than ours since they, unlike us, assume the linear model and
study cases where m(n) < n. Major differences between our work and theirs
is that they were concerned with robustness and M-estimators under heavy
tailed distributions of εi, unlike us, and we consider random explanatory
variables, unlike them. The motivation of these papers seems to be the
same as ours, i.e., explore the limits to increasing the parameter set as the
number of observations is increased. Yet by their approach, the number of
explanatory variables m is taken, as is customary, to be less than n. In fact,
it is shown in Huber (1973), under conditions on εi and the design matrix X,
that consistency may be achieved as long as m(n) = o(

√
n). Portnoy, under

further conditions, established consistency as long as m(n) = o(n/log(n)).
Notice the huge gap!

Given observations Z1, ..., Zn, denote their empirical distribution by F̂
and let

LF̂ (β) = n−1
n∑

i=1

(Y i −
m∑

j=1

βjX
i
j)

2.

Consider predictor selection methods of the following type. For a c = c(n),
choose:

β̂n = arg min
β

LF̂ (β) + c(n)||β||21
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Here ||β||1 is the l1 norm of β. A related type of method is: for a b = b(n),
let

β̂n = arg min
{β | ||β||1≤b(n)}

LF̂ (β).

We consider these procedures as Lasso-like methods.
These procedures motivated the study in this paper. In Tibshirani (1996)

those procedures were introduced and were named Lasso. In that paper a
heuristic and numerical study is conducted to find the appropriate c(n) and
b(n) for such procedures. In Juditsky and Nemirovski (2000), properties
of such procedures with b(n) ≡ 1 are studied. Yet the value 1 for b(n) is
chosen somewhat arbitrarily. Lee, Bartlett, and Williamson (1996) studied
similar procedures for estimating parameters in neural network, and they
also concentrated on b(n) = 1. In Chen, Donoho and Saunders (2001), in
the context of denoising a signal represented by an overcomplete wavelet
system, an analog of a Lasso-like procedure is suggested, see their equation
(5.1). They also discuss the choice of c(n) (choice of λ in their setup). An
overcomplete system defines over-parametrization in our terminology.

Two types of sets, Bn ⊂ Rm of possible predictors, are studied in this
paper.

1. Bn is the set of all vectors (β1, ..., βm) having at most k = k(n) non-
zero entries. Those are ‘model-selection’ or ‘variable-selection’ type of
procedures that choose k explanatory variables out of the initial set of
m variables. These sets will be denoted Bn

k

2. Bn is the set of all vectors (β1, ..., βm) having l1 norm less than or
equal to b = b(n). These sets will be denoted Bn

b .

We will explore the interplay between Bn
k and Bn

b . The first type, ‘model-
selection’ is of interest as problems of variable-selection have long been stud-
ied from various aspects in numerous papers. The second type is of interest
because of its relation to Lasso-like methods.

In Section 2 of this paper we will motivate the Lasso-like procedures. We
also present an argument that suggests that the proper values of c(n) and
b(n) are c(n) = o((log(n)/n)1/2) and b(n) = o((n/log(n))1/4) respectively.
A careful study reveals that, in settings like the multivariate normal, this is
not the case. In fact, from the results in Section 4 it follows that, when Zi

are multivariate normal, the values of c(n) and b(n) should be of the order
of o(log(n)/n) and o((n/log(n))1/2). In Section 3 we will show persistence
with respect to Bn

k(n), for k(n) = o(n/ log(n)). Optimality of the last rate is
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proved, i.e., there exist no persistent procedures with respect to sets Bn
k(n),

when k(n) = O(n/ log(n)).
The persistent procedures in Section 3 are algorithmically inefficient:

they involve searching over all the subsets of size of order n/ log(n) out of
the m explanatory variables. Additional assumptions, in Section 4, yield
persistent and algorithmically efficient procedures with respect to Bn

k for
k(n) = o(n/ log(n)).

The implications of the study of the above rates is the following. Con-
sider a triangular array; suppose it is known that β∗Fn

, the (nearly) optimal
predictor under Fn, has less than k′(n) non-zero coefficients, alternatively,
suppose that it is known that ||β∗Fn

||1 ≤ b′(n). We will say that the k-sparsity
rate and the b-sparsity rate are respectively k′(n) and b′(n). Suppose now
that there exist persistent procedures with respect to sets Bn

k(n) (sets Bn
b(n)),

where k(n) > k′(n) ( where b(n) > b′(n) ). Then, there is ‘asymptotically’ no
virtue in screening in advance smaller subsets of explanatory variables. This
follows since the “persistence rates” k(n) and b(n) imply that by doing so we
will not (significantly) improve on procedures that search through the entire
set of explanatory variables. Yet obviously, when screening a small subset
in advance, we may do harm by dropping potentially important variables.

