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Software

Matlab code performing most of the mathematical calculations and simulations used in the paper is

available as part of ”heritability calculator” package http://www.broadinstitute.org/mpg/hc.

A separate software package for simulations of demographic model was written by Stephen Schaffner

(sfs@broadinstitute.org).

1 Allele Frequency Distribution for Different Populations: Theory

In this section we show how to compute allele frequency distribution of a class C of alleles, having

a known selection coefficient s. Throughout the paper, we assume that the dynamics of allele

frequencies throughout human demographic history follow a generalized Wright-Fisher model [1, 2].

1.1 Generalized Wright-Fisher Model

We assume a generalized Wright-Fisher model incorporating mutation, selection, and changes in

population size throughout history; see for example [3]. (Other aspects such as migration and

admixture are ignored for simplicity). We consider a target region, which we can imagine to be

the coding region of a gene; however, the analysis could apply equally to other targets (such as a

set of coding regions, or an extended genomic region). Within the region, each nucleotide (site) is

assumed to have two possible alleles: the ancestral allele and the derived allele.

1.1.1 Model Parameters

We consider a class C of alleles that are functionally and selectively equivalent. (for example,

disruptive alleles; silent alleles; or missense alleles that abolish gene function). Our model has the

following parameters,

1. Target size: L denotes the length of the target (measured in nucleotides).

2. Mutation rate: µC,nc denotes the rate per-generation per-nucleotide at which new derived

alleles in class C arise. µC denotes the rate for the entire target (for example, all mutation in

a certain class in a gene), given by µC = LµC,nc.

3. Selection coefficient: s denotes the selection coefficient for derived alleles in C. The selection

coefficient s is defined as the relative reduction in the expected number of offspring for carriers

of the allele compared to non-carriers. An allele with frequency ft in one generation has

expected frequency ft+1 = (1−s)f
1−fs in the next generation. Given that the individual allele

frequencies under consideration are tiny, ft+1 ≈ (1 − s)ft. (Simulations (see Section 1.3.2)

performed with the exact or approximate formula yield essentially indistinguishable results).
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We assume an additive model for fitness in which selection on an allele does not depend on

the genetic background (that is, the value of other alleles).

4. Population size: N (k) denotes the population size at generation k, where k ranges from 1 to

the total number of generations, K, under consideration. For the special case of population

at equilibrium, we denote the effective population size by N or Neq.

5. Re-scaled selection coefficient: S = 4Ns denotes the selection coefficient re-scaled by the

population size, where N is the population size at a given time.

1.1.2 Stochastic Process Formulation

We next formulate the generalized Wright-Fisher model as a discrete-time discrete-space stochastic

process. We can formulate the process in terms of allele frequencies: we denote the derived allele

frequency of a polymorphic allele in the population by f . More specifically, we define f
(k)
i the allele

frequency of the i-th allele at generation k (i = 1, .., L). Similarly, we denote X
(k)
i the number of

carriers of the i-th derived allele at generation k. Both f
(k)
i and X

(k)
i are random variables, whose

distributions are given by the following generative process,

1. Initialize X
(0)
i = f

(0)
i = 0 for i = 1, .., L - all sites are assumed to carry the ancestral allele.

2. For k = 1 to K,

(a) Draw X
(k+1)
i according to a binomial distribution,

X
(k+1)
i ∼ Binomial

(
2N (k+1), f

(k)
i

1− si
1− fsi

)
. (1.1)

(b) Set f
(k+1)
i =

X
(k+1)
i

2N(k+1) + µC,nc to account for mutations.

We are interested in several properties of the allele frequency distribution as a function of the

parameters of the model defined above.

1. Time spent at each frequency: Each newly born allele spends a certain amount of time (number

of generations) in a polymorphic state at each given frequency 0 < f < 1 until it is either

fixed or becomes extinct. We denote by ts(f) the density of the mean time the allele spends

in a polymorphic state at frequency f . That is, the number of generations spent between

frequencies f and ∆f is
∫ f+∆f
f ts(f

′)df ′.

2. Total time spent at polymorphic state: Each newly born allele spends a certain amount of

time (number of generations) in a polymorphic state until it is either fixed or becomes extinct.

We denote by ts the mean time the allele spends in a polymorphic state.

3. Probability density function: We denote the allele frequency probability density function by

ψs, where we sample alleles with probability proportional to their derived allele frequencies

fi. That is, we consider the distribution of allele frequencies obtained when sampling a
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random individual from the population, and then sampling a random derived allele from this

individual, and denote ψs(f) the density obtained for this distribution.

4. Cumulative distribution function: We denote the cumulative probability function for allele

frequencies by Ψs. Here we sample alleles with probability proportional to their derived allele

frequencies fi as above.

5. Age distribution of alleles: We denote by As(k) the probability that a randomly sampled

alleles on a randomly sampled chromosome from the population is of age k, i.e. was born k

generations ago.

The model parameters µC , s and N (k) determine all quantities of interest above.

For population at equilibrium, Kimura solved the Wright-Fisher process analytically in the limit of

large population size N , by using a diffusion approximation; see for example [3–6]. In Section 1.2, we

use these solutions to give analytic formulas for the above quantities for a population at equilibrium.

For general demographies, there is no known closed form solution, although some partial results

and special cases are known (for example [7–9]), and one needs to resort to numerical calculations.

In Section 1.3, we compute the quantities above by using simulations for various demographies.

1.2 Allele Frequency Distribution at Equilibrium: Analytical Formulas

In this section we compute parameters of interest for a single allele using a diffusion approximation

for large N . We assume throughout the generalized Wright-Fisher model from eqs. (2). Kimura

and Crow [6] expressed the expected time a newly born allele spends at allele frequency f as,

ts(f) =
2[1− e−S(1−f)]

f(1− f)(1− e−S)
. (1.2)

This is the density distribution of expected number of generations spent at frequency f (such

that the number of generations spent between frequency f and f + ∆f is the integral of ts(f) in

this range). From ts(f) we can compute all parameters of interest for the model using standard

integrations and asymptotic expansions.

For example, we define the mean total weighted frequency Ts that a newly born allele accumulates

throughout its life in a polymorphic state, until it is either lost or fixed in the population. The

units of Ts are (frequency × generations). For example, for an allele which survive on average

three generation as a singleton and two generation as a doubleton on average we will have Ts =

3× 1
2N + 2× 2

2N = 7
2N . We have the following for the mean total weighted frequency Ts,

Proposition 1 The total weighted frequency a newly born allele accumulates throughout its life

time, until it dies, is given by, (in units of frequency × generations) is
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Ts ≡
∫ 1

0
fts(f)df =

2[log(−S) + γ − Ei(−S)]

1− e−S (1.3)

where γ is Euler’s constant (γ ∼0.5772), and Ei is the exponential integral function, defined as,

Ei(f) ≡
∫ f

−∞

ex

x
dx. (1.4)

Proof 1 Using the definition of Ts, we integrate to get

Ts =

∫ 1

0
fts(f)df

=
2

1− e−S
∫ 1

0

1− e−S(1−f)

(1− f)
df

=
2

1− e−S
∣∣∣− log(1− f) + eSEi(S(f − 1))

∣∣∣1
f=0

=
2

1− e−S
[

lim
x→0

(
− log(x) + eSEi(S(−x))

)
− eSEi(−S)

]
=

2[log(−S) + γ − Ei(−S)]

1− e−S . (1.5)

where here and throughout, we use the following asymptotic expansions for Ei(x) in different

regimes,

Ei(x) ∼ log(x) + γ + x, x→ 0

Ei(x) ∼ ex

x
(1 +

1

x
+

2

x2
), x→ ±∞ (1.6)

Proposition 2 For a class C of alleles with total mutation rate µC , the Combined Allele Frequency

(CAF) at equilibrium is

fC = 2NµCTs =
4NµC [log(−S)− Ei(−S) + γ]

1− e−S . (1.7)

In addition, we have the following asymptotic approximations for weak selection (nearly-neutral

alleles, S → 0) and very strong selection (S →∞),

fC ≈
{

4NµC S � 1
µC
s S � 1

(1.8)

10



Proof 2 The combined allele frequency is given by multiplying the population mutation rate per

generation, 2NµC , by the total time spent in polymorphic state for a given allele, TS, giving fC =

[2NµC ]TS. Plugging into eq. (1.3) gives the formula for fC .

For the asymptotic relations, we have,

lim
S→0

fC = 4NµC lim
S→0

log(−S) + γ − Ei(−S)

1− e−S

= 4NµC lim
S→0

log(−S) + γ − [log(−S) + γ − S]

S

= 4NµC . (1.9)

lim
S→∞

fC = 4NµC lim
S→∞

log(−S) + γ − Ei(−S)

1− e−S

= 4NµC lim
S→∞

−e−S/S
−e−S =

4NµC
4Ns

=
µC
s
. (1.10)

For strong selection, the above relation fC ≈ µC
s can also be obtained by considering mutation-

selection balance, as observed early on by Fisher [1] and Haldane [10].

1.2.1 Individual Allele Frequency Distribution

We compute here the distribution of individual allele frequencies at equilibrium - recall that we use

weighted sampling, where individual alleles are sampled with weight proportional to their frequency

(alternatively, this is the distribution obtained when sampling a random chromosome in the popu-

lation, sampling a random derived allele from this chromosome, and observing the frequency of this

allele). The individual allele frequency distribution is given by the following proposition (the proof

is given by simple integration),

Proposition 3 For a population at equilibrium, at the large N limit, we have,

1. The probability density function is

ψs(f) =
fts(f)∫ 1

0 xts(x)dx
=

1− e−S(1−f)

(1− f)[γ − Ei(−S) + log(−S)]
. (1.11)

2. The cumulative distribution function is,

Ψs(f) =

∫ f

0
ψs(x)dx =

Ei
(
S(f − 1)

)
− log(1− f)− Ei(−S) + log(−S)

γ + log(−S)− Ei(−S)
. (1.12)
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Proof 3 1. By definition, and plugging in eqs. (1.2, 1.3),

ψs(f) =
fts(f)∫ 1

0 xts(x)dx

=
1− e−S(1−f)

(1− f)(1− e−S)

/
log(−S) + γ − Ei(−S)

1− e−S

=
1− e−S(1−f)

(1− f)[γ − Ei(−S) + log(−S)]
. (1.13)

2. Integrating, we get

Ψs(f) =

∫ f

0
ψs(x)dx

=
1

γ − Ei(−S) + log(−S)

∫ f

0

1− e−S(1−x)

1− x

=
1

γ − Ei(−S) + log(−S)

[
− log(1− x) + eSEi(S(x− 1))

]f
x=0

=
Ei(S(f − 1))− log(1− f)− Ei(−S) + log(−S)

γ + log(−S)− Ei(−S)
. (1.14)

1.3 Allele Frequency Distribution for Different Populations: Simulations

The human population is not at equilibrium, but has changed in size. Recent human evolution has

seen an exponential explosion in population size [11]. In addition, migration events, such as the

out-of-Africa event [12] or the peopling of isolated regions such as Iceland [13] and Finland [14],

have created population bottlenecks. We study several simple demographic models that capture key

features of population expansion and bottlenecks. For each model, we used simulations to compute

the resulting allele frequency distribution and the parameters of interest.

