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ON ASYMPTOTICALLY OPTIMAL
CONFIDENCE REGIONS AND TESTS
FOR HIGH-DIMENSIONAL MODELS

By Sara van de Geer, Peter Bühlmann and Ya’acov Ritov

ETH Zürich and The Hebrew University of Jerusalem

We propose a general method for constructing confidence inter-
vals and statistical tests for single or low-dimensional components of
a large parameter vector in a high-dimensional model. It can be easily
adjusted for multiplicity taking dependence among tests into account.
For linear models, our method is essentially the same as from Zhang
and Zhang [37]: we analyze its asymptotic properties and establish
its asymptotic optimality in terms of semiparametric efficiency. Our
method naturally extends to generalized linear models with convex
loss functions. We develop the corresponding theory which includes a
careful analysis for Gaussian, sub-Gaussian and bounded correlated
designs.

1. Introduction. Much progress has been made over the last decade
in high-dimensional statistics where the number of unknown parameters
greatly exceeds sample size. The vast majority of work has been pursued for
point estimation such as consistency for prediction [14, 3], oracle inequalities
and estimation of a high-dimensional parameter [7, 6, 36, 33, 23, 2, 25, 16]
or variable selection [21, 38, 11, 34]. Other references and exposition to a
broad class of models can be found in [12] or [5].

Very few work has been done for constructing confidence intervals, statis-
tical testing and assigning uncertainty in high-dimensional sparse models.
A major difficulty of the problem is the fact that sparse estimators such as
the Lasso do not have a tractable limiting distribution: already in the low-
dimensional setting, it depends on the unknown parameter [17] and hence
the convergence to the limit is not uniform. Furthermore, bootstrap and even
subsampling techniques are plagued by non-continuity of limiting distribu-
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tions. While in the low-dimensional setting, a modified bootstrap scheme
has been proposed [8], it is unclear whether such a method can be extended
to high-dimensional scenarios.

Some approaches for quantifying uncertainty include the following. The work
in [35] implicitly contains the idea of sample splitting and corresponding
construction of p-values and confidence intervals, and the procedure has
been improved by using multiple sample splitting and aggregation of depen-
dent p-values from multiple sample splits [24]. Stability Selection [22] and
its modification [27] provides another route to estimate error measures for
false positive selections in general high-dimensional settings. From another
and mainly theoretical perspective, the work in [16] presents necessary and
sufficient conditions for recovery with the Lasso β̂ in terms of ‖β̂ − β0‖∞,
where β0 denotes the true parameter: bounds on the latter, which hold with
probability at least say 1−α, could be used in principle to construct (very)
conservative confidence regions. Other recent work is discussed in Section
1.1 below.

We propose here a method which enjoys optimality properties when making
assumptions on the sparsity and design matrix of the model. For a linear
model, the procedure is largely the same as the one in [37] and closely related
to the method in [15]. It is based on the Lasso and is “inverting” the cor-
responding KKT conditions. This yields a non-sparse estimator which has
a Gaussian (limiting) distribution. We show, within a sparse linear model
setting, that the estimator is optimal in the sense that it reaches the semi-
parametric efficiency bound. Our procedure can be used and is analyzed for
high-dimensional sparse linear and generalized linear models and for regres-
sion problems with general convex (robust) loss functions.

1.1. Related work. Our work is closest to [37] (and also [15], see below)
who proposed the semiparametric approach for distributional inference in
a high-dimensional linear model. We take here a slightly different view-
point, namely by inverting the KKT conditions from the Lasso, while relaxed
projections are used in [37]: we describe in Section 2.4 the exact relations.
Furthermore, our paper extends the results in [37] by: (i) treating generalized
linear models and general convex loss functions; (ii) for linear models, we give
conditions under which the procedure achieves the semiparametric efficiency
bound and our analysis allows for rather general Gaussian, sub-Gaussian and
bounded design. A related approach as in [37] was proposed in [4] based on
Ridge regression which is clearly sup-optimal and inefficient with a detection
rate (statistical power) larger than n−1/2.
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Very recently, and developed independently, the work in [15] provides a de-
tailed analysis for linear models (but not covering generalized linear models
as we do here) by considering a very similar procedure as in [37] and in
our paper. They show that the detection limit is indeed in the 1/

√
n-range

and they provide a minimax test result; furthermore, they present extensive
simulation results indicating that the Ridge-based method in [4] is overly
conservative, which is in line with the theoretical results. Their optimality
results are interesting and are complementary to the semiparametric opti-
mality established here. Our results cover a substantially broader range of
non-Gaussian designs in linear models, and we provide a rigorous analysis
for correlated designs with covariance matrix Σ 6= I: the SDL-test in [15] as-
sumes that Σ is known while we carefully deal with the issue when Σ−1 has
to be estimated (and arguing why e.g. GLasso is not good for our purpose).

Another way and method to achieve distributional inference for high-dimen-
sional models is given in [1] (claiming semiparametric efficiency). They use a
two-stage procedure with a so-called post-double-selection as first and least
squares estimation as second stage: as such, their methodology is radically
different from ours.

2. High-dimensional linear models. Consider a high-dimensional lin-
ear model

Y = Xβ0 + ε,(1)

with n×p design matrix X = [X1, . . . ,Xp] (n×1 vectors Xj), ε ∼ Nn(0, σ
2
εI)

and unknown regression p× 1 vector β0. Throughout the paper, we assume
that p > n. We denote by S0 = {j; β0

j 6= 0} the active set of variables and
its cardinality by s0 = |S0|.
Our main goal is pointwise statistical inference for the components of the
parameter vector β0

j (j = 1, . . . , p) but we also discuss simultaneous inference

for parameters β0
G = {β0

j ; j ∈ G} where G ⊆ {1, . . . , p} is any group. To
exemplify, we might want to test statistical hypotheses of the form H0,j :
β0
j = 0 orH0,G : β0

j = 0 for all j ∈ G, and when pursuing many tests, we aim
for an efficient multiple testing adjustment taking dependence into account
and being less conservative than say the Bonferroni-Holm procedure.

2.1. The method: de-sparsifying the Lasso. The main idea is to invert the
Karush-Kuhn-Tucker characterization of the Lasso. We will discuss in Sec-
tions 2.4 some alternative representations.
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The Lasso [29] is defined as:

β̂ = β̂(λ) = argminβ∈Rp(‖Y −Xβ‖22/(2n) + λ‖β‖1).(2)

It is well-known that the estimator in (2) must fulfill the Karush-Kuhn-
Tucker (KKT) conditions:

−XT (Y −Xβ̂) + λτ̂ = 0,

‖τ̂‖∞ ≤ 1, and τ̂j = sign(β̂j) if β̂j 6= 0.

The vector τ̂ is arising from the sub-differential of ‖β‖1: using the first
equation, we can always represent it as

λτ̂ = XT (Y −Xβ̂).(3)

The KKT conditions can be re-written with the notation Σ̂ = n−1XTX:

Σ̂(β̂ − β0) + λτ̂ = XT ε/n.

The idea is now to use a “relaxed form” of an inverse of Σ̂. Suppose that Θ̂
is a reasonable approximation for such an inverse, then:

β̂ − β0 + Θ̂λτ̂ = Θ̂XT ε/n−∆, where ∆ = (Θ̂Σ̂− I)(β̂ − β0).(4)

We will show in Theorem 2.2 that ∆ is asymptotically negligible under some
sparsity assumptions. This suggests the following estimator:

b̂ = β̂ + Θ̂λτ̂ = β̂ + Θ̂XT (Y −Xβ̂)/n,(5)

using (3) in the second equation. This is essentially the same estimator
as in [37], as discussed in Section 2.4, and it is of the same form as the
SDL-procedure in [15], when plugging in the estimate Θ̂ for the population
quantity Θ = Σ−1. With (4), we immediately obtain an asymptotic pivot
when

√
n∆ is negligible, as is justified in Theorem 2.2 below:
√
n(b̂− β0) = W + oP (1), W |X ∼ Np(0, σ

2
ε Θ̂Σ̂Θ̂T ).(6)

An asymptotic pointwise confidence interval for β0
j , when conditioning on

X (or for fixed X), is then given by:

[b̂j − c(α, n, σε), b̂j + c(α, n, σε)],

c(α, n, σε) = Φ−1(1− α/2)n−1/2σε

√

(Θ̂Σ̂Θ̂T )jj

If σε is unknown, we replace it by a consistent estimator as discussed in
Section 2.5.1.
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2.1.1. The Lasso for nodewise regression. A prime example to construct
the approximate inverse Θ̂ is given by the Lasso for the nodewise regression
on the design X [21]: we use the Lasso p times for each regression problem
Xj versus X−j, where the latter is the design sub-matrix without the jth
column. For each j = 1 . . . , p,

γ̂j = argminγ(‖Xj −X−jγ‖22/(2n) + λj‖γ‖1),(7)

with components of γ̂j = {γ̂j,k; k = 1, . . . , p, k 6= j, }. Denote by

Ĉ =








1 −γ̂1,2 · · · −γ̂1,p
−γ̂2,1 1 · · · −γ̂2,p

...
...

. . .
...

−γ̂p,1 −γ̂p,2 · · · 1








and by

T̂ 2 = diag(τ̂21 , . . . , τ̂
2
p ), τ̂2j = (Xj −X−j γ̂j)

TXj/n.