In practice persistence rates and sparsity rates are not known. The
practical way to act is to test estimators resulting from various assumptions
about the persistence rates (e.g., resulting from various constraints b(n) in
the Lasso procedure) on a test set.

Thus, the importance of our study stems from its suggestion to turn to
high dimensions, and pointing out that often there is ‘no harm’ in doing so.

In many cases it turns out that persistence rates are k(n) = o(n/ log(n))
when m = nα. Such cases are presented in more general prediction problems
in a subsequent paper Greenshtein (work in progress).

Finally, a practical implication of this paper is its recommendation of the
Lasso procedure in high dimensions as an effective method to find optimal
predictors under sparsity conditions.

2 Motivating and exploring the Lasso-like meth-
ods

Consider a triangular array, where Z = (Y, X1, ..., Xm(n)) ∼ F , F ∈ Fn.
Denote X0 = Y . We think of Y as a response variable and of Xj as explana-
tory variables. For any linear predictor, associated with a vector (β1, ..., βm),
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denote
γ′ = (−1, β1, ..., βm) = (β0, ..., βm).

Denote

LF (β) = EF (Y −
m∑

j=1

Xjβj)2

= γ′ΣF γ

Here ΣF = (σij), σij = EF XiXj 0 ≤ i, j ≤ m.
We think of a sequence of problems where n observations, Z1, ..., Zn, are

given and m = nα, α > 1.
Let F̂n be the empirical distribution determined by the sample Z1, ..., Zn.

Note that
LF̂n

(β) = γ′ΣF̂n
γ,

where ΣF̂n
= (σ̂ij) and σ̂ij = n−1

∑n
k=1 Xk

i Xk
j .

Denote σ̂ij = σij + εn
ij , then Σ̂ = ΣF + E, where E = (εn

ij). Let Yij =
XiXj . We assume the following condition:

A1: Under the distributions in Fn, the random variables Yij = XiXj have
bounded variances and moment-generating functions with bounded
third derivative in the neighborhood of 0.

Under the above condition, we have for large enough A, depending on
the bounds in condition A1,

sup
Fn∈Fn

PFn(−
√

A log(n)
n

≤ εn
ij ≤

√
A log(n)

n
∀i, j) → 1; (2)

(2) follows by Bonferroni, since for large enough A, and for any pair i, j,

sup
Fn∈Fn

PFn(−
√

A log(n)
n

≤ εn
ij ≤

√
A log(n)

n
) = 1− o(m−2).

The last equality is by moderate deviation principle as in Billingsley (1995)
p. 153. The uniformity in Fn follows from the uniform boundness of the
third derivative; see such an argument in Lemma 2.2 of Breiman and Freed-
man (1983).

Denote by Ê the matrix with identical entries equal to
√

An−1 log(n).
Then (2) implies:

sup
Fn∈Fn

PFn(LFn(β) ≤ γ′ΣF̂n
γ + |γ|′Ê|γ| ∀β ∈ Rm+1) → 1, (3)
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where |γ| = (1, |β1|, ..., |βm|).
Equation (3) suggests the following method for selecting a predictor.

Select the predictor β̂ where

(−1, β̂) = arg min
(γ∈Rm+1;β0=−1)

γ′ΣF̂n
γ + |γ|′Ê|γ|.

Equivalently, write

(−1, β̂) = arg min
(γ∈Rm+1;β0=−1)

γ′Σ̂F γ + c(n)||γ||21, (4)

which may be rephrased as optimization of a convex function in a convex
domain. Note that in the last equation c(n) = O(

√
log(n)/n).

Here and throughout, we consider procedures that use the appropriate
values of c(n), b(n), etc. In practice the appropriate values are not known,
and one should try various values and test the resulting estimators on a test
set.

We will now summarize our findings on persistence of procedures of the
type

β̂n = arg min
{β: ||β||1≤b(n)}

LF̂ (β). (5)

Theorem 1 Under Assumption A1 on Fn, for any sequence Bn
b(n) ⊂ Rm,

where Bn
b(n) consists of all vectors with l1 norm less than b(n) = o((n/ log(n))1/4),

there exists a persistent sequence of procedures. A concrete persistent se-
quence of procedures is given in (5).

Proof. As in (3), supFn∈Fn supβ∈Bn
b(n)

PFn(|LFn(β)−LF̂n
(β)| < |γ|′Ê|γ|) →

1. Now, for sequences of vectors β of order b(n) = o((n/ log(n))1/4), the
corresponding sequence |γ|′Ê|γ| approaches 0. The result now follows im-
mediately from the definition of persistence. ¤

Suppose in addition that the following condition holds.