1.3.1 Description of Demographic Models

We considered six models:

1. Equilibrium: The ancestral human population, assumed to have constant population size.

2. Expansion1: simple exponential expansion

3. Expansion2: two-phase exponential expansion, incorporating a recent period of more rapid

growth (as suggested by recent human genetic data).

4. Europe: a model of the peopling of Europe, with a bottleneck roughly 1280 generations ago.
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5. Finland: a model of the peopling of Finland, with a severe bottleneck roughly 100 generations

ago

6. Iceland: a model of the peopling of Finland, with a severe bottleneck roughly 50 generations

ago

All models have an exponential expansion stage, which corresponds to recent expansion in human

populations. Some of the models contain bottleneck stages.

The parameters describing the models are as follows,

1. ε1 - the relative increase in population size, per generation, first stage.

2. k1 - the number of generations in the first stage.

3. Ne(B) - the population size (number of individuals) surviving the first bottleneck.

4. ε2 - the relative increase in population size, per generation, second stage.

5. k2 - number of generation in second stage, after the population bottleneck.

The parameters used for different models are shown in Table S1.

Model ε1 k1 Ne(B) ε2 k2 Ne(final)

Equilibrium 0.0% 0 - 0.0% 0 10, 000

Expnasion1 0.462% 1000 - 0.0% 0 1, 000, 000

Expansion2 0.197% 1230 - 9.4% 50 10, 000, 000

Europe(∗) 0.396% 1230 775 9.4% 50 9, 000, 000

Finland 0.462% 900 50 12.2% 100 5, 000, 000

Iceland 0.462% 950 500 13.2% 50 250, 000

Table 1: Parameters for different demographic models. We also display the resulting final population

size. (*) For Europe, we assume an ancient bottleneck, before the two expansion periods. For Iceland

and Finland we assume a recent bottleneck, between the two expansion periods. For Europe we

stopped the simulation ∼ 50 generations ago at a population of ∼ 9 millions for computational

reasons. The last few generations which have a huge population size and are expected to produce

only alleles with tiny frequencies. Since our results all depend on the weighted allele frequency

distributions, ignoring these generations should not alter our results significantly.

1.3.2 Description of Simulations

We initialized the population size of all models to Neq = 10, 000, and run at this constant pop-

ulation size for a ”burn-in period” of kB = 20Neq = 200, 000 simulations, to reach equilibrium.

The mutation rate (per-chromosome per-generation) was set to µD = 1.7 × 10−6. We varied
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the selection coefficient on a logarithmic scale with increments of 0.1 in the exponent, getting

s = 10−1, 10−1.1, 10−1.2, ..., 10−4.9, 10−5, and in addition we used s = 0 representing neutral alleles.

For each selection coefficient and population, we performed I = 50, 000 independent simulations

(representing histories for 50, 000 equivalent genes).

The simulations roughly followed the stochastic process described in Section 1.1.2. Specifically, we

describe the Monte-Carlo simulation algorithm we used in Box 1. The values we used for all other

parameters not described above are given in Table S1.
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Box 1: Algorithm for Simulating Allele Frequency Distribution

Input Parameters:

Neq - Initial population size at equilibrium

s - selection coefficient

µC - mutation rate

ε1, ε2, k1, k2, Ne(B) - demographic parameters (see Table S1)

kB - ’burn-in’ parameter (number of generations run at ancestral population at equilibrium)

I - number of iterations to simulate

Output:

f̂C - Mean Combined allele frequency

Ψ̂s(f) - Cumulative individual allele frequency distribution

ψ̂s(f) - Density of individual allele frequency distribution

Â(k) - Age probability distribution

Steps:

1. Repeat I times, for i = 1 to I,

(a) Initialize ni, the counter of the number of derived alleles: set ni = 0.

(b) Set K = kB + k1 + k2, the total number of generations to simulate.

(c) For k = 1 to K,

i. Set population size for next generation,

N (k+1) =



N k < kB

Ne(B) k = kB ((∗) only for Europe)

bN (k)(1 + ε1)c kB < k < kB + k1

Ne(B) k = kB + k1 (only for Iceland and Finland)

bN (k)(1 + ε2)c kB + k1 < k

(1.15)

ii. For j = 1 to ni (all existing derived alleles)

A. Draw X
(k+1)
ij according to a binomial distribution,

X
(k+1)
ij ∼ Binomial

(
2N (k+1), fij(1− si)

)

B. Update the frequency: set fij =
X

(k+1)
ij

2N(k+1)

iii. A. Draw nnew ∼ Binomial(2N (k+1), µC), the number of newly born alleles.
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B. Set singleton frequency for newly born alleles fij = 1
2N(k+1) for j = ni +

1, .., ni + nnew.

C. Record the generation at which each new allele is born, aij = k.

D. Update number of polymorphic alleles: set ni = ni + nnew.

(d) Record final individual allele frequencies, fij for all i = 1, .., I and j = 1, .., ni.

2. Compute empirical summary statistics from final outputs:

(a) Combined allele frequency

f̂C =
1

I

I∑
i=1

ni∑
j=1

fij (1.16)

(b) Cumulative individual allele frequency

Ψ̂s(f) =
1

If̂C

I∑
i=1

ni∑
j=1

1{fij≤f}fij (1.17)

(c) Individual allele frequency density: Split the unit interval [0, 1] into bins B0 = 0 <

B1 < .. < BM = 1. Then, for f ∈ [Bi, Bi+1), we have,

ψ̂s(f) =
1

If̂C [Bi+1 −Bi]

I∑
i=1

ni∑
j=1

1{Bi≤fij<Bi+1}fij (1.18)

(d) Age distribution: (Âs(k) is the estimated probability of an allele to be born k gener-

ations before the end of the simulation)

Âs(k) =
1

If̂C

I∑
i=1

ni∑
j=1

1{aij=K−k}fij (1.19)
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2 Allele Frequency Distribution for Different Populations: Empir-

ical Results

We now turn from theory to simulated empirical results.

In section 1 we described the theory needed for computing the properties of a single allele in the

population. In practice, we want to use a heterogenous class of different alleles (namely, missense

alleles) having different selection coefficients, different effects on gene function and phenotype, etc.

To handle this heterogeneity, we propose a simple two-class model, described in the next section. We

then show results for allele frequency distribution under this model and for the different populations

describe in Section 1.3.

2.1 Two-Class Model

As described in the main text, we adopt a simple two-class model in which all alleles in a gene are

either neutral or null. Consider a gene G and a disease D. Given an allele in G, let sallele denote

the selection coefficient for the allele and let λalllele denote the excess relative risk for D conferred

by the allele.

1. Neutral alleles have no effect on selection or on the disease under study - that is sallele =

λallele = 0.

2. Null alleles abolish gene function. We have sallele = s and λalllele = λ, where s and λ are

constant for each gene.

Alleles in the coding region of a gene can be divided into three observable classes.

1. Silent alleles, which do not affect the amino-acid sequence. We assume that all silent alleles

are neutral.

2. Disruptive alleles, which produce nonsense, frameshift, and splice-site changes. We assume

that all disruptive alleles are null.

3. Missense alleles follow a two-class model. Each newly born missense allele is assumed to be

either null (with probability α) or neutral (with probability (1− α)).

In the main text, we primarily assume that α = 25%, which is the average value across genes [15].

However, the value of α appears to vary across genes. By comparing the deficit of missense alleles

relative to silent alleles in the NHLBI Exome Sequencing Project (http://evs.gs.washington.

edu/EVS), one can estimate values of α = 5% for BRCA2 and α = 50% for CHD8.

17

http://evs.gs.washington.edu/EVS
http://evs.gs.washington.edu/EVS


2.2 Combined Allele Frequencies

We computed the (expected) combined allele frequencies for the different populations, and for

different selection coefficients, as described in Section 1.3 and shown in Figure 1(a) in the main

text, reproduced here in Figure 1.

In Table S2 we give the computed values for selected values of s, showing that the CAF is very

similar for different populations, as previously observed [16].

s Equilibrium Expansion1 Expansion2 Europe Finland Iceland

0 0.0756 0.076 0.0762 0.0712 0.0708 0.0764

10−5 0.0681 0.0695 0.0683 0.0638 0.0625 0.0691

10−4.5 0.0533 0.0542 0.0542 0.0506 0.0511 0.0539

10−4 0.0236 0.0241 0.0234 0.0231 0.0221 0.0238

10−3.5 0.00561 0.00535 0.00516 0.00551 0.00497 0.00521

10−3 0.00148 0.00145 0.0014 0.00144 0.00137 0.00137

10−2.5 0.000485 0.000467 0.000446 0.000412 0.000469 0.000416

10−2 0.000111 0.000162 0.000193 0.000162 0.00017 0.000137

10−1.5 6.4e-005 8.24e-005 6.25e-005 7.37e-005 8.12e-005 8.01e-005

10−1 2.23e-005 1.77e-005 1.82e-005 1.71e-005 2.06e-005 1.78e-005

Table 2: Combined Allele Frequency for different populations. We assume a mutation rate of

µc = 1.7 × 10−6. The values are nearly identical for all models, and well approximated by the

equilibrium formula in eq. (1.7)

.
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Figure 1: The Combined Allele Frequencies for all populations. Each curve shows the CAF for a

different population.
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2.3 Individual Allele Frequencies

While the combined allele frequency is not sensitive to the demography, different populations show

substantial differences in the distribution of individual allele frequencies.

We first demonstrate this by showing the median of the individual allele frequency distribution.