Then, define

Θ̂Lasso = T̂−2Ĉ.(8)

Not that although Σ̂ is self-adjoint, its relaxed inverse, Θ̂Lasso, is not, In the
sequel, we denote by

b̂Lasso = the estimator in (5) with the nodewise Lasso from (8).(9)

We consider the jth row of Θ̂, denoted by Θ̂j (as a p × 1 vector), and
analogously for Ĉj . Then, Θ̂Lasso,j = Ĉj/τ̂

2
j . Furthermore, because of the

choice of τ̂2j we have

XT
j XΘ̂Lasso,j/n = 1.(10)

Moreover, by the KKT conditions for (7):

‖XT
−jXΘ̂Lasso,j/n‖∞ ≤ λj/τ̂

2
j .

Hence we have

‖Σ̂Θ̂j − ej‖∞ ≤ λj/τ̂
2
j ,

where ej is the j-th unit vector. We call this the extended KKT conditions.

We note that using e.g. the GLasso estimator for Θ̂ seems not optimal be-
cause (10) would fail and does not directly lead to desirable componentwise
properties of the estimator b̂ in (5) as established in Section 2.3.
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2.2. Theoretical result for fixed design. We provide here a first result for
fixed design X. A crucial identifiability assumption on the design is the
so-called compatibility condition [30]. For a p × 1 vector β and a subset
S ⊆ {1, . . . , p}, define βS by:

βS,j = βjI(j ∈ S), j = 1, . . . , p.

Thus, βS has zeroes for the components outside the set S. The compatibility
condition requires a positive constant φ0 > 0 such that for all β satisfying
‖βSc

0
‖1 ≤ 3‖βS0

‖1:

‖βS0
‖21 ≤

s0
φ2
0

βT Σ̂β.

The value φ2
0 is called the compatibility constant. We make the following

assumption:

(A1) The compatibility condition holds (for Σ̂) with compatibility constant
φ2
0 > 0. Furthermore, Σ̂jj ≤M2 <∞ for some 0 < M <∞.

The assumption (A1) is briefly discussed in Section 2.3.2. We then obtain
the following result.

Theorem 2.1. Consider the linear model in (1) with Gaussian error ε ∼
Nn(0, σ

2
εI), and assume (A1). When using the Lasso for nodewise regression

in (8) with λj ≡ λmax ∀j and the Lasso in (2) with λ ≥ 2Mσε

√
t2+2 log(p)

n ,
we have:

b̂Lasso − β0 = Θ̂LassoX
T ε/n+∆,

P[‖∆‖∞ ≤ ‖T̂−2‖∞λmax4λs0/φ
2
0] ≥ 1− 2 exp(−t2/2),

where ‖A‖∞ = maxj,k |Aj,k| is the element-wise sup-norm for a matrix A. A
proof is given in Section 5.2.

Theorem 2.1 gives a probabilistic bound for the error ‖∆‖∞. Note that
since the design is fixed, Θ̂Lasso is fixed and non-random, and ‖T̂−2‖∞ is
observed, and hence we compare ‖∆‖∞ to a known constant. We will show
in the proof of Theorem 2.2, see Lemma 5.3 in Section 5, that ‖T̂−2‖∞ is
asymptotically bounded and that the correct normalization factor for b̂Lasso
is
√
n. Thus, asymptotically, when choosing λmax ≍ λ ≍

√

log(p)/n, and if
s0 log(p)n

−1/2 = o(1), the error term ‖∆‖∞ = oP(n
−1/2) is negligible and√

n(b̂Lasso − β0) ≈ Np(0, σ
2
ε Θ̂LassoΣ̂Θ̂

T ). The details are discussed next.
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2.3. Conditioning on random design and optimality. In order to make some
further theoretical statements than in Theorem 2.1, we consider an asymp-
totic framework with random design, but where the analysis for the sta-
tistical inference is pursued conditioning on the design. The latter is the
common approach for low-dimensional linear models and implemented as
the standard procedure in software packages. Some results then follow for
random design as well.

The asymptotic framework uses a scheme where p = pn ≥ n→∞ in model
(1) and thus, Y = Yn, X = Xn, β

0 = β0
n and σ2

ε = σ2
ε,n are all (potentially)

depending on n. In the sequel, we usually suppress the index n. We make
the following assumption.

(A2) The rows of X are i.i.d. realizations from a Gaussian distribution
PX whose p-dimensional covariance matrix Σ has smallest eigenvalue
Λ2
min ≥ L > 0, and ‖Σ‖∞ = maxj,k |Σjk| = O(1).

The Gaussian assumption is relaxed in Section 2.3.4. We will assume below
some sparsity with respect to rows of Θ = Σ−1 and define:

sj =
∑

k 6=j

I(Θjk 6= 0).

We then have the following main result.

Theorem 2.2. Consider the linear model (1) with Gaussian error ε ∼
Nn(0, σ

2
εI). Assume (A2) and the sparsity assumptions s0 = o(n1/2/ log(p))

and sj ≤ smax = o(n/ log(p)) ∀j. Consider the choice of the regulariza-
tion parameters λ ≍

√

log(p)/n for the Lasso in (2) and λj ≡ λmax ≍√

log(p)/n ∀j for the Lasso for nodewise regression in (8). Then:

√
n(b̂Lasso − β0) = Wn +∆n,

Wn|X ∼ Np(0, σ
2
εΩn), Ωn = Θ̂Σ̂Θ̂T ,

‖∆n‖∞ = oP(1).

Furthermore, ‖Ωn − Σ−1‖∞ = oP(1) as n→∞.

A proof is given in Section 5.5.

Theorem 2.2 has various implications. For one-dimensional components, we
obtain for all x ∈ R:

P[
√
n(b̂Lasso;j − β0

j )/(σε

√

Σ−1
jj ) ≤ x|X]− Φ(x) = oP(1) (n→∞),(11)
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where Φ(·) denotes the c.d.f. of N (0, 1). Since the the limiting distribution
is independent of X, the statement also holds unconditionally for random
design. Furthermore, for any group G ⊆ {1, . . . , p} which is potentially large,
we have that for all x ∈ R:

P[max
j∈G
|√n(b̂Lasso;j − β0

j )| ≤ x|X]− P[max
j∈G
|Wn;j| ≤ x|X] = oP(1).

Therefore, the asymptotic distribution of maxj∈G
√
n|b̂Lasso;j||X under the

null-hypothesis H0,G; β0
j = 0 ∀j ∈ G is asymptotically equal to the maxi-

mum of dependent Gaussian variables maxj∈G |Wn;j||X whose distribution
can be easily simulated since Ωn is known, see also Section 2.5.

Remark 2.1. Theorem 2.2 can be extended to allow for non-Gaussian er-
rors:

√
n(b̂Lasso−β0) = Wn+∆n, with ‖∆n‖∞ = oP(1), Cov(Wn|X) = σ2

εΩn

but Wn|X generally not exactly Gaussian. Often though, a central limit
theorem argument can be used to obtain approximate Gaussianity of low-
dimensional components of Wn|X, see also Section 3.2.

2.3.1. Uniform convergence. The statements of Theorem 2.2 also hold in a
uniform sense, and thus, the derived confidence intervals and tests in Section
2.5 below are honest [19]. We consider the set of parameters

B(s) = {β ∈ R
p; ‖β‖00 ≤ s}.

We then have the following for b̂Lasso in (9).

Corollary 2.1. Assume the conditions of Theorem 2.2 with β0 ∈ B(s0)
and s0 = o(n1/2/ log(p)). Then, when using λ ≍

√

log(p)/n for the Lasso in
(2), and λj ≡ λmax ≍

√

log(p)/n ∀j for the Lasso for nodewise regression
in (8):

√
n(b̂Lasso − β0) = Wn +∆n,

Wn|X ∼ Np(0, σ
2
εΩn), Ωn = Θ̂Σ̂Θ̂T ,

sup
β0∈B(s0)

‖∆‖∞ = oP(1).

Moreover, as in Theorem 2.2, ‖Ωn − Σ−1‖∞ = oP(1) (n→∞).

The proof is exactly the same as for Theorem 2.2 by simply noting that
supβ0∈B(s0) ‖β̂ − β0‖1 = OP(s0

√

log(p)/n) (with high probability, the com-
patibility constant is still bounded from below by L/2). ✷
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Corollary 2.1 implies that for j ∈ {1, . . . , p}:

sup
β0∈B(s)

|P[√n(b̂Lasso;j − β0
j )/(σε

√

(Σ−1)jj) ≤ x|X]− Φ(x)| = oP(1) (n→∞).

2.3.2. Discussion of the assumptions. The compatibility condition (A1) is
weaker than many others which have been proposed such as assumptions on
restricted or sparse eigenvalues [31]: a slight relaxation by a constant factor
has recently been given in [28]: we could work with this slightly less estab-
lished condition without changing the asymptotic behavior of our results.
Assumption (A2) is rather weak as it concerns the population covariance
matrix.

Regarding the sparsity assumption for s0 in Theorem 2.1, our technique
crucially uses the ℓ1-norm bound ‖β̂−β0‖1 = OP(s0

√

log(p)/n), see Lemma
5.1. In order that this ℓ1-norm converges to zero, the sparsity constraint
s0 = o(

√

n/ log(p)) is usually required. Our sparsity assumption is slightly
stricter by the factor log(p)−1/2 (because the normalization factor is

√
n),

namely s0 = o(log(p)−1/2
√

n/ log(p)) = o(n1/2/ log(p)).