A2: Let Bn
k(n) be the set of all vectors with k(n) = o((n/ log(n))1/2) non-

zero entries. There exists a constant C, C < ∞, such that
|| arg minβ∈Bn

k(n)
LFn(β)||2 < C for any sequence F1, F2, . . . , Fn ∈ F .

Remark 3 When EF Y 2 is bounded, A2 follows whenever the minimal
eigenvalue of the covariance matrix of the explanatory variables is bounded
from below. As pointed out in Remark 1, assumptions about minimal eigen-
values and near singularity of the random matrix X are essential when
dealing with persistence in the conventional sense, i.e., when dealing with
consistency.
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Note that the range of the procedures achieving persistence need not
be within the variable selection sets. It is a matter of formalism, but such
a requirement was not part of the definition; i.e., an estimator β̃n may be
persistent with respect to a set Bn, while β̃n 6∈ Bn for some n. We will
use this fact in the proof of the following theorem, where sequences with
range outside the Bn will be considered. Yet as shown in Section 4, these
procedures may be adjusted so that their range will be within Bn

k .

Theorem 2 Suppose Assumptions A1, A2 hold. There exists a persistent
sequence of procedures with respect to the sets Bn

k(n) with k(n) = o((n/ log(n))1/2).

Proof. We consider the particular sequence of procedures which is defined
by (5). By Assumption A2, we can consider only vectors β with l2 norm
bounded by, say, C < ∞. However, any vector with l2 norm c and of
dimension k(n) has l1 norm less than or equal to b(n) = c

√
k(n). It follows

from Theorem 1 that the estimator defined in (5), with b(n) as above, is
persistent with respect to the larger set Bb

b(n) hence also for Bn
k(n). ¤

The persistence rate in Theorem 1 is implied also by the following as-
sumption A3, alternative to A1.

A3 There are finite constants C and L, such that under any F ∈ Fn,
n = 1, 2, . . . : EF Y 2 < C, and all |Xj | < L w.p. 1, j = 1, ..., m(n).

Theorem 3 If Assumption A3 holds, then for any sequence Bn
b(n) ⊂ Rm,

where Bn
b(n) consists of all vectors with l1 norm less than b(n) = o((n/ log(n))1/4),

there exists a persistent sequence of procedures. A concrete persistent se-
quence of procedures is given in (5).

Theorem 3 is implied by an adaptation of the results in Juditsky and Ne-
mirovsky (2000). Condition A3 is close to their setup. We will now describe
their setup and explain their method and its adaptation to our purpose. We
use their notations. Juditsky and Nemirovski study prediction, in a manner
similar to ours, of a response variable y, based on a linear combination of
given functions f1, ..., fM , where fj = fj(x) are functions bounded by some
L. They assume a model y = f(x) + e, where e and x are independent and
E(e) = 0. Given n independent replicates (yt, xt), t = 1, ..., n, they study
the problem of estimating the ’best’ linear combination of f1, ..., fm under
the constraint that the l1 norm of the vector of coefficients is 1. ‘Best’
is in terms of the L2 distance between f and the function obtained by
the linear combination. As in our problem, they study asymptotics when
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M = nα, α > 1. This setting is very close to ours, when their fj(x) is identi-
fied with our Xj . As demonstrated in what follows, their assumption, about
independence of xt and et, is not needed under our definition of persistence.
A definition of consistency according to their approach (consistency is not
defined in their paper) would involve L2 distance between f and the linear
combination of fj . Thus the class we handle in Theorem 3 is slightly larger
than the class treated in their setup.

In the sequel we also formulate and prove the conclusion of Theorem
2 under such alternative conditions, stated as Theorem 4. The proofs of
Theorems 3 and 4 are along the lines of the technique of Juditsky and
Nemirovski.

A statement and a proof of the following key result that is needed may
be found in Nemirovski (1998) p. 188.

Lemma 1 (Nemirovski’s inequality:) Let ξt ∈ RK , t = 1, ..., n, be in-
dependent random vectors with zero means and finite variance, and K ≥ 3.
Then for every p ∈ [2,∞] one has:

E||
n∑

t=1

ξt||2p ≤ O(1)min[p, log(K)]
n∑

t=1

E||ξt||2p,

where || ||p is the lp norm.

We will use the inequality in the case p = ∞. There are related results
in empirical processes which bound the expectation of the maximum of a
finite sequence of random variables. Yet we do not know of a result that can
replace the above inequality in the context that we need.