Figure S2 shows the median of the individual allele frequency distribution Ψs(f) for different demo-

graphic models as a function of the selection coefficient s, and Table S3 shows the median IAF for

representative values of s. The figure shows very different behaviors for the different models. For

large populations with no severe bottlenecks (Expansion1, Expansion2 and Europe), the median

IAF is low. For populations with bottleneck (Finland and Iceland), the median IAF is much high,

because the (weighted) IAF distribution is dominated by alleles born before the bottleneck and

surviving the bottleneck, which therefore have high frequency. For a population at equilibrium, the

median IAF is also high, due to variations in genes.

For these three populations, and when selection is strong, the median IAF is even higher than the

CAF! for example, for s = 10−2 we have fnull ≈ 0.02% for all populations, but the median IAF

for Finland is ≈ 1.5%. At a first glance it seems impossible that the median IAF, representing

the frequency of one allele, exceeds the CAF, representing the combined frequency of all alleles

in a gene; but careful examination of the two quantities can explain this phenomena. Recall that

fnull is the expected CAF for a gene, and that the IAF distribution represents sampling a random

allele from all genes on a random chromosome in the population, and hence weights alleles by their

frequency. If the CAF was constant across genes - then indeed each individual allele frequency,

and in particular the median IAF, would have been lower. However, since there may be substantial

variation in the CAF for different genes, a sampled allele will be more likely to be sampled from

a gene with high CAF (possibly much higher than the expected CAF), and therefore might have

frequency far exceeding the expected CAF. The bottleneck and equilibrium populations show high

variation in the CAF, and therefore a high median IAF. We elaborate further on the consequences

of variation in CAF in Section S8.

Figure S3 shows the entire cumulative distribution Ψs(f) for different models and different values

of the selection coefficient s. Again, we see clear differences between the different populations.
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s Equilibrium Expansion1 Expansion2 Europe Finland Iceland

0 0.514 0.502 0.514 0.54 0.527 0.502

10−5 0.49 0.478 0.478 0.514 0.502 0.478

10−4.5 0.434 0.414 0.424 0.467 0.467 0.424

10−4 0.243 0.226 0.226 0.302 0.295 0.237

10−3.5 0.0707 0.0396 0.0396 0.109 0.118 0.048

10−3 0.0211 0.00108 0.00251 0.0113 0.0642 0.00973

10−2.5 0.006 9.36e-005 0.000346 0.000547 0.0377 0.00545

10−2 0.00175 2.3e-005 4.87e-005 4.53e-005 0.00223 0.0027

10−1.5 0.000648 6.54e-006 2.26e-006 3.32e-006 5.14e-006 0.000148

10−1 0.000252 2e-006 5.04e-007 5.04e-007 5.97e-007 1.2e-005

Table 3: Median Allele Frequency for different populations. Obtained with 50, 000 simulations

using µC = 1.7 × 10−6, where alleles are sampled with weights proportional to their frequency,

as described in Section 1.3. The values are sensitive to the demographic model, except perhaps

for neutral alleles. Populations encountering bottleneck, such as Iceland and Finland, exhibit much

higher allele frequencies, (yet fewer individual alleles), compared to populations with only expansion.
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Figure 2: Median Individual Allele Frequencies in Populations for all populations. Each curve shows

the median of the IAF distribution for a different population. Obtained with 50, 000 simulations

using µC = 1.7 × 10−6, where alleles are sampled with weights proportional to their frequency, as

described in Section 1.3.

22



10
−4

10
−3

10
−2

10
−1

10
0

0

0.2

0.4

0.6

0.8

1

Equilibrium

10
−4

10
−3

10
−2

10
−1

10
0

0

0.2

0.4

0.6

0.8

1

Equilibrium

10
−4

10
−3

10
−2

10
−1

10
0

0

0.2

0.4

0.6

0.8

1

P
ro

p
o

rt
io

n
 o

f 
a

ll
e

le
s
 b

e
lo

w
 f
, 
Ψ

s
(f

) Expansion1

10
−4

10
−3

10
−2

10
−1

10
0

0

0.2

0.4

0.6

0.8

1

P
ro

p
o

rt
io

n
 o

f 
a

ll
e

le
s
 b

e
lo

w
 f
, 
Ψ

s
(f

) Expansion1

10
−4

10
−3

10
−2

10
−1

10
0

0

0.2

0.4

0.6

0.8

1

Derived allele frequency f

Expansion2

10
−4

10
−3

10
−2

10
−1

10
0

0

0.2

0.4

0.6

0.8

1

Derived allele frequency f

Expansion2

10
−4

10
−3

10
−2

10
−1

10
0

0

0.2

0.4

0.6

0.8

1

Europe

10
−4

10
−3

10
−2

10
−1

10
0

0

0.2

0.4

0.6

0.8

1

Europe

10
−4

10
−3

10
−2

10
−1

10
0

0

0.2

0.4

0.6

0.8

1

P
ro

p
o

rt
io

n
 o

f 
a

ll
e

le
s
 b

e
lo

w
 f
, 
Ψ

s
(f

) Finland

10
−4

10
−3

10
−2

10
−1

10
0

0

0.2

0.4

0.6

0.8

1

P
ro

p
o

rt
io

n
 o

f 
a

ll
e

le
s
 b

e
lo

w
 f
, 
Ψ

s
(f

) Finland

10
−4

10
−3

10
−2

10
−1

10
0

0

0.2

0.4

0.6

0.8

1

Derived allele frequency f

Iceland

 

 

10
−4

10
−3

10
−2

10
−1

10
0

0

0.2

0.4

0.6

0.8

1

Derived allele frequency f

Iceland

s= 0

s=10−5

s=10−4.5

s=10−4

s=10−3.5

s=10−3

s=10−2.5

s=10−2

s=10−1.5

s=10−1

Figure 3: Cumulative Allele Frequencies in Populations for all populations. Each panel shows the

cumulative distribution for a different population.
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2.4 Age Distribution of Alleles

It has been recently suggested that the rapid expansion of the human population has led to a

dramatic increase in the role of recent variants in human disease [17]. We explored this suggestion

by using the simulations (described in the previous section) to study how the age distribution of

alleles is affected by population demography. Figure S4 shows the median age of an allele on a

randomly chosen chromosome in the population, as a function of the selection coefficient s, for the

six populations studied. Figure S5 shows the cumulative distribution of allelic age for the different

populations and for different selection coefficients. The figures show that the distribution of ages

of alleles is essentially insensitive to demography - similarly to the situation for the combined allele

frequency, and in contrast to the situation for the individual allele frequency distribution.

2.5 Proportion of Null Alleles among Missense Alleles

Missense alleles are the most challenging class to interpret, because they are a mixture of both

null and neutral alleles - with the proportion varying according to the allele frequency range under

consideration. Given (i) the IAF for both null and neutral alleles and (ii) the proportion of newly

born missense alleles that are null, we can calculate the proportion ρs(f) of missense alleles with

frequency below f that are null,

ρs(f) = ρs(f ;α) =
αΨs(f)fs

αΨs(f)fs + (1− α)Ψ0(f)f0
. (2.1)

The proportion is shown in Figure S6, for various populations and selective coefficients.
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Figure 4: The median age (number of generations) of an allele drawn from a random chromosome in

the population is shown as a function of the selection coefficient s. To generate this plot, alleles were

drawn with probability proportional to their frequency. When selection is strong, (s > 10−3), alleles

survive for a short time in the population, and the distribution is dominated by recent alleles (last

∼1000 generations). When selection in weak (s < 10−3), older alleles are more likely to survive and

alleles born more than 10000 generations ago may comprise the majority of the genetic variation.

For all values of s, the median age is very similar for the different populations, hence the effect of

demography on the allelic age distribution is minor.
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Figure 5: The cumulative age distribution (number of generations) for alleles drawn from a random

chromosome in the population is shown for different populations (different panels) and different se-

lection coefficients s (different colored curves). For strong selection, the distribution is concentrated

at recent alleles, and older alleles are likely to survive for weaker selection. The different cumulative

distirbutions are very similar for the different populations, showing that demography does not alter

significantly the allelic age distribution.
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Figure 6: Fraction of missense alleles with frequency less than f that are null, for various popu-

lations. Each panel shows the proportion of null alleles ρs(f) for a randomly sampled allele with

frequency ≤ f for a different population. We assume α = 0.25 - that is, 1
4 of newly born alleles are

null.
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2.6 Mutation Rates for Observable Classes

For protein-coding regions, three classes of mutations can be directly observed: silent (S), missense

(M) and disruptive (D, defined as nonsense, splice site and frameshift changes, which severely

disrupt protein structure).

For any human gene, we can obtain good estimates of the mutation rates for these observable

classes (S,M,D) based on (i) the length and sequence composition of the gene and (ii) the rate

and mutational spectrum for point mutations in the local region [18–21]. (The latter quantities

can be estimated from comparative genomics [18–21], medical genetics [22] or large-scale human

parent-offspring trio sequencing studies [23].)

We estimated mutation rates (S,M,D) by extending a model [24] that incorporates gene length,

sequence context and local variation in mutation rate (as inferred by fixed divergence between

human and macaque). Briefly, local sequence context was used to determine the probability of each

base in the coding region mutating to any each other possible base and determining the coding

impact of each possible mutation.

For power calculations, we focus on a ’typical’ human gene with a coding region of 1500 bases and a

median mutation rate. For this typical gene, the mutation rates for silent, missense and disruptive

mutations are 5.6× 10−6, 12.8× 10−6, and 1.7× 10−6 per chromosome per generation, respectively

(Table 1 in the main text).

In the main text, we cite specific mutation rates D for disruptive mutations in two genes:

• LDLR (coding region 2583 bases, including the stop codon) = 3.8× 10−6.

• CHD8 (coding region 7746 bases, including the stop codon) = 5× 10−6.

The rate for LDLR is slightly higher and for CHD8 considerably lower than expected by simply

adjusting for gene length, with the differences being due to sequence context (largely GC content).
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3 Calculating Sample Sizes required for RVAS

In order to understand the prospects of RVAS for identifying disease-associated loci, it is important

to study the detection power. Power calculations are also useful for guiding the design of RVAS

(e.g. what sample size should be used, what populations, what classes of alleles and tests to employ

etc.). We describe how to calculate the sample size for RVAS, using a burden test for a class C of

alleles. We start with the simple case of a ’pure’ class of alleles with identical effect size (such as

disruptive alleles). Then, we build on these sample size calculations to analyze the gains in power

achieved by different RVAS strategies.