2.3.3. Optimality and semiparametric efficiency. Corollary 2.1 establishes,
in fact, that for any j, b̂Lasso,j is an asymptotically efficient estimator of
β0
j , in the sense that it is asymptotically normal, with asymptotic variance

converging, as n → ∞ to the variance of the best estimator. Consider, the
one-dimensional sub-model,

Y = βj(Xj −X−jγ
0
j ) +X−j(β

0
−j + β0

jX−jγ
0
j ) + ε,(12)

where γ0j is the population analog of γ̂j , i.e., Xj−X−jγ
0
j is the projection of

Xj to the subspace orthogonal to X−j . Clearly, this is a linear submodel of
the general model (1), passing through the true point. The Gauss-Markov
theorem argues that the best variance of an unbiased estimator of βj in
(12) is given by σ2

ε/Var(Xj − X−jγ
0
j ). However, Corollary 2.1 shows that

this is the asymptotic variance of b̂Lasso,j. Thus, b̂Lasso,j is asymptotically
normal, with the variance of the best possible unbiased estimator. Note, that
any regular estimator (regular at least on parametric sub-models) must be
asymptotically unbiased.

The main difference between this and most of the other papers on complex
models is that usually the Lasso is considered as solving a nonparametric
model with parameter whose dimension p is increasing to infinity, while we

9



consider the problem as a semiparametric model in which we concentrate on
a low dimensional model of interest, e.g., β0

j , while the rest of the parameters,

β0
−j , are considered as nuisance parameters. That is, we consider the problem

as a semiparametric one. In the rest of this discussion we try to put the
model in a standard semiparametric framework in which there is an infinite
dimensional population model.

Without loss of generality, the parameter of interest is β0
1 , i.e., the first

component. Consider the random design model

Y = β0
1X1 +K(Z) + ε, ε ∼ N (0, σ2

ε ),(13)

where Z is a Gaussian process. Suppose that with sample size n, we observe
a sample from Y,Xn

1 , . . . ,X
n
pn such that

Y =

p
∑

j=1

βn
j X

n
j + εn, εn independent of Xn

1 , . . . ,X
n
p

K(Z)−
p
∑

j=2

βn
j X

n
j

P−→ 0,

E[X1|Z]−
p
∑

j=2

γnj X
n
j

P−→ 0

(
K(Z)−

p
∑

j=2

βn
j X

n
j

)(
E[X1|Z]−

p
∑

j=2

γnj X
n
j

)
= oP(n

−1/2).

(14)

Theorem 2.3. Suppose (14) and the conditions of Theorem 2.2 are satis-
fied, then

b̂Lasso;1 = β0
1 +

1

n

n∑

i=1

(
X1i − E[X1i|Zi]

)
εi + oP(n

−1/2).

In particular, the limiting variance of
√
n(b̂Lasso;1 − β0

1) reaches the infor-

mation bound σ2
ε/E[(X1−E[X1|Z])2]. Furthermore, b̂Lasso;1 is regular at the

one-dimensional parametric sub-model with component β1 and hence, b̂Lasso;1
is asymptotically efficient for estimating β0

1 .

A proof is given in Section 6.1.
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As a concrete example, condition (14) and the conditions of Theorem 2.2
are satisfied when:

Y =

∞∑

j=1

β0
jXj + ε, ε ∼ N (0, σ2

ε ), β0 ∈ B, (Xj)j∈N ∼ P 0
X ∈ P,

Xn
j ≡ Xj ∀j = 1, . . . , pn,(15)

where B = {(βj)j∈N; ‖β‖00 <∞},
P = {PX Gaussian on R

∞;

0 < min
S⊂N

νmin(ΣS,S), max
j∈N
|Σj,j| <∞,

and ∀j, E[Xj] = 0, ‖γj(PX)‖00 <∞}.

Thereby, ΣS,S is the covariance matrix of {Xj ; j ∈ S}, and Λ2
min(·) de-

notes the minimal eigenvalue. Furthermore, γj(PX) = argminγEPX
[(Xj −

∑

k 6=j γkXk)
2] are the coefficients from the projection of Xj on all other in-

finitely many variables {Xk; k 6= j}. The assumption about the covariances
is equivalent to saying that (Xj)j∈N has a positive definite covariance func-
tion. A proof that this example fulfills the required assumptions is given in
Section 6.1.

2.3.4. Non-Gaussian design. We extend here Theorem 2.2 to allow for non-
Gaussian designs. Besides covering a broader range of designs for linear
models, the result is important for the treatment of generalized linear models
in Section 3.

Consider a random design matrix X with i.i.d. rows having mean zero and
population covariance Σ with its inverse (assumed to exist) Θ = Σ−1. Denote
by γj = argminγE[‖Xj − X−jγ‖22] (which was denoted by γj(PX) in the
previous subsection). Define the error ηj := Xj −X−jγj with variance τ2j =

E[‖ηj‖22/n] = 1/Θjj. We make the following assumptions.

(B1) The design X has either i.i.d. sub-Gaussian rows or i.i.d. rows and
for some K ≥ 1, ‖X‖∞ = maxi,j |Xij | = O(K). The latter we call the
bounded case. The strongly bounded case assumes in addition that
‖X−jγj‖∞ = O(K). We write K0 = 1 in the sub-Gaussian case and
K0 = K in the (strongly) bounded case (where K0 appears in some of
the conditions below).

11



(B2) It holds that K2
0sj
√

log(p)/n = o(1). In the sub-Gaussian case we
relax this to

√

sj log(p)/n = o(1).

(B3) The smallest eigenvalue of Σ satisfies 0 < L ≤ Λ2
min and ‖Σ‖∞ = O(1).

(B4) It holds that Eη41,j = O(K4
0 ).

We note that the strongly bounded case in (B1) follows from the bounded
case if ‖γj‖1 = O(1), and the sub-Gaussian assumption is stronger. Further-
more, in the sub-Gaussian case or the strongly bounded case, the assumption
(B4) follows automatically. Assumption (B2) is a standard sparsity assump-
tion for Θ. Finally, assumption (B3) implies that ‖Θj‖2 ≤ Λ−4

min ≤ L−2 =
O(1) uniformly in j (see (34)), so that in particular τ2j = 1/Θjj stays away

from zero. Note that (B3) also implies τ2j ≤ Σjj = O(1) uniformly in j.

Theorem 2.4. Suppose the conditions (B1)-(B4) hold. Denote by Θ̂ and τ̂2j
the estimates from the nodewise Lasso in (8). Then for λj ≍ K0

√

log(p)/n
we have:

‖Θ̂j −Θj‖1 = OP

(

K0sj

√

log(p)

n

)

, ‖Θ̂j −Θj‖2 = OP

(

K0

√

sj log(p)

n

)

,

|τ̂2j − τ2j | = OP

(

K0

√

sj log(p)

n

)

.

Furthermore,

|Θ̂T
j ΣΘ̂j −Θjj| ≤ ‖Σ‖∞‖Θ̂j −Θj‖21 ∧ Λ2

max‖Θ̂j −Θj‖22 + 2|τ̂2j − τ2j |,
where Λ2

max is the maximal eigenvalue of Σ. If the conditions hold uniformly
in j then in the sub-Gaussian or strongly bounded case the results are also
uniform in j.
Finally, for the sub-Gaussian or strongly bounded case, if the conditions
hold uniformly in j, K0smax

√

log(p)/n = o(1) and s0 = o(n1/2/ log(p)), the
statements of Theorem 2.2 hold.

A proof is given in Section 5.6.

2.4. Linear projection estimator and bias correction with the Lasso. We
discuss here a relation to the method in [37]. The estimator in (5) has an
(almost) equivalent representation. Consider any n × 1 score vector Zj, for
j = 1 . . . , p. Pursuing a linear projection of Y onto Zj we obtain:

ZT
j Y = ZT

j Xjβ
0
j +

∑

k 6=j

ZT
j Xkβ

0
k + ZT

j ε/n.

12



Therefore,

ZT
j Y

ZT
j Xj

− β0
j =

∑

k 6=j

ZT
j Xk

ZT
j Xj

β0
k +

ZT
j ε

ZT
j Xj

,

with a bias term
∑

k 6=j

ZT
j Xk

ZT
j Xj

β0
k . When estimating the bias with the Lasso,

we obtain the following estimator:

b̂proj;j =
ZT
j Y

ZT
j Xj

−
∑

k 6=j

ZT
j Xk

ZT
j Xj

β̂k.(16)

Similarly as in (4), we can derive an approximate pivot (for fixed design):

√
n(b̂proj − β0) = W −√n∆proj

W = Np(0, σ
2
εΩproj), (Ωproj)jk =

ZT
j Zk

(ZT
j Xj)(ZT

k Xk)
,

∆proj;j =
∑

k 6=j

ZT
j Xk

ZT
j Xj

(β̂k − β0
k) (j = 1, . . . , p).(17)

A typical choice of a score vector is Zj = Xj−X−jγ̂j where γ̂ is an estimated
vector of coefficients when regressing Xj versus X−j : a prominent example
is the nodewise Lasso in (7) in Section 2.1.1

ZLasso;j = Xj −X−j γ̂Lasso;j.(18)

Another choice is using Θ̂ from Section 2.1.

Z = XΘ̂T ,(19)

whose jth column vector build the n× 1 score vectors Zj (j = 1, . . . , p).

The estimators in (5) and (16) are equivalent whenever the vectors Zj in
(19) and in (16) coincide, and if ZT

j Xj/n = 1 for all j. The latter is true
when enforcing, for each j,

(Θ̂Σ̂)jj = 1(20)

for the estimator in (5); for (16), we can always re-scale Zj such that
ZT
j Xj/n = 1 (by re-scaling Zj ← Zj/(Z

T
j Xj/n)). Thus, the main condi-

tion to make the estimators equal is (20), and it holds for the nodewise
Lasso as shown in (10).

13



2.5. Confidence intervals and hypothesis testing. We assume in this section
an estimator b̂ which satisfies:

√
n(b̂− β0) = Wn +∆n,

‖∆n‖∞ = oP(1), Wn|X ∼ Np(0, σ
2
εΩ).(21)

This holds for b̂Lasso in (5) assuming sparsity and design conditions as dis-
cussed in Theorem 2.2.