Consider the matrix (ΣF̂ −ΣF ) as an (m+1)2 dimensional vector. Write
(ΣF̂ − ΣF ) as

∑n
t=1 ξt, where

ξt =
1
n

(Xt
0X

t
0 − EXt

0X
t
0, Xt

0X
t
1 − EXt

0X
t
1, ...)

is an (m+1)2 dimensional vector. Suppose there is an envelope function with
respect to XiXj 0 ≤ i, j ≤ m with a second moment, i.e., E(maxi,j XiXj)2 <
∞. Then, we get by Nemirovski’s inequality that the expected value of the
l∞ norm of (ΣF̂ − ΣF ) satisfies:

E||
∑

ξt||∞ = O
(√

log(n)
n

)
.
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Consider now Bn
b with b = b(n) = o((n/ log(n))1/4). For β ∈ Bn

b , by the
last inequality and by Markov inequality, for γt = (−1, β1, ..., βm) we get:
|γt(ΣF̂n

− ΣFn)γ| p−→ 0; equivalently, we get |LF̂n
(β)− LFn(β)| p−→ 0.

Consequently, persistent procedures, relative to sets Bn
b(n), of predictors

β with l1 norm less than b(n) = o((n/ log(n))1/4) exist. Now under the as-
sumption A2 and by the Cauchy-Schwartz inequality, a persistent selection
relative to sets Bn

k(n) with k(n) = o((n/ log(n))
1
2 ) is also possible.

Remark 4 An envelope function with a second moment for the collection
XiXj 0 ≤ i, j ≤ m exists in our triangular array setting if all but fixed
number of Xj , j = 0, ..., m are bounded by some L, and all of them have
second moment. In particular when X0 ≡ Y has a bounded second moment
and Xj , j = 1, ..., m are bounded as in Theorem 3. Thus Theorem 3 is
obtained as a corollary.

The following Theorem 4 is obtained from Theorem 3, in the same man-
ner that Theorem 2 follows from Theorem 1.

Theorem 4 Suppose that the set XiXj 0 ≤ i, j ≤ m has an envelope func-
tion with a bounded second moment under Fn ∈ Fn n = 1, 2, .... Suppose
that condition A2 holds. Then there exists a method which is persistent with
respect to ‘variable-selection’ sets, Bn

k , with k(n) = o((n/ log(n))
1
2 ).

Theorems 2 and 4 are obtained as immediate corollaries of Theorems
1 and 3 respectively, when assuming boundedness of ||β∗Fn

||2. With some
more effort Theorem 2 may be strengthened and a more flexible condition
may replace the one in Theorem 4. In fact, under boundedness of ||β∗Fn

||2,
a sufficient condition that implies the k(n) = o((n/ log(n))1/2) rate is that
EFnX2+δ

j n = 1, 2, ..., j = 0, ..., m(n) is bounded for some δ > 0. To show
it, one should apply truncation and diagonalization, as in the Section 4 in
the sequel.
Summary. We established the existence of persistent procedures, under
various assumptions, when b(n) and k(n) are of orders o((n/ log(n))1/4)
and o((n/ log(n))1/2) respectively. The methods of proofs were based on
bounding l∞ distance between ΣF and ΣF̂ .

In the sequel, using different methods, we will explore conditions under
which b(n) and k(n) may be ‘pushed’ towards the rates o((n/ log(n))1/2) and
o((n/ log(n))) respectively. Those rates are optimal in a sense, as will follow
below. Compare the huge gap we get, under various conditions, for the
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rates of k(n), with the differences, mentioned in the Introduction, between
the rates derived by Huber and those derived by Portnoy.

As mentioned, in a subsequent paper by Greenshtein the o(n/ log(n))
rate for k(n) is shown to hold in general triangular arrays, extending linear
prediction under a squared prediction loss. Still, we do not know whether
the lower rates, obtained in this section, may be improved even under the
elementary assumption that the entries of Zi are bounded. We state the
problem in the following.

1. Consider the case where Fn consists of all the distributions under
which the entries of Z = (Y, X1, ..., Xm) are bounded. Does a proce-
dure exists that is persistent with respect to sets Bn

b , with l1 radius
b(n) which is not o(n/ log(n))1/4?

2. Assume that Fn consist of all distributions under which the entries
of Z are bounded. Does a procedure exist which is persistent with
respect to sets Bn

k , for k(n) which is not o(n/ log(n))1/2?

3 Persistence of model-selection type of procedures.
The normal case.

In this section we will study persistence of model-selection type of proce-
dures, assuming that Fn consist of multivariate normal distributions. Those
procedures select at the first stage a model, i.e., a subset of k(n) explana-
tory variables, and then choose a linear predictor based on those variables.
Persistence of such procedures is studied with respect to the sets Bn

k that
correspond to vectors that have at most k(n) non-zero entries. The question
is how far we may push k(n) and still achieve persistence.