3.1 Estimating Aggregate Effect Size

We consider a disease D with prevalence π in the population. We let f denote the cumulative allele

frequency of alleles in class C, and let 1 + λ denote the average relative risk conferred by alleles in

C. (We thus allow the possibility that C is a mixture of alleles with different properties). By Bayes’

formula, the probability that an individual carrying an allele in class C is affected is f(1 + λ).

Pr(XC = 1|Z = 1) =
Pr(Z = 1|XC = 1)Pr(XC = 1)

Pr(Z = 1)
=
fπ(1 + λ)

π
= f(1 + λ). (3.1)

where Z is an indicator variable for disease status (with 1 indicating that the individual is affected

and 0 indicating that the individual is not affected) and XC is an indicator variable for carrier

status for an allele in class C (with 1 indicating a carrier and 0 indicating a non-carrier).

Suppose that we gather data from n affected individuals (cases), and observe d total alleles of class

C. We can estimate the allele frequency in cases by, f̂cases = d
2n (where we divide by the total

number of chromosomes). From the above, we have E[f̂cases] = f(1 + λ).

3.1.1 Risk for Carriers of Multiple Allele

Our model assumes that a carrier of a null rare allele has risk π(1+λ), regardless of the number of null

alleles carried. We thus assume that individuals who are homozygous (or compound heterozygous)

for null alleles have the same disease risk as for heterozygotes. In fact, these individuals are likely to

have a greater disease risk. However, because the cumulative frequency of rare alleles is low (f � 1),

the frequency of these individuals is so small (on the order of f2) and their higher disease risk does

not significantly affect our calculations. We thus ignore any increased disease risk associated with

homozygosity (or compound heterozygosity) for null alleles.
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3.1.2 Protective Alleles

While the text typically speaks about null alleles increasing disease risk, our mathematical calcu-

lations apply equally well to alleles that decrease disease risk (that is, protective alleles) [25, 26].

In this case the parameter λ is simply negative, −1 ≤ λ < 0. For example, λ = −1 corresponds

to fully protective alleles (i.e. carriers are completely immune to the disease). As described in the

main text, detecting protective alleles requires larger sample sizes than detecting harmful alleles

(see Figure S8).

3.2 Calculating Sample Size when f is Already Known

We first suppose that f is already known to high precision - for example, from a large population

survey.

Suppose that we gather data on n cases, and observe d total alleles of class C. We model our

observations using a binomial distribution d ∼ Binomial(2n, fcases). We use the estimator for the

allele frequency in cases, f̂cases = d
2n , and perform a simple hypothesis test, with,

H0 : fcases = f ,

H1 : fcases > f (3.2)

We use the likelihood-ratio test statistic

2LLR(d, n; f) = 2[LL(d, n; f̂cases)− LL(d, n; f))]

= 2[d log
f̂cases
f

+ (2n− d) log
1− f̂cases

1− f ] (3.3)

where LL denotes the Log-Likelihood and LLR denotes the Log-Likelihood-Ratio. Under the null

hypothesis H0, the test statistic 2LLR has a χ2(1) distribution. Under the alternative H1, it has a

non-central χ2(1;NCP ) distribution, with the non-centrality parameter NCP ,

NCP = NCP (n, λ, f) = E[2LLR]

= n
[
(1 + λ)flog(1 + λ) + (1− (1 + λ)f)log

1− (1 + λ)f

1− f
]
. (3.4)

The power to detect an allele, when setting a significance threshold a (for example, a = 2.5× 10−6

to get 0.05 false-positives and account for testing 20,000 genes), is approximately

1− b = 1− b(n, λ) = 1− Fχ2

(
F−1
χ2 (1− a, 1), 1, NCP

)
(3.5)
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where b is defined as the false-negatives rate (type-2 error).

We checked that the above formula provides an excellent analytic approximation to power, by

comparing it to Fisher’s exact test (Figure S7). Similarly good approximations are obtained for the

other tests described in the next sections.
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Figure 7: Power to detect an association as function of sample size (x-axis, number of cases) and

effect size (different colored curves), comparing the analytic approximation from eq. (3.5) (solid

curves) and simulations using Fisher’s exact test (dashed curves). For each value of the sample

size (number of cases), we simulated 1000 different realization of cases and computed the empirical

power as the fraction of simulations in which the test statistics exceeded the threshold set by

the significance level α. (We assumed cumulative allele frequency f = 0.1%, significance level

α = 0.05/20, 000 and a disease prevalence of 5%.) Overall, there is a very good agreement between

the analytic approximation and empirical power, especially for small effect sizes and for intermediate

power (∼ 50%). For large effect sizes, the analytic approximation slightly under-estimates power

for high power (e.g. ∼90%), and slightly over-estimates power for low power (e.g. ∼10%).
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For given type-1 error a and type-2 error b, we introduce a specific value of a non-centrality param-

eter denoted by νa,b. We define νa,b to be the value such that if a test statistic has a non-central

χ2(1; νa,b) distribution under the alternative hypothesis H1, then testing under H0 using this test

statistic, assuming a χ2(1) distribution, and setting the significance level to a, would indeed give

power of 1− b. The specific value νa,b for given a and b is obtained by solving equation (3.5) above

for NCP . It depends only on the type-1 and type-2 errors. We can compute the required sample

size by matching this value to the NCP actually obtained in a given study for a given effect size

and sample size. Specifically, from eq. (3.4), the sample size is then simply given by,

na,b =
νa,b

4[(1 + λ)flog(1 + λ) + (1− (1 + λ)f)log 1−(1+λ)f
1−f ]

. (3.6)

When f is small, f � 1, we can approximate na,b by,

na,b ≈
νa,b

4f [(1 + λ) log(1 + λ)− λ]
=

νa,b
4fg(λ)

. (3.7)

where we define

g(λ) ≡ (1 + λ) log(1 + λ)− λ. (3.8)

Thus, the sample size (number of cases) is roughly inversely proportional to the combined allele

frequency f and the value of g(λ). The function g(λ) is plotted in Figure S8 for both harmful

(1 + λ > 1) and protective (1 + λ < 1) alleles.
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Figure 8: The function g(λ), representing power, which is proportional to the inverse sample size

as a function of λ, the effect size. g(λ) is shown on the y-axis, plotted against the relative disease

risk 1 + λ, shown on the x-axis for both harmful and protective alleles. In general, the function is

g(λ) is lower for protective alleles (1 + λ < 1) than for harmful alleles (1 + λ > 1), hence protective

alleles have lower detection power and will require larger sample sizes for detection. For example,

for a completely protective allele (λ = −1) we have g(−1) = g(e) = 1, for e ≈2.718, thus the power

to detect a completely protective allele is roughly equal to the power to detect a harmful allele with

a relative risk of ≈2.7.
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Under strong selection, we have f = µC
s from eq. (1.8). This gives,

na,b ≈
νa,bs

4µCg(λ)
. (3.9)

Thus, the sample size is (approximately) directly proportional to the selection coefficient.

When λ is relatively small, λ� 1, the above two formulas further simplify to,

na,b ≈
νa,b

2fλ2
≈ νa,bs

2µCλ2
. (3.10)

Thus, the sample size is proportional to 1
λ2

, which is the same as given by a simple z-score approx-

imation (see next). However, when λ is large, this z-score approximation over-estimates power. In

fact, the true power is inversely proportional to roughly λ log(λ) (and not λ2), from eq. (3.7).

We can compare this to the following crude approximation, based on a z-score,

na,b ≈
[Φ−1(a)−

√
1 + λΦ−1(b)]2

2λ2f
(3.11)

which simplifies when λ� 1 to,

na,b ≈
[Φ−1(a)− Φ−1(b)]2

2λ2f
. (3.12)

For example:

1. If we take b = 0.1 (i.e. 90% power) and a = 2.5× 10−6, we get, νa,b = 35.9. For small λ and

f , we get n ≈ 17.9
λ2f

. The crude approximation gives us n ≈ 17.1
λ2f

, which is slightly optimistic.

2. If we are satisfied with a nominal significance level a = 0.05 (that is, if we were certain that we

would only ever test a single gene), we could use νa,b = 10.5. For small λ and f , the required

sample size is then roughly 3.5-fold lower at 5.3
λ2f

.

3.3 Calculating Sample Size when f is Unknown

In the above calculations, we assumed that the population frequency f is known precisely. If f is

unknown, we can estimate it by performing a case-control study or a case-unaffected study. Here

”controls” refer to random individuals in the general population and ”unaffecteds” to individuals

known not to have the disease (based on the diagnostic criteria in use).
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3.3.1 Using unaffecteds

We begin by considering a case-unaffected study. The control frequency funaffected satisfies f =

(1− π)funaffected + πfcases, which gives

funaffected =
1− π − πλ

1− π f,

fcases =
(

1 +
λ

1− π − πλ
)
funaffected. (3.13)

The observed numbers of carriers in cases and controls have the following binomial distributions,

dcases ∼ Binomial(2ncases, fcases),

dcontrols ∼ Binomial(2ncontrols, funaffected). (3.14)

This time, we test the hypothesis,

H0 : fcases = funaffected ,

H1 : fcases > funaffected. (3.15)

i.e. we test whether the parameters of two binomial random variables are equal. Again, we write

the likelihood ratio statistic

2LLR
(
ncases, dcases, ncontrols, dcontrols

)
= 2
[
LL
(
ncases, dcases, ncontrols, dcontrols; (f̂cases, f̂unaffected)

)
− LL

(
ncases, dcases, ncontrols, dcontrols; f̂

)]
(3.16)

with,

f̂cases =
dcases

2ncases
,

f̂unaffected =
dcontrols

2ncontrols
,

f̂ =
dcases + dcontrols

2(ncases + ncontrols)
. (3.17)

The non-centrality parameter is

NCP = E[2LLR] = 4ncaseshb(fcases) + 4ncontrolshb(funaffected)

− 4(ncases + ncontrols)hb(
fcasesncases + funaffectedncontrols

ncases + ncontrols
) (3.18)
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where hb is the binary entropy function (with logarithm taken at the natural basis):

hb(x) = −[x log(x) + (1− x) log(1− x)]. (3.19)