Confidence intervals and statistical hypothesis tests, when conditioning on
X, can be immediately derived from such an approximate pivot. For one-
dimensional parameters β0

j , the two-sided confidence interval and statistical

test for H0,j : β0
j = 0 are given by

Ij = [b̂j − Φ−1(1− α/2)σε
√

Ωjj, b̂j +Φ−1(1− α/2)σε
√

Ωjj]

and the p-value

Pj = 2

(

1− Φ(
b̂j;observ

σε
√
Ωjj

)

)

,(22)

where b̂j;observ denotes the observed value of the statistic b̂j .

For simultaneous inference, we focus on testing H0,G : β0
j = 0 for all j ∈ G

versus the alternative HA,G : β0
j 6= 0 for at least one j ∈ G, where G ⊆

{1, . . . , p} is an arbitrary set. As a concrete test-statistic, consider

TG = max
j∈G
|b̂j|/σε

whose distribution underH0,G can be approximated by TW,G = maxj∈G |Wj |/σε.
Its distribution JG(c) = P[maxj∈G |Wj |/σε ≤ c] can be easily simulated by
generating Gaussian variables W̃ ∼ N|G|(0, n

−1ΩG,G) which do not involve

σε. Denote by γ̂G;observ = maxj∈G
√
n|b̂j;observ/σε|. Then, the p-value for

H0,G, against the alternative being the complement Hc
0,G, is defined as

PG = 1− JG(γ̂G;observ).(23)

2.5.1. Estimation of σ2
ε . For the construction of confidence intervals and

hypothesis tests, we need an estimate for σε. The scaled Lasso [28] yields
a consistent estimator for this quantity, under the assumptions made for
Theorem 2.2. We then simply plug-in an estimate σ̂ε into (22) or into γ̂G for
(23).
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2.5.2. Multiple testing adjustment. Based on many single p-values, we can
use standard procedures for multiple testing adjustment to control for vari-
ous type I error measures. The representation from Theorem 2.1 or 2.2 with
‖∆‖∞ being sufficiently small allows to construct a multiple testing adjust-
ment which takes the dependence in terms of the covariance Ω (see Theorem
2.2) into account: the exact procedure is described in [4]. Especially when
having strong dependence among the p-values, the method is much less con-
servative than the Bonferroni-Holm procedure for strongly controlling the
familywise error rate.

3. Generalized linear models and general convex loss functions.
We show here that the idea of de-sparsifying ℓ1-norm penalized estimators
and corresponding theory from Section 2 carries over to models with convex
loss functions such as generalized linear models (GLMs).

3.1. The setting and de-sparsifying the ℓ1-norm regularized estimator. We
consider the following framework with 1× p vectors of covariables xi ∈ X ⊆
R
p and univariate responses yi ∈ Y ⊆ R for i = 1, . . . , n. As before, we

denote by X the design matrix with ith row equal to xi. At the moment, we
do not distinguish whether X is random or fixed (e.g. when conditioning on
X).

For y ∈ Y and x ∈ X being a 1× p vector, we have a loss function

ρβ(y, x) = ρ(y, xβ) (β ∈ R
p)

which is assumed to be a strictly convex function in β ∈ R
p. We now define

ρ̇β :=
∂

∂β
ρβ, ρ̈β :=

∂

∂β∂βT
ρβ,

where we implicitly assume that the derivatives exist. For a function g :
Y × X → R, we write Png :=

∑n
i=1 g(yi, xi)/n and Pg := EPng. Moreover,

we let ‖g‖2n := Png
2 and ‖g‖2 := Pg2.

The ℓ1-norm regularized estimator is

β̂ = argminβ(Pnρβ + λ‖β‖1).(24)

As in Section 2.1, we de-sparsify the estimator. For this purpose, define

Σ̂ := Pnρ̈β̂.(25)
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Note that in general, Σ̂ depends on β̂ (an exception being the squared error
loss). We construct Θ̂ = Θ̂Lasso by doing a nodewise Lasso with Σ̂ as input
as detailed below in (29). We then define

b̂ := β̂ − Θ̂Pnρ̇β̂ .(26)

The estimator in (5) is a special case of (26) with squared error loss.

3.1.1. Lasso for nodewise regression with matrix input. Denote by Σ̂ a ma-
trix which we want to approximately invert using the nodewise Lasso. For
every row j, we consider the optimization

γ̂j = argminγj (Σ̂jj − 2Σ̂j,\jγj + γTj Σ̂\j,\jγj + λj‖γj‖1),(27)

where Σ̂j,\j denotes the jth row of Σ̂ without the diagonal element (j, j),

and Σ̂\j,\j is the submatrix without the jth row and jth column. We note

that for the case where Σ̂ = XTX/n, γ̂ is the same as in (7).

Based on γ̂j from (27), we compute

τ̂2j = Σ̂jj − Σ̂j,\jγ̂j .(28)

Having γ̂j and τ̂2j from (27) and (28), we define the nodewise Lasso as

Θ̂Lasso as in (8) using (27)-(28) from matrix input Σ̂ in (25).(29)

Moreover, we denote by

b̂Lasso = b̂ from (26) using the nodewise Lasso from (29).

Computation of (27) and hence of Θ̂ can be done efficiently via coordinate
descent using the KKT conditions to characterize the zeroes. Furthermore,
an active set strategy leads to additional speed-up. See for example [13] and
[20].

3.2. Theoretical results. We show here that the components of the estima-
tor b̂ in (26), when normalized with the easily computable standard error,
converge to a standard Gaussian distribution. Based on such a result, the
construction of confidence intervals and tests is straightforward.

Let β0 ∈ R
p be the unique minimizer of Pρβ with s0 denoting the num-

ber of non-zero coefficients. We use analogous notation as in Section 2.3
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but with modifications for the current context. The asymptotic framework,
which allows for Gaussian approximation of averages, is as in Section 2.3
for p = pn ≥ n → ∞ and thus, y1, . . . , yn = Yn, X = Xn, β

0 = β0
n and

underlying parameters are all (potentially) depending on n. As before, we
usually suppress the corresponding index n.

We make the following assumptions which are discussed in Section 3.3.1.
Thereby, we assume (C3), (C5), (C6) and (C8) for some constant K ≥ 1
and furthermore, λ, λ∗ and s∗ are positive constants.

(C1) The derivatives

ρ̇(y, a) :=
d

da
ρ(y, a), ρ̈(y, a) :=

d2

da2
ρ(y, a),

exist for all y, a, and for some δ-neighborhood (δ > 0), ρ̈(y, a) is Lip-
schitz:

max
a0∈{xiβ0}

sup
|a−a0|∨|â−a0|≤δ

sup
y∈Y

|ρ̈(y, a) − ρ̈(y, â)|
|a− â| ≤ 1.

Moreover
max

a0∈{xiβ0}
sup

|a−a0|≤δ
sup
y∈Y
|ρ̈(y, a)| = O(1).

(C2) It holds that ‖β̂ − β0‖1 = OP(s0λ), ‖X(β̂ − β0)‖2 = OP(s0λ
2), and

‖X(β̂ − β0)‖2n = OP(s0λ
2).

(C3) It holds that ‖X‖∞ = maxi,j |Xij| = O(K).

(C4) It holds that ‖Pnρ̈β̂Θ̂j − ej‖∞ = OP(λ∗).

(C5) It holds that ‖XΘ̂j‖∞ = OP(K) and ‖Θ̂j‖1 = OP(
√
s∗).

(C6) It holds that ‖(Pn − P )ρ̇β0 ρ̇Tβ0‖∞ = OP(K
2λ).

(C7) For every j, the random variable

√
n(Θ̂Pnρ̇β0)j

√

(Θ̂P ρ̇β0 ρ̇T
β0Θ̂T )jj

converges weakly to a N (0, 1)-distribution.

(C8) It holds that

Ks0λ
2 = o(n− 1

2 ), λ∗λs0 = o(n− 1

2 ), and K2s∗λ+K2√s0λ = o(1).
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We note that often the regularization parameters in (27) are the same and λ∗

can be chosen as λ∗ = λmax ≡ λj, see also Section 3.3.1. Furthermore, when
assuming that a population Θ = Σ−1 exists for Σ = P ρ̈β0 , s∗ can be chosen
as smax which is the maximal row sparsity of Θ. The following main result
holds for fixed or random design according to whether the assumptions hold
for one or the other case.

Theorem 3.1. Assume (C1)-(C8). For the estimator in (26), we have for
each j ∈ {1, . . . , p}:

√
n(b̂j − β0

j )/σ̂j = Wj + oP(1),

where Wj ∼ N (0, 1) and σ̂2
j = (Θ̂Pnρ̇β̂ ρ̇

T
β̂
Θ̂T )jj.

A proof is given in Section 5. Assumption (C1) of Theorem 3.1 means that
we regress to the classical conditions for asymptotic normality in the one-
dimensional case as in for example [9]. Assumption (C8) is a sparsity as-
sumption: for K = O(1) and choosing λ∗(= λmax) ≍ λ ≍

√

log(p)/n the
condition reads as s0 = o(

√
n/ log(p)) (as in Theorem 2.2) and s∗(= smax) =

o(
√

n/ log(p)). All the other assumptions (C2)-(C7) follow essentially from
the conditions of Corollary 3.1 presented later, with the exception that (C3)
is straightforward to understand. For more details see Section 3.3.1.