Prediction when the explanatory variables are multivariate normal, and
there are many more explanatory variables than observations, was studied
by Bickel and Levina (2003). Yet, they predict Y which is 0 or 1, i.e., they
study classification in this setting.

Denote the collection of all subsets, of size k = k(n), of explanatory
variables by K = Kn; each of its members is denoted by K, K ∈ K. Let
β̂(K) be the least squares estimator based on the subset K of explanatory
variables, and let

β̂ = arg min
K∈K

LF̂ (β̂(K)). (6)

Similarly, let β∗F (K) be the best linear predictor based on the subset K of
the explanatory variables, under F , and β∗F = arg minK∈K LF (β∗F (K)).
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The following is assumed throughout this section

B The sets Fn consist of all multivariate normal distributions with uni-
formly bounded variance of Y .

The main result of this section is

Theorem 5 Suppose k(n) = o(n/ log(n)); then there exists a persistent
sequence of procedures with respect to the corresponding Bn

k .

The procedure presented in the proof of Theorem 5 involves searching
over all the subsets of size k(n) of the m explanatory variables. In Section
4 we will consider procedures with a lower complexity, which are persistent
under a more restricted version of Assumption B.

The proof of the Theorem will preceded by the following lemmas and
propositions.

Proposition 1 Suppose Vn ∼ χ2
kn

where kn ≤ αn, 0 < α < 1. Then
P (Vn > n) = o(exp(−γn)) for some γ > 0.

Proof. Since Vn has Γ(kn/2, 2) distribution, its Lebesgue density is given
by

f(x) =
1

Γ(kn/2)2kn/2
xkn/2−1e−x/2.

In particular, f(x) = o(1)e−(1−α′)x/2 on (n,∞) for any 1 > α′ > α−α log α.
The proposition follows. ¤

Let Aε
n(K) be the event |LF̂n

(β̂(K))−LF̂n
(β∗Fn

(K))| > ε, and denote by
Bε

n(K) the event |LF̂n
(β∗Fn

(K))− LFn(β∗Fn
(K))| > ε.

Lemma 2 There is γ1 > 0 such that for any non-random K ∈ K,
supFn∈Fn PFn(Aε

n(K) ∪Bε
n(K)) = o(exp(−γ1n)).

Proof. The proof follows since the probability of both Aε
n(K) and Bε

n(K)
approach 0 exponentially fast: for Aε

n(K) observe that n × (LF̂n
(β̂(K)) −

LF̂n
(β∗Fn

(K))) is distributed χ2 with k degrees of freedom and apply Proposi-
tion 1. For Bε

n(K) apply large deviation principle for the difference between
the random mean and its expectation. ¤

The number of elements inK is of order mk, k = k(n), hence if mk exp(−γ1n) →
0 for some γ1 > 0, then we get by Bonferroni

sup
Fn∈Fn

PFn(∪K∈Kn(Aε
n(K) ∪Bε

n(K)) → 0.
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If k(n) = δn/ log(n) for δ small enough, then mk exp(−γ1n) → 0. Thus we
get

Corollary 1 If k(n) = δn/ log(n), then for small enough δ

sup
Fn∈Fn

PFn(|LF̂n
(β̂)− LFn(β∗Fn

)| > ε) → 0.

The last equation establishes that LF̂n
(β̂) is a consistent estimator for LFn(β∗Fn

).
It does not, however, imply that, β̂ is a persistent estimator for β∗Fn

. Recall
that for the latter it is necessary that for every ε > 0,

sup
Fn∈Fn

PFn(|LFn(β̂)− LFn(β∗Fn
)| > ε) → 0. (7)

To obtain (7), hence to prove Theorem 5, we need the following lemma
and its corollary.

Lemma 3 Suppose k(n) = o(n). Then for any fixed K ∈ K and ε > 0,
there exists γ > 0 such that supFn∈Fn PFn

(
LFn(β̂(K)) − LFn(β∗Fn

(K)) >

ε
)

= o(exp(−γn))

Proof. We consider a concrete subset K with indices (say) 1,2,...,k, and
a concrete Fn. We will omit the index n when there is no ambiguity.
Note that for such a concrete subset we may assume, w.l.o.g., that (i)
β∗F (K) = 0, (ii) the r.v. X1, ..., Xk are i.i.d distributed N(0, 1). As-
sumption (ii) is possible thanks to our definition of persistence in which
we consider LF (β̂) − LF (β∗F ) rather than ||β̂ − β∗F ||22, so the problem is
invariant under linear transformation of the explanantory variables. Now
LF (β̂(K))− LF (β∗F (K)) = E((Wβ̂(K))2|β̂(K)); the random vector W is k
dimensional and consists of i.i.d. N(0, 1) entries which are independent of
β̂(K); W may be thought of as the explanatory variables in the subset of a
future observation. Thus E((Wβ̂(K))2|β̂(K)) = ||β̂(K)||2. Let X(K) be the
random design matrix, corresponding to the subset of explanatory variables,
obtained by the n observations. Then β̂(K) ∼ N(0, σ2