We assume that the case-controls ratio is ρ : (1 − ρ), and define ncases,a,b, ncontrols,a,b the number

of cases and controls, respectively, required to reach false-positive and false-negative rates a and

b, respectively. The overall sample size (cases+controls) is na,b = ncases,a,b + ncontrols,a,b with

ncases,a,b = ρna,b and ncontrols,a,b = (1− ρ)na,b. From eq. (3.18) we get,

na,b =
νa,b

4
{
ρhb((1 + λ)f) + (1− ρ)hb(

1−π+πλ
1−π f)− hb([ρ(1 + λ) + (1− ρ)1−π+πλ

1−π ]f)
} . (3.20)

When f is small, we get the following approximate formula,

na,b ≈
νa,b

4f [ρg( λ
1−π−πλ)− g( ρλ

1−π−πλ)]
(3.21)

When the effect size λ is also small, Taylor expansion gives,

na,b ≈
νa,b(1− π)2

2fρ(1− ρ)λ2
(3.22)

and the number of cases is,

ncases,α,β ≈
νa,b(1− π)2

2f(1− ρ)λ2
. (3.23)

3.3.2 Using controls from the population

If we perform a case-control study (where individuals from the the control group are taken from

the general population), the control frequency is simply f . Formula (3.20) changes to,

na,b =
νa,b

4
{
ρhb((1 + λ)f) + (1− ρ)hb(f)− hb((1 + ρλ)f)

} . (3.24)

When f is small, we get the following approximate formula,

na,b ≈
νa,b

4f [ρg(λ)− g(ρλ)]
. (3.25)

When the effect size λ is also small, Taylor expansion gives,

na,b ≈
νa,b

2fρ(1− ρ)λ2
(3.26)
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and the number of cases is,

ncases,α,β = ρna,b ≈
νa,b

2f(1− ρ)λ2
. (3.27)

Compared to the case-only test (eq. (3.7)), the number of cases required increases by roughly a

factor of 1 − ρ. For example, if we take a balanced case-control study (ncases = ncontrols), for

a = 2.5 × 10−6, b = 0.1 we get ncases,a,b = 35.9
fλ2

, compared to na,b ≈ 17.9
fλ2

for the case-only test with

known f (when effect size λ is small). The resulting number of cases is increased ∼ 2-fold (the

overall sample size is increased 4-fold since we also need to genotype controls).

When the disease is rare (π � 1) we have f ≈ funaffected, fcases = (1 + λ)f ≈ (1 + λ)funaffected

and the formulas for the case-control and case-unaffected studies coincide.

3.4 Tests Proposed in the Literature for RVAS

Given the early stage of the field, the analytical methodology for RVAS remains in flux. Many

authors have proposed a rich collection of possible statistics (e.g. [27–35]; reviewed in [36] and [37];

tests compared in [38]. Our goal here is neither to evaluate their relative merits nor to propose

alternatives. The tests include ’burden” tests, designed to detect allelic effects in the same direction,

and ”overdispersion” tests, designed to detect bi-directional allelic effects [27, 39, 40]. One can

incorporate weights based on allele frequency [41–43], apparent effect size [39, 44] and presumed

functional significance [39, 42, 45].
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4 RVAS Strategy 1: Studying Disruptive Alleles

The simplest strategy would be to study just the disruptive alleles, which we assumed to be a

homogenous class of null alleles with equal effect size and selection coefficient. To compute power,

we can use the formulas for Section 3. In Figure S9 (reproduced Figure 2(a) from the main text) we

show the power to detect harmful disruptive alleles as a function of either the selection coefficient

s or the combined allele frequency fD (assumed to be interchangeable through the expectation

fD = µD
s ) and their effect size λ. Similarly, in Figure S10 (reproduced Figure 2(b) from the main

text) we show the power to detect protective disruptive alleles.
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Figure 9: Sample size (number of cases) required to detect association using disruptive alleles in a

case-only study with known population allele frequency, as function of the either fD, the combined

allele frequency or s, the selection coefficient (x-axis), and λ, the effect size (different colored curves)

(Figure 2(a) in main text).
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Figure 10: Sample size required to detect association using disruptive protective alleles, as function

of the either fD, the combined allele frequency or s, the selection coefficient (x-axis), and effect

size λ (different colored curves) (Figure 2(b) in main text). For protective alleles, the effect size λ

is negative - for example λ = −0.95 for a (1 + λ)−1 = 20-fold depletion. The sample size needed

to detect the depletion of rare protective alleles in cases is considerably higher than the sample

size needed to detect the excess of rare harmful alleles (Figure S9). As protection increases, the

sample size curve converges to a curve representing completely protective alleles (corresponding to

(1 +λ)−1 =∞), and is roughly equal to the sample size required to detect alleles increasing disease

probability by a factor of e ≈2.718.
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5 RVAS Strategy 2: Incorporating Missense Alleles

One attractive way to increase power is to incorporate missense alleles into the burden analysis.

Only a fraction α of missense alleles are null and thereby contribute to disease association. If we

could perfectly identify this subset, we could simply include both disruptives and missense-null

alleles in our burden test. This would be advantageous because the number of missense-null alleles

typically exceeds the number of disruptive alleles. Specifically, the expected ratio of null missense

alleles to disruptive alleles is
µM−null
µD

= αµM
µD

. For our ’typical’ gene with α = 0.25 and µM
µD

= 7.3

(Table 1 in the main text), this ratio is ∼2.8.

The problem is that we cannot readily distinguish the missense nulls from missense neutrals. The

latter are more abundant (because they are not under purifying selection) and thus may swamp the

former. We can try to avoid this problem by focusing only on missense alleles with frequency below

a specified threshold T . There are two considerations:

1. The ratio of such alleles in cases vs controls will be smaller than the true effect size 1 + λ.

Instead, we will see an ”apparent” effect size of 1 + ρs(T )λ, because the signal is diluted by

neutral alleles.

2. The total number of alleles under consideration is reduced to Ψs(T )fM .

There is an important trade-off. Decreasing the frequency threshold T (1) enriches for missense

null alleles and thereby increases the apparent effect size (although it never exceeds 1 +αλ) but (2)

decreases the total number of alleles under consideration. Our goal then is to choose the optimal

threshold T ∗ maximizing power. The optimal value depends on s, α, λ and demography.

For a given threshold T , the non-centrality-parameter is

NCPmissense(T ) = E[LLRmissense(T )]

≈ 4n
[
(1 + λρs(T ))

µM
µD

flog(1 + λρs(T ))

+ (1− (1 + λρs(T ))
µM
µD

f)log
1− (1 + λρ(T ))µMµD f

1− µM
µD
f

]
(5.1)

where we take the target size of missense alleles to be roughly µM
µD

times the target size of disruptive

alleles. The optimal threshold is,

T ∗ ≡ argmax
T

NCPmissnense(T ). (5.2)

We will assume that selection is strong enough that the total allele frequency f is quite low. In this

case, we can approximate the power ratio as follows,
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E[LLRmissense(T ∗)]
E[LLRD]

∼ µMαΨs(T
∗)g(ρs(T

∗)λ)

µDρs(T ∗)g(λ)
. (5.3)

For small effect sizes (λ→ 0), we get,

E[LLRmissense]
E[LLRD]

∼ µM
µD

αΨs(T
∗)ρs(T

∗). (5.4)

For large λ (but with the constraint fλ � 1, that is, the risk of disease in carriers is significantly

smaller than 100%), we get,

E[LLRmissense]
E[LLRD]

∼ µM
µD

αΨs(T
∗). (5.5)

For large values of λ, the dilution ρs(T
∗) has little effect on power: the power is similar to the ideal

situation where we can perfectly recognize null missense alleles. The reason is that when effect sizes

are very large, the combined allele frequency in cases is barely altered due to the dilution effect.

In general, as the effect size λ increases, the effect of dilution ρs(T
∗) decreases, and it becomes more

beneficial to set a higher threshold T ∗, (up to the maximum frequency of T ∗ = 1).

Figures S11, S12 and S13 show the relative value of the set of missense alleles (normalized to the

value of disruptive mutations), as a function of the frequency threshold T used to filter the missense

alleles. The three figures correspond to medium, large and small effect sizes (1 +λ = 4, 16 and 1.5);

the six panels within each figure correspond to different population models; and the curves within

each panel correspond to different values of s.

The value of missense alleles is sensitive to the choice of T , and the optimal value T ∗ depends on

the value of s. Although the optimal value T ∗ varies with s, the power achieved at this threshold

is fairly similar across values of s. For medium effect size (1 + λ = 4), the optimal threshold T ∗

results in missense alleles contributing roughly an equal amount of information as disruptive alleles

- that is, the peak is typically around 1.0. (When combining information from both disruptive and

missense alleles, the sample size is thus 1.5−2.0-fold smaller). For large effect size, the contribution

is larger (∼1.5-fold) for large effect size and smaller (∼0.60-fold). The optimal threshold T ∗ itself

is relatively insensitive to the effect size (increasingly only slightly with λ).

The optimal threshold T ∗ typically occurs around the 80% percentile of the IAF for null alleles

(that is, we retain Ψ(T ∗) ∼80% of the null alleles) and the proportion of nulls among all missense

alleles below this frequency threshold tends to be ρs(T
∗) ∼15% − 20% (see Tables S4-S9). Figure

S14 shows how the optimal threshold T ∗ relates to Ψ(T ∗) and ρs(T
∗).
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Figure 11: The relative contribution of missense alleles to power as function of threshold used, for

different demographic models (shown in different panels), and different selection coefficients (colored

curves). The precise value of threshold used depends heavily on the population and the selection

coefficient, and is usually at the ∼ 80% quantile of the allele frequency distribution. The relative

power of missense alleles from using the optimal threshold is, however, more stable, at around

0.5− 1 fold in most cases, leading to a 1.5− 2-fold improvement over using only disruptive alleles.