3.3. About nodewise regression with certain random matrices. We justify
in this section most of the assumptions for Theorem 3.1 when using the
nodewise Lasso estimator Θ̂ = Θ̂Lasso as in (29) and when the matrix input is
parameterized by β̂ as for standard generalized linear models. For notational
simplicity, we drop the subscript “Lasso” in Θ̂. Let wβ be an n-vector with
entries wi,β = wβ(yi, xi). We consider the matrix Xβ := WβX where Wβ =

diag(wβ). We define Σ̂β := XT
βXβ/n. We consider Θ̂β̂,j as the jth row of the

nodewise regression Θ̂ = Θ̂β̂ in (29) based on the matrix input Σ̂β̂.

We let Σβ = E[XT
βXβ/n] and define Θ := Θβ0 := Σ−1

β0 (assumed to exist).

Let sj := sβ0,j := ‖Θβ0,j‖00. Analogous to Section 2.3.4, we let Xβ0,−jγβ0,j

be the projection of Xβ0,j on Xβ0,−j using the inner products in the ma-
trix Σβ0 and let ηβ0,j := Xβ0,j − Xβ0,−jγβ0,j. We then make the following
assumptions.

(D1) The pairs of random variables {(yi, xi)}ni=1 are i.i.d. and ‖X‖∞ =
maxi,j |Xij | = O(K) and ‖Xγ0β0,j‖∞ = O(K) for some K ≥ 1.

18



(D2) It holds that K2sj
√

log(p)/n = o(1).

(D3) The smallest eigenvalue of Σβ0 is bounded away from zero and more-
over ‖Σβ0‖∞ = O(1). (The latter is ensured by requiring that the
largest eigenvalue is bounded from above).

(D4) For some δ > 0 and all ‖β − β0‖1 ≤ δ, it holds that wβ stays away
from zero and that ‖wβ‖∞ = O(1). We further require that for all such
β and all x and y

|wβ̂(y, x)− wβ0(y, x)| ≤ |x(β̂ − β0)|.

(D5) It holds that

‖X(β̂ − β0)‖n = OP(λ
√
s0), ‖β̂ − β0‖1 = OP(λs0).

Note that (D5) typically holds when λ
√
s0 = o(1) with λ ≍

√

log(p)/n
since the compatibility condition is then inherited from (D3). We have the
following result.

Theorem 3.2. Assume the conditions (D1)-(D5). Then, using λj ≍
K
√

log(p)/n for the nodewise Lasso Θ̂β̂:

‖Θ̂β̂,j −Θβ0,j‖1 = OP

(

Ksj
√

log(p)/n

)

+OP

(

K2s0((λ
2/
√

log(p)/n)∨λ)
)

,

‖Θ̂β̂,j −Θβ0,j‖2 = OP

(

K
√

sj log(p)/n

)

+OP

(

K2√s0λ
)

,

and

|τ̂2
β̂,j
− τ2β0,j| = OP

(

K
√

sj log(p)/n

)

+OP

(

K2√s0λ
)

.

Moreover,

|Θ̂T
β̂,j

Σβ0Θ̂β̂,j−Θβ0,jj| ≤ ‖Σβ0‖∞‖Θ̂β̂,j−Θβ0,j‖21∧Λ2
max‖Θ̂β̂,j−Θβ0,j‖22+2|τ̂2

β̂,j
−τ2β0,j|

where Λ2
max is the maximal eigenvalue of Σβ0 .

A proof, using ideas for establishing Theorem 2.4, is given in Section 6.2.
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Corollary 3.1. Assume the conditions of Theorem 3.2, with λ ≍
√

log(p)/n,
K ≍ 1, sj = o(

√
n/ log(p)) and s0 = o(

√
n/ log(p)). Then

‖Θ̂β̂,j −Θβ0,j‖1 = oP

(

1/
√

log(p)

)

,

‖Θ̂β̂,j −Θβ0,j‖2 = oP(n
−1/4),

and

|Θ̂T
β̂,j

Σβ0Θ̂β̂,j −Θβ0,jj| = oP

(

1/ log(p)

)

.

Lemma 3.1. Assume the conditions of Corollary 3.1. Let for i = 1, . . . , n,
ξi be a real-valued random variable and xTi ∈ R

p, and let (xi, ξi)
n
i=1 be i.i.d.

Assume ExTi ξi = 0 and that |ξi| ≤ 1. Then

Θ̂T
β̂,j

n∑

i=1

xTi ξi/n = ΘT
β0,j

n∑

i=1

xTi ξi/n + oP(n
−1/2).

Let A := ExTi xiξ
2
i (assumed to exist). Assume that ‖AΘ0

j‖∞ = O(1) and

that 1/((Θ0
j )

TAΘ0
j ) = O(1). Then

Θ̂T
β̂,j

AΘ̂β̂,j = ΘT
β0,jAΘβ0,j + oP(1).

Moreover, then
Θ̂T

β̂,j

∑n
i=1 x

T
i ξi/
√
n

√

Θ̂T
β̂,j

AΘ̂β̂,j

convergences weakly to a N (0, 1)-distribution.

A proof is given in Section 6.2

3.3.1. Discussion of the assumptions for GLMs. Assumption (C1) is classi-
cal [9] and (C3) is easy to understand. All the other assumptions (C2)-(C8)
follow essentially from the conditions of Corollary 3.1 with Σβ := P ρ̈β and

wβ(y, x) := ρ̈(y, xβ), provided we take Θ̂ as the nodewise Lasso in (29),
and s∗ = sj and λ∗ ≍ λj. We will discuss this for the case ‖Xβ0‖∞ =
O(1) (that is we assume K = 1 for simplicity) and |ρ̇(y − xβ0)| = O(1)
uniformly in x and y. We also need to assume 1/(ΘT

β0,jP ρ̇β0 ρ̇Tβ0Θβ0,j) =

O(1). Note that for the case of canonical loss, P ρ̇β0 ρ̇Tβ0 = Σβ0 , and hence

1/(ΘT
β0,jP ρ̇β0 ρ̇Tβ0Θβ0,j) = τ2β0,j.
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Condition (C2) holds because the compatibility condition is met as Σβ0 is
non-singular and

‖Σ̂ − Σβ0‖∞ = OP(λ∗).

The condition that ρ̇(y, xβ0) is bounded ensures that ρ(y, a) is locally Lip-
schitz, so that we can control the empirical process (Pn − P )(ρβ̂ − ρβ0) as

in [33] (see also [5] or [32]). (In the case of a GLM with canonical loss (e.g.
least squares loss) we can relax the condition of a locally bounded derivative
because the empirical process is then linear). Condition (C3) is assumed to
hold with ‖X‖∞ = O(1), and Condition (C4) holds with λ∗ ≍

√

log p/n.
This is because in the node-wise regression construction, the 1/τ̂2j are consis-

tent estimators of (Σ−1
β0 )jj (see Theorem 3.2). Condition (C5) holds as well.

Indeed, ‖Θβ0,j‖1 = O(√sj), and ‖Θ̂β̂,j − Θβ0,j‖1 = OP(λjsj) = OP(
√
sj).

Condition (C6) holds as well, since we assume that |ρ̇| = O(1) as well
as ‖X‖∞ = O(1). As for Condition (C7), this follows from Lemma 3.1,
since |ΘT

β0,j ρ̇β0(y, x)| = |ΘT
β0,jx

T ρ̇(y, xβ0)| = O(1), which implies for A :=

P ρ̇β0 ρ̇Tβ0 that ‖AΘβ0,j‖∞ = O(1).

4. Conclusions. We derive confidence regions and statistical tests for low-
dimensional components of a large parameter in high-dimensional models.
We propose a general principle which is based on “inverting” the KKT con-
ditions from ℓ1-penalized estimators. The method easily allows for multiple
testing adjustment which takes the dependence structure into account.

For linear models, the procedure is (essentially) the same as the projection
method in [37]: we prove its asymptotic optimality in terms of semipara-
metric efficiency, assuming certain sparsity conditions. For generalized lin-
ear models with convex loss functions, we develop a substantial body of new
theory which in turn justifies the general “KKT inversion” principle.

The conditions we impose seem rather tight for our method. We require
ℓ0-sparsity of the underlying regression coefficient s0 = o(

√
n/ log(p)) (as-

suming bounded design for GLMs). This is essentially the condition for
ℓ1-norm convergence, and our method requires such an ℓ1-norm bound; the
additional factor 1

√

log(p) stems from the fact that the asymptotic pivot

b̂ − β0 is normalized with
√
n. Regarding the design, we assume that the

minimal eigenvalue of the population covariance matrix Σ is bounded from
below, and that the row-sparsity of Θ = Σ−1 satisfies smax = o(n/ log(p))
for Gaussian or sub-Gaussian design or smax = o(

√

n/ log(p)) for bounded
design, respectively. More generally, our methods needs two elements: the
ℓ1-norm convergence of the Lasso estimator β̂ and the ℓ∞-norm of the jth
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row of Θ̂Σ̂− I, see (4) or (30). However, since the analysis is conditional on
X, the latter is an observable quantity, and hence its bound in practice does
not depend on the assumptions but is observed from data.

4.1. Empirical results. We have done some empirical validation for two-
sided testing of individual hypotheses H0,j : β0

j = 0 and corresponding
multiple testing adjustment. Due to the length of this paper, we don’t include
the results but rather give a short summary of the findings (and we intend
to provide an R-package with corresponding illustrations).

We compared our de-sparsified estimator b̂Lasso with a bias-corrected Ridge
estimator which has been proposed in [4]. As an overall conclusion, we find
that our b̂Lasso estimator has more power than the Ridge-type method while
still controlling type I error measures reasonably well, whereas the Ridge
procedure yields conservative type I error control for a broader class of
designs. We also considered the mean-squared error for estimating a single
parameter β0

j , and we compared b̂Lasso with the standard Lasso and the bias-

corrected Ridge estimator [4]. We found that b̂Lasso is clearly better than the
Ridge-type method. For the standard Lasso, we observe a “super-efficiency”
phenomenon, namely that it estimates the zero coefficients often very accu-
rately while estimation for the non-zero parameters is poor in comparison
to b̂Lasso.