K(X(K)′X(K))−1),
w.l.o.g. σ2

K = 1. Hence β̂′(K)(X(K)′X(K))β̂(K) ≡ V ∼ χ2
(k). Let λ be the

(random) minimal eigenvalue of X(K)′X(K), then V > ||β̂(K)||2λ. Hence:

P (||β̂(K)||2 > ε) ≤ P (
V

λ
> ε) = P (

V

λ/n
> εn).

13



Now from Silverstein’s (1985) proof about a.s. convergence of the min-
imal eigenvalue of a Wishart matrix, for any 0 < a < 1 there exists γ > 0
such that

P (
λ

n
< a) = o(exp(−γn)).

Also, since k = o(n) and V ∼ χ2
(k) as in Proposition 1 we have

P (V > aεn) = o(exp(−γn)),

for some γ > 0. Combining the last two equations we obtain

P (||β̂(K)||2 > ε) = o(exp(−γn))

for γ > 0. The proof now follows. ¤

Corollary 2 Suppose k(n) = o(n/ log(n)), then

sup
Fn∈Fn

PFn

(
∪K∈K [LFn(β̂n(K))− LFn(β∗Fn

(K)) > ε]
)
→ 0.

Proof of Theorem 5: The proof follows from corollaries 1 and 2.

We show now an optimality property of the suggested procedure. It
is shown that persistence cannot be achieved under B if k(n) is of order
n/ log(n).

Theorem 6 Suppose that m = nα, α > 1. If k(n) > c(n/ log(n)) c > 0,
then there exists no procedure which is persistent with respect to the corre-
sponding Bn

k .

Proof. We start the proof by stating Fano inequality (See LeCam and Yang
(1990) p. 128). Let K(P, Q) be the Kullback Leibler distance between P and
Q and let J(P, Q) = K(P, Q)+K(Q,P ). Suppose X ∼ F , F ∈ {F1, ..., FM},
and M > 2; consider the problem of estimating F , based on X, under a 0-1
loss function. Then the minimax risk is at least

1− 1
log(M − 1)

[log(2) +
1
2

max
i,j

J(Fi, Fj)].

Let Z = (Y, X1, ..., Xm), where Xi are i.i.d. N(0, 1). For any subset
Xi1 , ..., Xik of size k, of the explanatory variables, consider the joint distrib-
ution of Z determined by Y = c1√

k

∑k
j=1 Xij +ε; here ε ∼ N(0, 1) is indepen-

dent of Xj , i = 1, ..., m and c1 is a small enough properly chosen constant.

14



Among all subsets of size k, choose M such subsets in the following way.
At each stage after choosing a subset, ’delete’ all the “neighboring” subsets,
having more than k/2 common indices with that subset, then choose the next
subset from the remaining ones; keep on selecting subsets according to that
procedure until all the subsets of size k, are either deleted or chosen. There
are M chosen subsets at the end of the process, with corresponding M distri-
butions. Denote the distributions by F1, ..., FM . Given n i.i.d., observations
Z1, ..., Zn, the relevant distributions are the product measures F

(n)
1 , ..., F

(n)
M .

Now, note that for the distributions Fi, i = 1, ...,M , J(Fi, Fj) = O(1),
which may be made arbitrarily small by choosing small enough c1; thus,
J(F (n)

i , F
(n)
j ) < c3n, for c3 that may be made arbitrarily small when choos-

ing small enough c1. By construction LFi(β
∗
Fj

) > LFi(β
∗
Fi

) + c2 for a small
enough constant c2 when i 6= j.

We now approximate the term log(M −1) that appears in Fano inequal-
ity. At each stage we delete “neighboring” subsets, having at least k/2
common indices with the subset that was chosen at this stage, until all sub-
sets are either deleted or chosen. The number of subsets of size k is of order
mk. The number of deleted subsets at each stage is of order nα′k, α′ < α.
Thus, the number of stages, or, equivalently the number of chosen subsets,
M , is:

M ≈ mk/nα′k ≈ n(α−α′)k = exp(log(n)[α− α′]
n

log(n)
).