We assume that the proportion of null alleles among newborn missense alleles is α = 0.25, and an

effect size of 1 + λ = 4.
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Figure 12: Similar to Figure S11, but for larger effect size (1 + λ = 16). For large effects, missense

alleles are more beneficial, giving ∼ 1 − 1.5-fold the power of disruptive alleles at the optimal

threshold, thus using them, in combination with disruptive alleles, leads to a ∼2− 2.5-fold increase

in power.
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Figure 13: Similar to Figure S11, but for smaller effect size (1+λ = 1.5). For small effects, missense

alleles are less beneficial, giving ∼0.5-fold the power of disruptive alleles at the optimal threshold,

thus using them, in combination with disruptive alleles, leads only to a ∼1.5-fold increase in power.
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Figure 14: Relation between the fraction of null alleles which are included (Ψs(T
∗)) to the fraction of

null alleles among the set of included alleles (ρs(T
∗)) as we vary the threshold T ∗ for the European

population. The contour plots represent iso-power curves, where the value is the ratio of the

contribution of missense alleles relative to disruptive alleles. The x-axis displays the fraction of null

alleles captured, and the y-axis represent the proportion of null alleles among all missense alleles.

Varying the threshold T corresponds to moving along the blue curve. The circled blue dot represents

the values obtained for the optimal threshold. We have used 1+λ = 4, α = 0.25, and s = 0.01. The

behavior for different populations and different selection coefficients is not significantly different.
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s 0 10−5 10−4.5 10−4 10−3.5 10−3 10−2.5 10−2 10−1.5 10−1

f1/2 0.51 0.49 0.43 0.24 0.071 0.021 0.006 0.0018 0.00065 0.00025

T ∗ 0.99 0.99 0.96 0.38 0.1 0.039 0.011 0.0032 0.0012 0.0004

ρs(T
∗) 0.25 0.25 0.2 0.16 0.16 0.13 0.15 0.12 0.13 0.17

Ψs(T
∗) 1 1 1 0.86 0.76 0.8 0.76 0.72 0.78 0.81

ρs(1%) 0.25 0.25 0.25 0.25 0.23 0.2 0.16 0.054 0.019 0.0081

Ψs(1%) 0.011 0.011 0.015 0.042 0.13 0.35 0.72 0.98 1 1

ρs(0.1%) 0.25 0.25 0.25 0.25 0.24 0.24 0.24 0.18 0.13 0.081

Ψs(0.1%) 0.001 0.001 0.0013 0.0039 0.013 0.039 0.11 0.33 0.72 0.99

Table 4: Optimal threshold for Equilibrium model. The tables show the optimal threshold T ∗,

compared to the median allele frequency f1/2. In addition, we show the cumulative allele frequency

Ψs and the proportion of null alleles ρs at the optimal threshold T ∗, as well as the frequencies 0.1%

and 1%. At the optimal threshold T ∗, the cumulative frequency is in the range of 0.7− 0.9, and the

proportion of null alleles is around 0.15−0.2. Using a fixed threshold of 0.1% or 1% is sub-optimal,

and may lead to severe dilution of null alleles (low ρs for strong selection.)

s 0 10−5 10−4.5 10−4 10−3.5 10−3 10−2.5 10−2 10−1.5 10−1

f1/2 0.50 0.48 0.41 0.23 0.040 0.0011 9.4e-005 2.3e-005 6.5e-006 2e-006

T ∗ 0.99 0.99 0.96 0.33 0.08 0.014 0.00048 6.2e-005 1.4e-005 3.9e-006

ρs(T
∗) 0.25 0.25 0.21 0.16 0.18 0.17 0.18 0.19 0.18 0.16

Ψs(T
∗) 1 1 1 0.86 0.81 0.86 0.85 0.86 0.81 0.8

ρs(1%) 0.25 0.25 0.25 0.24 0.23 0.18 0.078 0.028 0.0089 0.0026

Ψs(1%) 0.03 0.03 0.038 0.12 0.33 0.8 1 1 1 1

ρs(0.1%) 0.25 0.25 0.25 0.25 0.24 0.22 0.15 0.061 0.02 0.0059

Ψs(0.1%) 0.013 0.013 0.017 0.053 0.16 0.46 0.94 1 1 1

Table 5: Optimal threshold for Expansion1 model. Similar to Table S4.
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s 0 10−5 10−4.5 10−4 10−3.5 10−3 10−2.5 10−2 10−1.5 10−1

f1/2 0.51 0.48 0.42 0.23 0.040 0.0025 0.00035 4.9e-005 2.3e-006 5.0e-007

T ∗ 0.99 0.99 0.94 0.36 0.072 0.012 9.6e-005 7.6e-006 1.5e-006 5e-007

ρs(T
∗) 0.25 0.25 0.21 0.16 0.18 0.18 0.18 0.17 0.16 0.15

Ψs(T
∗) 1 1 1 0.87 0.8 0.86 0.84 0.86 0.82 0.86

ρs(1%) 0.25 0.25 0.25 0.25 0.23 0.18 0.073 0.024 0.0075 0.0026

Ψs(1%) 0.031 0.031 0.041 0.12 0.36 0.84 1 1 1 1

ρs(0.1%) 0.25 0.25 0.25 0.25 0.24 0.21 0.12 0.042 0.013 0.0045

Ψs(0.1%) 0.018 0.018 0.024 0.068 0.21 0.56 0.99 1 1 1

Table 6: Optimal threshold for Expansion2 model. Similar to Table S4.

s 0 10−5 10−4.5 10−4 10−3.5 10−3 10−2.5 10−2 10−1.5 10−1

f1/2 0.54 0.51 0.47 0.30 0.11 0.011 0.00055 4.5e-005 3.3e-006 5.0e-007

T ∗ 0.99 0.99 0.94 0.47 0.15 0.036 0.0025 0.00027 2.9e-005 8.4e-007

ρs(T
∗) 0.25 0.25 0.21 0.15 0.15 0.18 0.18 0.17 0.17 0.18

Ψs(T
∗) 1 1 0.98 0.86 0.73 0.79 0.82 0.83 0.9 0.84

ρs(1%) 0.25 0.25 0.25 0.25 0.24 0.22 0.12 0.037 0.013 0.0039

Ψs(1%) 0.019 0.019 0.024 0.071 0.21 0.57 0.99 1 1 1

ρs(0.1%) 0.25 0.25 0.25 0.25 0.25 0.25 0.21 0.1 0.04 0.012

Ψs(0.1%) 0.0064 0.0063 0.0081 0.024 0.073 0.23 0.62 0.99 1 1

Table 7: Optimal threshold for Europe model. Similar to Table S4.
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s 0 10−5 10−4.5 10−4 10−3.5 10−3 10−2.5 10−2 10−1.5 10−1

f1/2 0.53 0.50 0.47 0.30 0.12 0.064 0.038 0.0023 5.1e-006 6.0e-007

T ∗ 0.99 0.99 0.99 0.5 0.23 0.15 0.0076 0.0053 0.0011 0.00021

ρs(T
∗) 0.25 0.25 0.21 0.14 0.1 0.056 0.21 0.2 0.2 0.17

Ψs(T
∗) 1 1 1 0.86 0.77 0.72 0.17 0.44 0.78 0.91

ρs(1%) 0.25 0.26 0.26 0.25 0.22 0.2 0.19 0.16 0.1 0.036

Ψs(1%) 0.0023 0.0025 0.003 0.0086 0.023 0.066 0.18 0.48 0.96 1

ρs(0.1%) 0.25 0.26 0.25 0.25 0.25 0.24 0.25 0.25 0.2 0.097

Ψs(0.1%) 0.00081 0.00083 0.001 0.0031 0.0095 0.029 0.093 0.27 0.76 1

Table 8: Optimal threshold for Finland model. Similar to Table S4.

s 0 10−5 10−4.5 10−4 10−3.5 10−3 10−2.5 10−2 10−1.5 10−1

f1/2 0.50 0.48 0.42 0.24 0.048 0.010 0.0054 0.0027 0.00015 1.2e-005

T ∗ 0.99 0.99 0.96 0.33 0.076 0.033 0.017 0.0016 0.0011 0.00038

ρs(T
∗) 0.25 0.25 0.21 0.17 0.18 0.13 0.074 0.17 0.17 0.15

Ψs(T
∗) 1 1 1 0.85 0.76 0.86 0.79 0.26 0.55 0.8

ρs(1%) 0.25 0.25 0.26 0.25 0.24 0.19 0.095 0.048 0.022 0.0048

Ψs(1%) 0.012 0.013 0.016 0.047 0.14 0.34 0.52 0.75 0.97 1

ρs(0.1%) 0.25 0.25 0.25 0.25 0.24 0.23 0.2 0.2 0.18 0.08

Ψs(0.1%) 0.00065 0.00065 0.00083 0.0026 0.008 0.024 0.066 0.2 0.51 0.97

Table 9: Optimal threshold for Iceland model. Similar to Table S4.
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5.1 Heterogeneity of Alleles - Hypomorphs

Our basic two class model focuses only on neutral and null alleles. We ignore the possibility of

hypomorphic alleles with effect size and selection coefficients lying between neutral and null alleles.

We can refine the model to include a third class of hypomorphic alleles. This three-class model has

1. Null alleles with selection coefficient s and effect size 1 +λ as before. with fraction α at birth.

2. Hypomorphic alleles with selection coefficient δs and effect size 1 +λδ for some 0 < δ < 1 and

fraction β at birth.

3. Neutral alleles with selection coefficient 0 and no effect, with frequency 1− α− β at birth.

The above model assumes direct selection - that is, the proportional decrease in effect size for

hypomorph alleles (compared to null alleles) is the same as the proportional decrease in the selective

coefficient.

We can compute the effect of adding hypomorphs alleles on power. We consider two scenarios:

1. Perfect knowledge.

In this idealized scenario, we assume that we can perfectly recognize whether a missense allele

is null, hypormorphic or neutral. In this case, we can simply calculate the contribution to the

likelihood ratio of hypomorphic alleles:

E[2LLRH ] = 4n
βµM
δs

g(δλ). (5.6)

The proportional contribution of missense alleles, relative to disruptive alleles, becomes:

E[2LLRM ]

E[2LLRD]
=
E[2LLRM,null + 2LLRH ]

E[2LLRD]

=
αµM
µD

[
1 +

β

α

g(δλ)

δg(λ)

]
. (5.7)

Here, the first term in the brackets represents the contribution of null missense alleles and the

second term represents hypomorphic missense alleles. For small values of λ, we have g(λ) ∼ λ2

2 ,

and the additional relative contribution of hypomorphs is ∼ β
αδ. For large effect size λ, we

have g(λ) ∼ λ log(λ) and the additional contribution of hypomorphs is ∼ β
α [1+ log(δ)

log(λ) ]. In both

cases, the relative additional contribution to power is insensitive to the selective coefficient

(provided that the assumption of strong selection holds).