5. Proofs and materials needed.

5.1. Bounds for ‖β̂ − β0‖1 with fixed design. The following known result
gives a bound for the ℓ1-norm estimation accuracy.

Lemma 5.1. Assume a linear model as in (1) with Gaussian error and
fixed design X which satisfies the compatibility condition with compatibility
constant φ2

0 and with Σ̂jj ≤ M2 < ∞ for all j. Consider the Lasso with

regularization parameter λ ≥ 2Mσε

√
t2+2 log(p)

n . Then, with probability at

least 1− 2 exp(−t2/2):

‖β̂ − β0‖1 ≤ 8λ
s0
φ2
0

and ‖X(β̂ − β0)‖22/n ≤ 8λ2 s0
φ2
0

.

A proof follows directly from the arguments in [5, Th.6.1] which can be
modified to treat the case with unequal values of Σ̂jj for various j. ✷
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5.2. Proof of Theorem 2.1. It is straightforward to see that

‖∆‖∞ = ‖(Θ̂LassoΣ̂− I)(β̂ − β0)‖∞ ≤ ‖(Θ̂LassoΣ̂− I)‖∞‖β̂ − β0‖1,(30)

where ‖A‖∞ = maxj,k |Aj,k| is the element-wise sup-norm for a matrix A.

For bounding ‖(Θ̂LassoΣ̂−I)‖∞ we invoke the KKT conditions for the Lasso
for nodewise regression in (7):

‖XT
−j(Xj −X−j γ̂Lasso,j)‖∞ ≤ λj (j = 1, . . . , p),

and thus we obtain for Θ̂Lasso from (8):

‖(Θ̂LassoΣ̂− I)‖∞ ≤ ‖ΛT̂−2‖∞.(31)

where Λ = diag(λ1, . . . , λp). The right-hand side of (31) can be bounded by

‖ΛT̂−2‖∞ ≤ λmax‖T̂−2‖∞.

Therefore, using the latter bound in (30) and the bound from Lemma 5.1
completes the proof. ✷

5.3. Random design: bounds for compatibility constant and ‖T−2‖∞. The
compatibility condition with constant φ2

0 being bounded away from zero is
ensured by a rather natural condition about sparsity. We have the following
result.

Lemma 5.2. Assume that PX is Gaussian satisfying (A2). Furthermore,
assume that s0 = o(n/ log(p)) (n → ∞). Then, with probability tending to
one, the compatibility condition holds with compatibility constant

φ0 ≥ L/2 > 0.

A proof follows directly as in [26, Th.1].

Lemma 5.1 and (5.2) say that we have a bound

‖β̂ − β0‖1 = OP(s0
√

log(p)/n),

‖X(β̂ − β0)‖2n := ‖X(β̂ − β0)‖22/n = OP(s0 log(p)/n),(32)

when assuming (A2) for a Gaussian distribution PX and sparsity s0 =
o(n/ log(p)).

When using the Lasso for nodewise regression in (8), we would like to have
a bound for ‖T̂−2

Lasso‖∞ appearing in Theorem 2.1.
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Lemma 5.3. Assume (A2) with row-sparsity for Θ = Σ−1 bounded by

sj ≤ smax = o(n/ log(p)) for all j = 1, . . . , p.

Then, when choosing the regularization parameters λj ≡ λmax ≍
√

log(p)/n,

‖T̂−2
Lasso‖∞ = OP(1) (n→∞).

A proof follows using standard arguments. The compatibility assumption
holds for each nodewise regression with corresponding compatibility con-
stant bounded from below by L/2, as in Lemma 5.2. Furthermore, the pop-
ulation error variance τ2j = E[(Xj −

∑

k 6=j γj,kXk)
2], where γj,k are the pop-

ulation regression coefficients of Xj versus {Xk; k 6= j} satisfy: for all j,
τ2j = 1

Θjj
≥ Λ2

min ≥ L > 0 (see formula (35)) and τ2j ≤ E[‖Xj‖2/n] =

Σjj ≤ ‖Σ‖∞ = O(1), thereby invoking assumption (A2). Thus, all the er-
ror variances behave nicely and therefore, each nodewise regression satisfies
‖Xj −X−j γ̂j‖22/n = OP(sj log(p)/n) (see Lemma 5.1 or (32) and hence the
statement follows. ✷

5.4. Bounds for ‖β̂ − β0‖2 with random design. As argued in Lemma 2,
assuming s0 = s0 = o(n/ log(p)) (n→∞), the compatibility condition holds
with probability tending to one. Therefore, the weaker restricted eigenvalue
condition [2] holds as well and assuming (A2) we have the bound (see [2]):

‖β̂ − β0‖2 = OP(
√

s0 log(p)/n).(33)

5.5. Proof of Theorem 2.2. Invoking Theorem 2.1 and Lemma 5.3 we have
that

n1/2‖∆‖∞ ≤ OP(s0 log(p)n
−1/2) = oP(1)

where the last bound follows by the sparsity assumption on s0.

What remains to be shown is that ‖Ωn − Θ‖∞ = oP(1), as detailed by the
following Lemma.

Lemma 5.4. Assume

max
j
‖Θ̂j −Θj‖1 = OP(λmaxsmax), max

j
‖Θ̂j −Θj‖2 = OP(λmax

√
smax).

Suppose that λ2
maxsmax = o(1). Then

‖Ω −Θ‖∞ = oP(1).
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Proof: We first show that for L > 0 from (A2):

max
j=1,...,p

‖Θj‖2 ≤ L−2 <∞.(34)

Clearly, we have:

Θjj ≤ max
α

αTΘα

‖α‖22
= Λ−2

min.(35)

Furthermore,

‖Θj‖22 ≤
ΘT

j ΣΘj

Λ2
min

=
Θjj

Λ2
min

≤ Λ−4
min ≤ L−2 <∞,

where we used (35) and assumption (A2) in the two last inequalities. There-
fore, (34) holds.

Using standard arguments, analogous to (32) and using Lemma 5.3, we have
that

max
j
‖Θ̂j −Θj‖1 = OP(λmaxsmax)

Hence, uniformly in j:

‖Θ̂j‖1 = ‖Θj‖1 +OP(λmaxsmax) = OP(
√
smax).(36)

Furthermore, we have

Ω = Θ̂Σ̂Θ̂T = (Θ̂Σ̂− I)Θ̂T + Θ̂T(37)

and

‖(Θ̂Σ̂− I)Θ̂T ‖∞ ≤ λmax‖T̂−2‖∞max
j
‖Θ̂j‖1(38)

= OP(λmax
√
smax) = oP(1),

where the second-last bound follows from Lemma 5.3 and (36). Finally, we
have using standard arguments for the ℓ2-norm bounds, see also (33):

‖Θ̂ −Θ‖∞ ≤ max
j
‖Θ̂j −Θj‖2 ≤ λmax

√
smax = oP(1).(39)

Using (37)–(39) we complete the proof. ✷

The proof of Theorem 2.2 is now complete using the fact that the sparsity
assumptions and (A2) automatically imply that the compatibility condition
holds for every nodewise regression (see also Lemma 5.2), and also the re-
stricted eigenvalue condition holds [2] which allows for bounding maxj ‖Θ̂j−
Θj‖2 as worked out in [26, Th.1]. From this we deduce that the conditions
in Lemma 5.4 about maxj ‖Θ̂j −Θj‖q (q = 1, 2) hold. ✷
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5.6. Proof of Theorem 2.4. Under the sub-Gaussian assumption we know
that ηj is also sub-Gaussian. So then ‖ηTj X−j/n‖∞ = OP(

√

log(p)/n). If
‖X‖∞ = O(K), we can use the work in [10] to conclude that

‖ηTj X−j/n‖∞ = OP(K
√

log(p)/n).

However, this result does not hold uniformly in j. Otherwise, in the strongly
bounded case, we have

‖ηj‖∞ ≤ ‖Xj‖∞ + ‖X−jγ
0
j ‖∞ = O(K).

So then ‖ηTj X−j/n‖∞ = OP(K
√

log(p)/n)+OP(K
2 log(p)/n), which is uni-

form in j.

Then by standard arguments (see e.g. [2], and see [5] which complements
the concentration results in [18] for the case of errors with only second
moments) for λj ≍ K0

√

log(p)/n (recall that K0 = 1 in the sub-Gaussian
case and K0 = K in the (strongly) bounded case)

‖Xj(γ̂j − γ0j )‖2n = OP(sjλj), ‖γ̂j − γ0j ‖1 = O(sjλj).

The condition K2sj
√

log(p)/n is used in the (strongly) bounded case to be
able to conclude that the empirical compatibility condition holds (see [5],
Section 6.12). In the sub-Gaussian case, we use that

√

sj log(p)/n = o(1)
and an extension of Theorem 1 in [26] from the Gaussian case to the sub-
Gaussian case. This gives again that the empirical compatibility condition
holds.

We further find that

‖γ̂j − γ0j ‖2 = OP(K0

√

sj log(p)/n).

To show this, we first introduce the notation βTΣ0β := ‖Xβ‖2. Then in the
(strongly) bounded case

∣
∣
∣
∣
‖Xβ‖2n − ‖Xβ‖2

∣
∣
∣
∣
≤ ‖Σ̂− Σ0‖∞‖β‖21 = OP(K

2
√

log(p)/n)‖β‖21.