Thus log(M) > c4n for small enough c4. Applying Fano inequality, we get
the desired result. ¤

Remark 5 For the case where the explanatory variables are non-random,
related results are the ‘Oracle inequality’, Theorem 3 of Donoho and John-
stone (1994), and Lemma A.2 by Foster and George (1994). Those results
give finer inequalities than needed for the proof of Theorem 6, in the case
of orthogonal and non-random explanatory variables.

It seems that those results may be adjusted for our case of random explana-
tory variables, and yield the conclusion of Theorem 6 even for the case α = 1.
Yet the main interest in this paper is the case α > 1, i.e., more explanatory
variables than observations. Thus, our relatively simple argument, using
Fano inequality seems worthwhile. Another advantage of our proof is that
it does not rely on normality; it uses general properties of K-L numbers.
Thus, this method of proof indicates that the k(n) = o(n/ log(n)) cannot be
improved in typical situations.
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4 Complexity of persistent procedures

The persistent procedure suggested in Section 3 has high complexity. It
involves searching through all subsets of size k(n) = o(n/ log(n)) out of the
m explanatory variables. Under further restriction on the triangular array,
we will show, in this section, the existence of ‘low complexity’ procedures.
The complexity of these procedures is essentially the same as that of solving
a Lasso-like problem. The Lasso method involves optimization of a convex
target function subject to convex constraints. Such convex optimization
problems have efficient algorithms in general, see Nemirovski and Yudin (
1983 ). For the particular Lasso method, an efficient computation algorithm
was recently developed by Efron, Johnstone, Hastie, and Tibshirani (2003).

A key Lemma is the following Lemma 4. A proof under a slightly different
setting is given in Juditsky and Nemirovski in their Proposition 2.2, and is
attributed to B. Maurey. We give the proof here since there is a slight
difference in the formulation, but mainly for being self contained.

Lemma 4 Let Z = (Y, X1, ..., Xm), Z ∼ F , be a random vector. Suppose
EF Y 2 < ∞; suppose further that |Xj | < c, j = 1, ...,m w.p.1. Then for any
predictor β with l1 norm ν, there exists a corresponding predictor β′ such
that β′ has k non-zero entries or less, and LF (β′) < LF (β) + c2ν2

k .

Proof. Assume first that the entries βj of β are positive. Denote pj = βj/ν,
j = 1, ...,m. Now consider a randomization of k trials in a multinomial
setting with m categories, where the probability of category j is pj , j =
1, ..., m. Let P̂ j be the fraction of the k trials whose outcome is in category
j, j = 1, ...,m. Denote P̂ = (P̂1, ..., P̂m). Note that the vector P̂ has at
most k non-zero entries. We will show that:

EF LF (νP̂ ) ≤ LF (β) +
ν2c2

k
,

the proof then follows.

Let Z = (Y, X1, ..., Xm) be independent of P̂ , in the following the expec-
tation operator E is taken with respect to both P̂ and Z.
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ELF (νP̂ ) = E(Y −
∑

νP̂jXj)2

= E(Y −
∑

νpjXj +
∑

νpjXj −
∑

νP̂jXj)2

= E(Y −
∑

νpjXj)2 + E[
∑

νXj(pj − P̂j)]2

+ 2E(Y −
∑

νpjXj)(
∑

Xjν(pj − P̂j))

= LF (β) + E[
∑

νXj(pj − P̂j)]2.

The last equality follows since E(P̂j − pj) = 0 and since P̂ and Z are
independent. Now note that cov(P̂l, P̂k) < 0 for k 6= l to obtain

LF (β) + E[
∑

νXj(pj − P̂j ]2 ≤ LF (β) + ν2c2
∑

var(P̂j)

= LF (β) + ν2c2
∑ pj(1− pj)

k

≤ LF (β) +
ν2c2

k

The adaptation of the proof to the case where βj may also be negative is
straightforward.

¤

Corollary 3 Let Z ∼ F , EF Y 2 < ∞. Given ε > 0 and β, let c = c(ε)
be such that EF (Y − ∑

βjXj)2 − EF (Y − ∑
βjX̃j)2 < ε, where X̃j =

max{−c(ε),min{Xj , c(ε)}} is a truncation of Xj. Then there exists a cor-
responding predictor β′ such that β′ has k non-zero entries or less, and
LF (β′) < LF (β) + ε + c2||β||21/k.

For our main result in this section we will assume the following assump-
tion about Fn, which is more restrictive than condition B.

C: Consider variable selection subsets Bn
k , with k(n) = o(n/ log(n)). Let

κ,C < ∞. Assume for every n, F ∈ Fn if and only if F is multivariate
normal distribution with second moments bounded by C, and ||βF ||2 ≤
κ.