Table S10 below shows the relative contribution of hypomorphic alleles in this idealized case.

We considered our typical gene with α = 0.25 and µM
µD

= 7.3. We assumed that hypomorphic

missense alleles are born at twice the rate of null missense alleles - that is, β = 0.5. [15].
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We suppose that null alleles increase disease risk by either 3-fold or 11-fold (λ = 2 or 10) and

that hypomorphic alleles decrease the effect size and selection coefficient by either 5-fold or

10-fold ( δ = 0.2 or 0.1). (For example, with λ = 10 and δ = 0.1, hypomorphic alleles increase

disease risk by 1 + δλ = 2-fold.)

Reduction in sample size by supplementing disruptive alleles with:

λ δ Null missense only Null and hypomorphic missense Improvement

10 0.2 2.83-fold 4.27-fold 51.1%

10 0.1 2.83-fold 3.69-fold 30.5%

2 0.2 2.83-fold 3.83-fold 35.4%

2 0.1 2.83-fold 3.35-fold 18.7%

Table 10: The relative contribution of missense null and hypomorph alleles for different values

of λ and δ under perfect knowledge. The relative contribution is shown here for the European

population.

With perfect knowledge, hypomorphic alleles can contribute usefully when the effect size is

large.

2. Imperfect knowledge.

In this realistic scenario, we assume that we cannot distinguish whether a missense allele is

null, hypormorphic or neutral. Instead, we must select a single optimal frequency threshold

T* and count only those alleles with frequency ≤ T ∗. One challenge is that hypomorphic and

null missense alleles have different selection coefficients and hence different allele frequencies,

and thus a single threshold will be sub-optimal in terms of capturing these two groups of

alleles. In addition, the two classes have different effect sizes, and thus the observed effect

size will represent an average value (overweighted toward hypomorphic alleles, because they

are more frequent due to a higher birth rate and weaker selection), leading to further loss of

power.

We computed the total effect of hypomorphic alleles for the same parameters as above, for

the European population, and for different selection coefficients. Figure S15 shows the results

for various threshold values T , for intermediate effect size (1 + λ = 4). Table S11 shows

the maximal contribution, achieved when using the optimal threshold T ∗. For the reasons

discussed above, the proportional contribution of hypomorphic alleles to power is much smaller

than in the idealized case. In the examples shown, they typically reduce the required sample

size by less than 10%.
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Reduction in sample size by supplementing disruptive alleles with:

λ δ Null missense only Null and hypomorphic missense Improvement

10 0.2 1.44− 1.59-fold 1.58− 1.79-fold 7.1− 13.5%

10 0.1 1.44− 1.59-fold 1.48− 1.63-fold 2.1− 3.9%

2 0.2 1.25− 1.35-fold 1.31− 1.44-fold 4.0− 7.3%

2 0.1 1.25− 1.35-fold 1.26− 1.37-fold 1.1− 1.7%

Table 11: The relative contribution of missense null and hypomorph alleles for different values of λ

and δ, in the situation of imperfect knowledge, where we choose the threshold T ∗ maximizing power.

The relative contribution is shown here for the European population. The relative contribution

depends on the selection coefficient s (see Figure S15). For each value of λ and δ, we display the

range of relative contributions, when varying s in the range 10−4−10−1. The relative contributions

of hypomorph alleles are tiny, unless the effect size λ and the proportionality constant δ are large.
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Figure 15: Increase in power from using both null and hypomorph missense alleles. The figures show

the contribution of missense alleles to power, compared to the contribution of disruptive alleles, as

function of the threshold T for the European population, and with the parameters, 1 + λ = 4, α =

0.25, β = 0.5, δ = 0.1. The top plot shows the contribution of only null missense alleles. The middle

plot shows the contribution of hypomorph missense alleles. The bottom plot shows the contribution

of all missense alleles. Overall, the relative additional contribution of hypomorph alleles to power

is < 10% of the contribution of missense null alleles.
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6 RVAS Strategy 3: Enriching for Null Missense Alleles

One might seek to enrich for null missense alleles by using computational programs, such as

PolyPhen-2 [46], SIFT [47], and MutationTaster [48], that predict which missense changes are

”damaging” - based on the biochemical nature of the substitution and evolutionary conservation of

the site (but not allele frequency). A common approach is to use such programs to filter the alleles

and analyze only the damaging alleles.

We can summarize the accuracy of such programs with two terms: (i) the false positives rate γneutral

(the probability that a neutral missnese allele will be incorrectly classified as null allele), and (ii)

the true positives rate γnull (the probability that a null missnese allele will be correctly classified

as a null allele). We next calculate the gain in power as a function of the parameters γneutral and

γnull ,where we combine the strategy from the previous section (of enriching further for null alleles

by using only alleles below a frequency threshold) with the strategy of using functional predictions.

Considering only alleles with frequency below threshold T , we define Ψ
(γneutral,γnull)
s (T ) to be the

cumulative allele frequency of null alleles predicted to be damaging, and ρ
(γneutral,γnull)
s (T ) to be the

fraction of null alleles among all damaging alleles. The values are given by

ρ(γneutral,γnull)
s (T ) =

ρs(T )γnull
ρs(T )γnull + (1− ρs(T ))γneutral

Ψ(γneutral,γnull)
s (T ) = γnullΨs(T ). (6.1)

To compute power, we can simply plug these values in eq. (5.3), instead of ρs(T
∗) and Ψs(T

∗),

giving:

E[LLR(γneutral,γnull)
missense (T ∗)]

E[LLRD]
∼ µMαΨ

(γneutral,γnull)
s (T ∗)g(ρ

(γneutral,γnull)
s (T ∗)λ)

µDρ
(γneutral,γnull)
s (T ∗)g(λ)

. (6.2)

We can then search for optimal threshold maximizing power in the above equation, which we denote

as T ∗(γneutral, γnull). This threshold is different from the optimal threshold T ∗ for the case in which

we lack functional prediction (see previous section), and will typically be higher, allowing us to

capture more missense null alleles, while still maintaining them at high proportion.

There is a simple formula relating the proportion of null alleles ρs, without functional predictions

to the proportion of null alleles ρ
(γneutral,γnull)
s (T ) with functional prediction,

ρ
(γneutral,γnull)
s (T )

1− ρ(γneutral,γnull)
s (T )

=
γnull
γneutral

ρs(T )

1− ρs(T )
. (6.3)

In Figure S16 we show the advantage of using functional prediction.
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If we have perfect prediction, (γneutral = 0, γnull = 1), we get ρ
(0,1)
s (T ) = 1, ∀T ∈ [0, 1], and the

above ratio in eq. (6.3) diverges to infinity. In this case, the optimal threshold will be T ∗ = 1,

taking all null missense alleles, and simply get (using Ψs(1) = 1),

E[LLR(0,1)
missense(1)]

E[LLRD]
∼ µMα

µD
. (6.4)

For a typical gene with µM
µD

= 7.3 and α = 0.25, we get that missense contribute roughly 1.8-fold as

much information as disruptives, thus in this ideal case we can decrease the sample size by roughly

2.8-fold.
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Figure 16: Power-gain from functional prediction of missense null alleles for the equilibrium pop-

ulation. As in Figure S14, the contour plots represent iso-power curves. The x-axis displays the

fraction of null alleles captured, and the y-axis represent the proportion of null alleles among all

missense alleles. Varying the threshold T corresponds to moving along the colored curves. The blue

curve shows results without functional prediction (strategy 2) and the red curve shows results with

a functional prediction with γnull = 0.8, γneutral = 0.2. The circled dots on each curve represent the

values obtained for the optimal threshold. When using functional prediction, we see a shift in the

feasible curve, and thus an almost 2-fold increase in relative contributions, from 0.85 to 1.56. We

have used 1 + λ = 4, α = 0.25, and s = 0.01.
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7 Effect of Thresholding in a Finite Sample (with LDLR Example)

The burden analyses in Sections 5 and 6 assume an idealized case, in which we know the precise

population frequency of each allele based on a large population survey. In this case, we can filter

alleles based on their frequency, and enrich for null alleles, with ρ(T ) of missense alleles below a

threshold T being null.

Here, we consider the situation where we don’t know the allele frequencies based on a large pop-

ulation survey, but have only the sample data from a case-control or case-unaffected study with a

total on n individuals. In this case, we can filter alleles based on their frequency in the sample.

Given a threshold T, we can retain alleles that have at most b2nT c occurrences in the sample. We

denote ρs(T ;n) to be the expected fraction of nulls when we consider only alleles with frequency

below T in a sample of n individuals. We have:

ρs(T ;n) =

∫ 1
x=0 αfsψs(x)B(b2nT c, 2n, x)dx∫ 1

x=0[αfsψs(x) + (1− α)f0ψ0(x)]B(b2nT c, 2n, x)dx
(7.1)

where we denote by B(k, n, p) the cumulative binomial distribution (minus the value at zero):

B(k, n, p) =
k∑
i=1

(
2n

i

)
pi(1− p)n−i. (7.2)

For example, if we take only singleton alleles (i.e. setting T = 1
2n) we get,

ρs(
1

2n
;n) =

∫ 1
x=0 αfsψs(x)x(1− x)2n−1dx∫ 1

x=0[αfsψs(x) + (1− α)f0ψ0(x)]x(1− x)2n−1dx
(7.3)

When we set the frequency threshold based on cases, we need to be more careful with the choice of

threshold, since the frequency in cases is higher, (1 + λ)f for null alleles with population frequency

f . If we set the same threshold for cases and population controls, i.e. take all alleles with frequency

at least T in either cases or controls, (assuming equal number of cases and controls), then

ρs(T ;n, λ) ≈
∫ 1

x=0
αfsψs(x)

[
B
(
b2nT c, 2n, x

)
+B

(
b2nT c, 2n, x(1 + λ)

)
−B

(
b2nT c, 2n, x

)
B
(
b2nT c, 2n, x(1 + λ)

)]
dx/∫ 1

x=0

{
αfsψs(x)

[
B
(
b2nT c, 2n, x

)
+B

(
b2nT c, 2n, x(1 + λ)

)
−B

(
b2nT c, 2n, x

)
B
(
b2nT c, 2n, x(1 + λ)

)]
+ (1− α)f0ψ0(x)

[
2B
(
b2nT c, 2n, x

)
−B

(
b2nT c, 2n, x

)2]}
dx. (7.4)
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The fraction of nulls, ρs, thus depends on λ; large values of λ increase ρs.