Since ‖γ̂j − γ0j ‖1 = OP(K0sj
√

log(p)/n) and the smallest eigenvalue Λ2
min of

Σ stays away from zero, this gives

OP(K
2
0sj log(p)/n) = ‖Xj(γ̂j − γ0j )‖2n

≥ Λmin‖γ̂j − γ0j ‖22 −OP(K
4
0s

2
j(log(p)/n)

3/2)

≥ Λmin‖γ̂j − γ0j ‖22 − oP(K
2
0 log(p)/n),
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where we again used that K2
0sj
√

log(p)/n = o(1). In the sub-Gaussian case,
the result for the ‖·‖2-estimation error follows by similar arguments invoking
again a sub-Gaussian extension of Theorem 1 in [26].

We moreover have

|τ̂2j − τ2j | = |ηTj ηj/n− τ2j |
︸ ︷︷ ︸

I

+ |ηTj X−j(γ̂j − γ0j )/n|
︸ ︷︷ ︸

II

+ |ηTj X−jγ
0
j /n|

︸ ︷︷ ︸

III

+ |(γ0j )TXT
−jX−j(γ̂j − γ0j )/n|

︸ ︷︷ ︸

IV

.

Now, since we assume fourth moments of the errors,

I = OP(K
2
0n

−1/2).

Moreover,

II = OP(K0

√

log(p)/n)‖γ̂j − γ0j ‖1 = OP(K
2
0sj log(p)/n).

As for III, we have

III = OP(K0

√

log(p)/n)‖γ0j ‖1 = OP(K0

√

sj log(p)/n)

since ‖γ0j ‖1 ≤
√
sj‖γ0j ‖2 = O(

√
sj). Finally by the KKT conditions

‖XT
−jX−j(γ̂j − γ0j )‖∞ = OP(K0

√

log(p)/n),

and hence

IV = OP(K0

√

log(p)/n)‖γ0j ‖1 = OP(K0

√

sj log(p)/n).

So now we have shown that

|τ̂2j − τ2j | = OP(K0

√

sj log(p)/n).

Since 1/τ2j = O(1), this implies that also

1/τ̂2j − 1/τ2j = OP(K0

√

sj log(p)/n).

We conclude that

‖Θ̂j −Θ0
j‖1 = ‖Ĉj/τ̂

2
j − C0

j /τ
2
j ‖1 ≤ ‖γ̂j − γ0j ‖1/τ̂2j

︸ ︷︷ ︸

i

+ ‖γ0j ‖1(1/τ̂2j − 1/τ2j )
︸ ︷︷ ︸

ii

,
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where
i = OP(K0sj

√

log(p)/n)

since τ̂2j is a consistent estimator of τ2j and 1/τ2j = O(1), and also

ii = OP(K0sj
√

log(p)/n),

since ‖γ0j ‖1 = O(
√
sj).

Recall that

‖γ̂j − γ0j ‖2 = OP(K0

√

sj log(p)/n).

But then

‖Θ̂j −Θ0
j‖2 ≤ ‖γ̂j − γ0j ‖2/τ̂2j + ‖γ0j ‖2(1/τ̂2j − 1/τ2j )

= OP(K0

√

sj log(p)/n).

For the last part, we write

Θ̂T
j Σ

0Θ̂j−Θjj = (Θ̂j−Θ0
j)

TΣ0(Θ̂j−Θ0
j)+2(Θ0

j )
TΣ0(Θ̂j−Θ0

j)+(Θ0
j )

TΣ0Θ0
j−Θjj

= (Θ̂j −Θ0
j)

TΣ0(Θ̂j −Θ0
j) + 2(1/τ̂2j − 1/τ2j ),

since (Θ0
j )

TΣ0 = eTj , (Θ
0
j )

TΣ0Θ0
j = Θjj, Θ̂jj = 1/τ̂2j , and Θjj = 1/τ2j . But

(Θ̂j −Θ0
j)

TΣ0(Θ̂j −Θ0
j ) ≤ ‖Σ0‖∞‖Θ̂j −Θ0

j‖1.

We may also use

(Θ̂j −Θ0
j)

TΣ0(Θ̂j −Θ0
j) ≤ Λ2

max‖Θ̂j −Θ0
j‖22.

✷

5.7. Proof of Theorem 3.1. Note that

ρ̇(y, xiβ̂) = ρ̇(y, xiβ
0) + ρ̈(y, ãi)xi(β̂ − β0),

where ãi is a point intermediating xiβ̂ and xiβ
0, so that |ãi−xiβ̂| ≤ |xi(β̂−

β0)|.
We find by the Lipschitz condition on ρ̈ (Condition )

|ρ̈(y, ãi)xi(β̂ − β0)− ρ̈(y, xiβ̂)xi(β̂ − β0)|
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= |ãi − xiβ̂||xi(β̂ − β0)||xi(β̂ − β0)|2.
Thus, using that by Condition (C5) |xiΘ̂j| = OP(K) uniformly in i,

Θ̂T
j Pnρ̇β̂ = Θ̂T

j Pnρ̇β0 + Θ̂jPnρ̈β̂(β̂ − β0) + Rem1,

where

Rem1 = OP(K)
n∑

i=1

|xi(β̂ − β0)|2/n = O(K)‖X(β̂ − β0)‖2n

= OP(Ks0λ
2) = oP(1)

where we used Condition (C2) and in the last step Condition (C8).

We know that by Condition (C4)

‖Θ̂T
j Pnρ̈β̂ − eTj ‖∞ = O(λ∗).

It follows that

bj − β0
j = β̂j − β0

j − Θ̂T
j Pnρ̇β̂

= β̂j − β0
j − Θ̂T

j Pnρ̇β0 − Θ̂T
j Pnρ̈β̂(β̂ − β0)− Rem1

= Θ̂T
j Pnρ̇β0 − (Θ̂T

j Pnρ̈β̂ − eTj )(β̂ − β0)− Rem1 = Θ̂T
j Pnρ̇β0 − Rem2,

where

|Rem2| ≤ |Rem1|+O(λ∗)‖β̂ − β0‖1 = oP(n
−1/2) +OP(s0λλ∗) = oP(n

−1/2)

since by Condition (C2) ‖β̂ − β0‖1 = OP(λs0), and by the second part of
Condition (C8) also λ∗λs0 = o(n−1/2).

We now have to show that our estimator of the variance is consistent. We
find

|(Θ̂P ρ̇β0 ρ̇Tβ0Θ̂
T )jj − (Θ̂Pnρ̇β̂ ρ̇

T
β̂
Θ̂T )jj|

≤ |(Θ̂(Pn − P )ρ̇β0 ρ̇Tβ0Θ̂
T )jj |

︸ ︷︷ ︸

I

+ |(Θ̂P ρ̇β0 ρ̇Tβ0Θ̂
T )jj − (Θ̂P ρ̇β̂ ρ̇

T
β̂
Θ̂T )jj|

︸ ︷︷ ︸

II

.

But, writing εk,l := (Pn − P )ρ̇k,β0 ρ̇l,β0 , we see that

I = |Θ̂(Pn−P )ρ̇β0 ρ̇Tβ0Θ̂
T )jj| = |

∑

k,l

Θ̂j,kΘ̂j,lεk,l| ≤ ‖Θ̂j‖21‖ε‖∞ = OP(s∗K
2λ),
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where we used Conditions (C5) and (C6).

Next, we will handle II. We have

ρ̇β̂(y, x)ρ̇
T
β̂
(y, x)−ρ̇β̂(y, x)ρ̇Tβ̂ (y, x) = [ρ̇2(y−xβ̂)−ρ̇2(y−xβ0)]xTx := w(y, x)xTx,

with

|w(y, x)| := |ρ̇2(y − xβ̂)− ρ̇2(y − xβ0)| = OP(1)|x(β̂ − β0)|,

where we use that ρ̈ is locally bounded (Condition (C1)). It follows from
Condition (C2) that

P |w| ≤
√

P |w|2 = O(λ√s0).

Moreover by Condition (C5)

‖Θ̂T
j x

T ‖∞ = OP(K)

so that
|(Θ̂w(x, y)xTxΘ̂T )jj| ≤ O(K2)|w(y, x)|.

Thus
|(Θ̂P ρ̇β0 ρ̇Tβ0Θ̂

T )jj − (Θ̂P ρ̇β̂ ρ̇
T
β̂
Θ̂T )jj| = OP(K

2√s0λ).

It follows that

I + II = OP(K
2s∗λ) +OP(K

2√s0λ) = oP(1)

by the last part of Condition (C8). ✷
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[24] N. Meinshausen, L. Meier, and P. Bühlmann. P-values for high-dimensional regres-

sion. Journal of the American Statistical Association, 104:1671–1681, 2009.
[25] S.N. Negahban, P. Ravikumar, M.J. Wainwright, and B. Yu. A unified framework for

high-dimensional analysis of m-estimators with decomposable regularizers. Statistical
Science, 27:538–557, 2012.

[26] G. Raskutti, M.J. Wainwright, and B. Yu. Restricted eigenvalue properties for corre-
lated Gaussian designs. Journal of Machine Learning Research, 11:2241–2259, 2010.

[27] R.D. Shah and R.J. Samworth. Variable selection with error control: another look at
Stability Selection. Journal of the Royal Statistical Society Series B, 75:55–80, 2013.

[28] T. Sun and C.-H. Zhang. Scaled sparse linear regression. Biometrika, 99:879–898,
2012.

[29] R. Tibshirani. Regression shrinkage and selection via the Lasso. Journal of the Royal

Statistical Society Series B, 58:267–288, 1996.
[30] S. van de Geer. The deterministic Lasso. In JSM proceedings, 2007, 140. American

Statistical Association, 2007.
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6. Supplemental Section.