Theorem 7 Suppose Fn satisfy condition C. Let Bn
k be the set of predictors

with k(n) = o(n/ log(n)) non-zero entries. Then, there exists a sequence of
procedures βn ∈ Bn

k , n = 1, 2, . . . , such that {βn} is persistent with respect
to Bn

k , and the numerical complexity of calculating βn is no more than the
numerical complexity of Lasso plus an Op(m) term.
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The Op(m) term in the statement of Theorem 7, comes from extracting
a vector β′ with o(n/ log(n)) non-zero entries, from a vector β obtained by
solving a Lasso problem. The extraction is in the manner described in the
proof of Lemma 3. The strength of Theorem 5, compared with the results
in Section 3, is in the lower complexity of the persistent procedures.

Proof. First we will show that for every ε > 0 and n, there exists a
β̃n = β̃n(ε), such that supFn∈Fn PFn(|LFn(β̃n)− LFn(β∗Fn

)| > ε) → 0, where
β̃n has o(n/ log(n)) non-zero coefficients. The result will then follow by a
diagonalization argument: β̃n(εn) will satisfy the theorem for εn → 0 slowly
enough.

For a given ε, we will obtain such a β̃ = β̃(ε) in a few stages. At the first
stage, we obtain β̃1 as follows. W.l.o.g. κ = 1 in condition C. Let

β̃1 = arg min
{β | ||β||1≤

√
k(n)}

LF̂ (β). (8)

Note that by the Cauchy-Schwartz inequality and since κ = 1, the l1 norm
of of β∗F is less than

√
k(n), hence:

LF̂n
(β̃1) ≤ LF̂n

(β∗Fn
). (9)

One may check that Corollary 3 may be applied on F̂n with ε > 0
and c = cn(ε) = Op(1). Thus we may extract a vector β̃′1 from β̃, having
k1 = k1(n) non-zero coefficients, that satisfy

LF̂n
(β̃′1) ≤ LF̂n

(β̃1) + ε +
c2k

k1
. (10)

The extraction is through the multinomial simulation method, described in
the proof of Lemma 4.

Choose k1(n) = o(n/ log(n)) that satisfy k(n)
k1(n) → 0. Let β̃ be the least

squares, with respect to the subset on which β̃′1 has non-zero coefficients.
Since this subset is chosen to be of order o(n/ log(n)), we may apply the
reasoning and arguments of Section 3 , which together with the above imply
that

sup
Fn∈Fn

PFn(LFn(β̃)− LFn(β∗Fn
) > 2ε) → 0. (11)

The above constructed β̃ is not persistent, since the last equation should
hold for every ε. The latter is now easy to achieve using the diagonalization
described above.

¤
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5 Concluding Remarks

We demonstrated for the case of multivariate normal Zi that by increasing
the number of explanatory variables from o(n) (for which persistence may
be achieved) to nα, α > 1, we can still achieve persistence with respect to all
subsets of size k(n) = o(n/ log(n)). In cases where there are no clear favorite
explanatory variables or physical understanding of a phenomena (a ‘black
box’ situation), such a practice merits recommendation. This is especially
true since we demonstrated the existence of algorithmically effective, persis-
tent procedures. In more general situations (more general than the normal
case) our results and techniques of proof also indicate that there is almost no
loss, but a lot to be gained when increasing the number of explanatory vari-
ables. Thus we recommend an inverse of Occam’s razor principle. Occam’s
razor principle does not seem relevant for prediction.

The various theorems we proved show that we may expect persistence
for k(n) of an order between o((n/ log(n))

1
2 ) and o(n/ log(n)). Consequently

the l1 constraint, b(n), in the Lasso procedure should be of an order between
o(n/ log(n))

1
4 ) and o(n/ log(n))

1
2 ).

In practice we do not know what is the right value for b(n). Thus, we
might want to use cross validation in order to try various points in that
range. It might be helpful to try, through cross validation, even values of
b(n) that are larger than those suggested by our theory, for example, values
for which there is still a unique solution to the Lasso optimization.

Finally, methods that use many more parameters than observations have
recently been employed, and the fact that they do not get poor results due to
overfitting is something of a mystery; see Breiman (2001). We demonstrated
that methods that use many more parameters than observations may give
good results as long as some restraint is kept (e.g., optimization under l1
constraint). It might give some insight into the mystery of not getting poor
results due to overfit.

We speculate that in the more general framework of predictor selection
from a parametrized set of predictors {gβ ; β ∈ B}, under appropriate con-
ditions, empirical minimization subject to l1 constraints might have good
properties, as explored here in the case of linear predictors. This is a sub-
ject that is studied in the work in progress mentioned earlier.
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