6.1. Proofs for results in Section 2.3.3.

6.1.1. Proof of Theorem 2.3. Arguing as in the beginning of Section 2.3.3,
we consider the submodel parameterized by β1 only and in which the mean
of Y is shifted by β1

(
X1−E[X1|Z]

)
. In this submodel, the efficient estimator

is asymptotically normal with variance σ2
ε/Var(X1−E[X1|Z]

)
. Now, Corol-

lary 2.1, ensures that b̂Lasso,j is asymptotically normal with mean σ2
εΩn,jj.

However, by (14) and Corollary 2.1, Ωn,jj → Var(X1−E[X1|Z]
)
. Moreover,

by Corollary 2.1 again, the convergence is uniform and hence regularity for
one-dimensional submodels follows.

6.1.2. Proof that model (15) satisfies (14) and conditions of Theorem 2.2.
We use Z = (Xj)

∞
j=2 and K(Z) =

∑p
j=2 β

0
jXj . The parameter βn equals

βn = α(pn, β
0, P 0

X) = argminαE[(Y −
pn∑

j=1

αjXj)
2].

Since β0 ∈ B has finite support S(β0), there exists n(β0) such that

βn
j = α(pn, β

0, P 0
X)j = β0

j ∀j = 1, . . . , pn ∀n ≥ n(β0).

In fact, we can choose n(β0) = min{n; {1, . . . , pn} ⊇ S(β0)}. This implies
the first condition in (14), namely that K(Z) − ∑pn

j=1 β
n
j Xj = 0 for all

n ≥ n(β0).
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Using γn = argminκE[(X1 −
∑pn

j=2 κjXj)
2] and the fact that E[X1|Z] =

∑∞
j=2 γ

0
jXj where γ0 = γ(P 0

X) has finite sparsity, we can use exactly the
same argument as above to conclude that the second condition in (14) holds,
namely E[X1|Z] −∑pn

j=1 γ
n
j Xj = 0 for all n greater than some n(γ0). The

last condition in (14) follows then as well.

Finally, since β0 and also γ0 have finite sparsity, the projected parameters
βn and γn have finite sparsity as well (because the projected are equal to
the non-projected values for n sufficiently large). Hence, the conditions of
Theorem 2.2 hold. ✷

6.2. Proofs for results in Section 3.3.

6.2.1. Proof of Theorem 3.2. We can write

Xβ0,j = Xβ0,−jγ
0
β0,j + ηβ0,j.

Hence
Xβ̂,j = Xβ̂,−jγ

0
β0,j +Wβ̂W

−1
β0 ηβ0,j.

By definition

γ̂β̂,j = argmin
γ

{

‖Xβ̂,j −Xβ̂,−jγ‖2n + λj‖γ‖1
}

.

This implies

‖Xβ̂,−j(γ̂β̂,j − γβ0,j)‖2n + λj‖γ̂β̂,1‖1
≤ 2(Wβ̂W

−1
β0 ηβ0,j,Xβ̂,−j(γ̂β̂,j − γ0β0,j))n + λj‖γ0β0,j‖1.

But by the Cauchy-Schwarz inequality
∣
∣
∣
∣
(Wβ̂W

−1
β0 ηβ0,j ,Xβ̂,−j(γ̂β̂,j − γ0β0,j))n − (ηβ0,j,Xβ0,−j(γ̂β̂,j − γ0β0,j))n

∣
∣
∣
∣

≤ ‖(W 2
β̂
W−2

β0 − I)ηβ0,j‖n‖Xβ0,−j(γ̂β̂,j − γ0β0,j)‖n.

Since
‖ηβ0,j‖∞ ≤ ‖Xβ0,j‖∞ + ‖Xβ0,−jγ

0
β0,j‖∞ = O(K),

we get

‖(W 2
β̂
W−2

β0 − I)ηβ0,j‖2n =
1

n

n∑

i=1

( ŵ2
i,β̂
− w2

i,β0

w2
i,β0

)2

O(K2)

= O(K2)‖X(β̂ − β0)‖2n = OP(K
2λ2s0),
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where in the last step, we used the third (Lipschitz) part of the conditions on
the weights, as well as the conditions on the rate of convergence of ‖X(β̂ −
β0)‖2n. Now, for arbitrary δ > 0 we have

2ab ≤ δa2 + b2/δ.

Hence, we get for arbitrary 0 < δ < 1

(1− δ)‖Xβ̂,−j(γ̂β̂,j − γβ0,j)‖2n + λj‖γ̂β̂,1‖1
≤ 2(ηβ0,j ,Xβ0,−j(γ̂β̂,j − γ0β0,j))n + λj‖γ0β0,j‖1 +OP(K

2λ2s0).

Here, we invoked that ‖Xβ0(β̂−β0)‖2n = OP‖Xβ̂(β̂−β0)‖n since the weights
stay away from zero and infinity.

This implies by the same arguments as in Theorem 2.4

‖γ̂β̂,j − γβ0,j‖1 = OP(K
2sj
√

log(p)/n) +OP(K
2λ2s0/λj)

and

‖γ̂β̂,j − γβ0,j‖2 = OP(K
√

sj log(p)/n) +OP(Kλ
√
s0).

Indeed, it is easy to see that it the compatibility condition holds with Σβ0

since it is non-singular with smallest eigenvalue staying away from zero.
Since K2sj

√

log(p)/n = o(1), the compatibility also holds for Σ̂β0 with a

slightly smaller compatibility constant. But then it also holds for Σ̂β̂ because
the weights stay away from zero and infinity. This argument can then used
as well to obtain the rate in ℓ2, as in Theorem 2.4. Next, by definition

τ̂2
β̂,j

:= XT
β̂,j

(Xβ̂,j −Xβ̂,−j γ̂β̂,j)/n.

Insert
Xβ̂,j = Wβ̂W

−1
β0 (Xβ0,−jγ

0
β0,j + ηβ0,j)

and
(Xβ̂,j −Xβ̂,−j γ̂β̂,j) = Wβ̂W

−1
β0 (ηβ0,j +Xβ0,j(γ̂β̂,j − γ0β0,j)).

We then get
τ̂2
β̂,j
− τ2β0,j = (i) + (ii),

where

(i) := XT
β0,j(Xβ0,j −Xβ0,−j γ̂β̂,j)− τ2β0,j/n,

(ii) := XT
β0,j

(

W 2
β̂
W−2

β0 − I

)

(Xβ0,j −Xβ0,−j γ̂β̂,j)/n.
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We can treat (i) in the same way as in Theorem 2.4 to find

(i) = OP(K
√

sj log(p)/n).

As for (ii), since ‖Xβ0,j‖∞ = O(K) and

‖Xβ0,−j γ̂β̂,j‖∞ ≤ ‖Xβ0,−jγ
0
β0,j‖∞ +O(K)‖γ̂β̂,j − γ0β0,j‖1 = OP(K)

we get

(ii) = OP(K
2)

n∑

i=1

∣
∣
∣
∣

w2
i,β̂
− w2

i,β0

w2
i,β0

∣
∣
∣
∣
= OP(K

2√s0λ).

So we arrive at

|τ̂2
β̂,j
− τ2β0,j| = OP(K

√

sj log(p)/n) +OP(K
2√s0λ).

The rest of the proof goes along the lines of the proof of Theorem 2.4. ✷

The last result of Theorem 3.2 is actually a direct corollary of the following
simple lemma.

Lemma 6.1. Let A be a symmetric (p × p)-matrix with largest eigenvalue
Λ2
A and v̂ and v ∈ R

p. Then

|v̂TAv̂ − vTAv| ≤
(

‖A‖∞‖v̂ − v‖21
)

∧
(

Λ2
A‖v̂ − v‖22

)

+ 2

(

‖Av‖∞‖v̂ − v‖1
)

∧
(

‖Av‖2‖v̂ − v‖2
)

.

Proof. It is clear that

v̂TAv̂ − vTAv = (v̂ − v)TA(v̂ − v) + 2vTA(v̂ − v).

The result follows therefore from

|(v̂ − v)TA(v̂ − v)| ≤
(

‖A‖∞‖v̂ − v‖21
)

∧
(

Λ2
A‖v̂ − v‖22

)

,

|vTA(v̂ − v)| ≤ ‖Av‖∞‖v̂ − v‖1

and
|vTA(v̂ − v)| ≤ ‖Av‖2‖v̂ − v‖2.

✷
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6.2.2. Proof of Lemma 3.1. It holds that

|(Θ̂β̂,j −Θβ0,j)
T

n∑

i=1

xTi ξi/n| ≤ ‖
n∑

i=1

ξixi‖∞‖Θ̂β̂,j −Θβ0,j‖1/n

= OP(
√

log(p)/n)‖Θ̂β̂,j −Θβ0,j‖1 = oP(n
−1/2)

by Corollary 3.1. For the second result, we use Lemma 6.1. We get

|Θ̂T
β̂,j

AΘ̂j−(Θβ0,j)
TAΘβ0,j| ≤ ‖A‖∞oP(1/ log(p))+‖AΘβ0,j‖∞oP(1/

√

log(p)) = oP(1).

We thus have that

Θ̂T
β̂,j

∑n
i=1 x

T
i ξi/
√
n

√

Θ̂T
β̂,j

AΘ̂β̂,j

=
(Θβ0,j)

T
∑n

i=1 x
T
i ξi/
√
n

√

(Θβ0,j)
TAΘ0

j

+ oP(1).

The random variables (Θβ0,j)
TxTi ξi are bounded, since |ξi| ≤ 1 and |xiΘβ0,j| =

O(1), and the xTi ξi’s are i.i.d.: thus, the Lindeberg condition is fulfilled and
the asymptotic normality follows from this. ✷
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