7.1 LDLR Example

To illustrate the results in the paper (including the issues with finite samples), we use an example

taken from an exome-wide RVAS of Early-Onset Myocardial Infarction (EOMI Study).

Briefly, several of the authors of this paper are involved in a large-scale exome-wide RVAS for

EOMI, including analysis of 2743 cases and 2465 controls. The study subjects were taken from the

National Heart Lung and Blood Institute’s Exome Sequencing Project (NHLBI ESP) EOMI Study

(1027 cases, 946 controls) and the Italian Atherosclerosis, Thrombosis and Vascular Biology (ATVB)

study (1716 cases, 1519 controls) funded by the National Human Genome Research Institute. In the

NHLBI ESP study, cases were individuals with MI at age ≤ 50 for males and age ≤ 60 for females

and controls were individuals of advanced age ( ≥ 60 for men and ≥ 70 for women) who had not

suffered Myocardial Infarction (MI). The Italian ATVB Study ascertained 1716 survivors of acute

MI before the age of 45 from 125 intensive care units across Italy between 1998 − 2001. Controls

were individuals without a personal history of thrombotic disease and were matched to cases for

age, gender, and geographic location. The EOMI study employed the commonly used definition of

rare variants as being alleles with frequency ≤ 1% in the general population.

The full results from the EOMI Study will be published elsewhere. Here, we focus only on the

results for the LDLR gene (coding region of 2583 base pairs, including the stop codon).

The results (Table S12) show strong enrichment for disruptive alleles (1 + λD = 18.1) but much

weaker enrichment for missense alleles (1 + λM = 1.5). The low enrichment seen for missense

alleles is explained under our two-class model by the fact that null alleles in LDLR are under strong

selection (s ≈ 10−1.7). Given such strong selection, the optimal threshold is very low: T ∗ = 10−4.

With the much higher threshold of T = 1%, missense null alleles are swamped by missense neutral

alleles. The relative risk for missense alleles with frequency ≤ 1% is expected to be 1 + λM = 1.3,

which is very close to the observed value of 1.5. For the optimal threshold of T ∗ = 10−4, the

relative risk would be expected to be higher: 1 + λM = 3.8 (although this is still lower than seen

with disruptive alleles, which is a pure class of null alleles).

There is a practical problem, however, with using the optimal threshold T ∗ = 10−4. Given the

relatively small sample size (and no additional population survey data), we can’t tell which alleles

actually have population frequency ≤ 10−4. The best alternative is to study only the singleton

alleles - that is, the alleles that appear exactly once in the sample.

For the EOMI study, counting singletons turns out to be almost as good as if we could identify

precisely the alleles with frequency ≤ 10−4. (The expected value of 1 +λM is 3.7 in the former case

vs 3.8 in the latter; Table S12). This is because the EOMI study just happens to involve ∼ 104

chromosomes (more precisely, 2 × (2743 + 2465) = 10, 420) - that is, singletons correspond to a

frequency of ∼10−4 in the sample.
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If the EOMI study involved a much smaller sample, the use of singletons would be less effective at

enriching for null alleles. With only 1000 chromosomes, the expected relative risk is 2.1. With only

100 chromosomes, the expected relative risk is only 1.4. (Table S12). Figure S17 shows how the

proportion of nulls among missense alleles varies with sample size.
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Allelic-Class Cases Controls Ψs(T ) ρs(T ) 1 + λ

n 2743 2465

Disruptive:

Observed 20 1 18.1

Expected 18.1

Missense(f ≤ 1%):

Observed 172 102 1.5

Expected (population) 100.0% 2.0% 1.3

Expected (n = 5208) 100.0% 2.0% 1.3

Missense(f ≤ 0.01%):

Observed 37 19 1.8

Expected (population) 90.9% 16.6% 3.8

Expected (n = 5208, singletons) 86.8% 16.0% 3.7

Expected (n = 500, singletons) 100.0% 6.5% 2.1

Expected (n = 50, singletons) 100.0% 2.3% 1.4

Missense-polyphen(f ≤ 1%):

Observed 89 32 2.5

Expected (population) 100.0% 7.7% 2.3

Expected (n = 5208, singletons) 100.0% 7.7% 2.3

Missense-polyphen-Singletons(f ≤ 0.01%):

Observed 19 6 2.8

Expected (population) 90.9% 44.4% 8.6

Expected (n = 5208, singletons) 86.8% 39.0% 7.7

Table 12: Values observed in an association test for LDLR with EOMI. The table shows observed

counts and expected values of ρs(T ) and 1+λ. ’Expected (population)’ refers to the situation when

allele frequencies are known precisely. ’Expected (n =.., singletons)’ refers to the situation when

the sample size is n and only singletons are counted. Calculations assume that the true relative

risk for null alleles is 1 + λ = 18.1 (based on the observed value for disruptive alleles), the selection

coefficient is s = 10−1.7 (based on the observed frequency of disruptive alleles), α = 0.25, the

population follows the European model, and the functional prediction model misclassifies 20% of

null and 20% of neutral alleles.
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Figure 17: Proportion ρs(f) of missense alleles that are null, as a function of the number n of cases,

for the EOMI study with assumptions as in Table S12. The red dashed line shows the proportion of

missense alleles that are null when allele frequencies are known precisely and one uses the optimal

threshold T ∗ ∼10−4. The blue curve shows the proportion of missense alleles that are null if allele

frequencies are not known precisely and one instead uses (i) singletons, if J = 0 and (ii) only alleles

with J counts, if J > 0, where J = b2nT ∗c. The proportion of nulls reaches the dashed red curve

when the number of cases is ∼ 5000, corresponding to 10, 000 chromosomes. For smaller sample

sizes, the proportion of missense alleles that are null is much smaller (necessitating a much larger

sample size).

62



8 RVAS Strategy 4: Isolated Populations

Another potential approach is to exploit the inherent variation in combined allele frequencies across

different populations and genes, with the hope that, for certain genes associated with disease, the

CAF will happen to be large in the population tested, making it possible to detect association in

a smaller sample. To study this variation, we computed the CAF for various populations using

simulations, as described in Section 1.3. Specifically, we recorded the CAF for each gene in each

individual simulation, to obtain an overall distribution of the CAF for different populations, shown

in Figure 3 in the main text for all null alleles (µnull = 5× 10−6).

Here, we describe results for both null alleles (µnull = 5× 10−6) and disruptive alleles (µD = 1.7×
10−6). For large populations without bottlenecks, the distribution is in general tightly concentrated

around the mean value, as shown in Tables S15-S18. For such populations we can thus largely

ignore variations in the CAF, and simply use the mean value (Table S2). However, for populations

that have experienced recent severe bottlenecks, the variation in CAF is much larger, as shown in

Tables S21- S24 and in Figures S18-S22.

Figures S18-S22 show results for (i) all null alleles (as shown in Figure 3 in the main text) and (ii)

disruptive alleles. Models with severe and recent bottlenecks (Finland and Iceland) show substan-

tially higher variation in the CAF, compared to the Expansion1 model with a large population and

no severe bottleneck, whereas the behaviour for Europe is intermediate.

The distributions depend on the bottleneck size, number of generations since expansion, mutation

rate of the allelic class and selection coefficient. With a tighter bottleneck (e.g., 100 chromosomes

in Finland vs. 1000 chromosomes in Iceland), the probability that a rare variant passes through the

bottleneck is lower but those rare alleles that are lucky enough to pass jump to a higher frequency

(1%vs0.1%). Consequently, the proportion of genes at intermediate deviations (e.g., 5- to 10-fold)

is often higher in Iceland, but the proportion of genes at high deviations (e.g., 30-fold or more) is

typically higher in Finland. The curves also depend on the absolute mutation rate, and thus differ

for all null alleles vs. disruptive alleles.
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Figure 18: The inverse cumulative distribution of the Combined Allele Frequency (CAF) for s =

10−1. Obtained by simulating 50, 000 genes for each demographic model. The top panel represents

null alleles (µnull = 5 × 10−6), as in Figure 3 in the main text, and the bottom panel represents

disruptive alleles (µD = 1.7 × 10−6). The x-axis shows both the CAF itself (fnull, fD), and the

CAF normalized to have mean 1 (fnull/E[fnull], fD/E[fD]). The figures show the right tail of the

distributions. While the mean CAF is essentially the same for all models (see Figure 1), different

models show different distributions.
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Figure 19: The inverse cumulative distribution of the Combined Allele Frequency (CAF) for s =

10−1.5. Similar to Figure S18.
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Figure 20: The inverse cumulative distribution of the Combined Allele Frequency (CAF) for s =

10−2. Similar to Figure S18.
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Figure 21: The inverse cumulative distribution of the Combined Allele Frequency (CAF) for s =

10−2.5. Similar to Figure S18.

67



0 5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

0.026 0.053 0.079 0.11 0.13 0.16 fnull

fnull/E[fnull ]

0.026 0.053 0.079 0.11 0.13 0.16 fnull

fnull/E[fnull ]

0.026 0.053 0.079 0.11 0.13 0.16 fnull

fnull/E[fnull ]

0.026 0.053 0.079 0.11 0.13 0.16 fnull

fnull/E[fnull ]

s=10−3

Null alleles, µ = 5 × 10−6
F

re
q
u
e
n
c
y
 (

in
v
e
rs

e
 c

u
m

u
la

ti
v
e
)

 

 

Expansion1
Europe
Finland
Iceland

0 5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

0.026 0.053 0.079 0.11 0.13 0.16 fnull

fnull/E[fnull ]

0.026 0.053 0.079 0.11 0.13 0.16 fnull

fnull/E[fnull ]

0.026 0.053 0.079 0.11 0.13 0.16 fnull

fnull/E[fnull ]

0.026 0.053 0.079 0.11 0.13 0.16 fnull

fnull/E[fnull ]

s=10−3

Null alleles, µ = 5 × 10−6
F

re
q
u
e
n
c
y
 (

in
v
e
rs

e
 c

u
m

u
la

ti
v
e
)

 

 

0 5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

0.0071 0.014 0.021 0.028 0.035 0.042 fD

fD/E[fD]

0.0071 0.014 0.021 0.028 0.035 0.042 fD

fD/E[fD]

0.0071 0.014 0.021 0.028 0.035 0.042 fD

fD/E[fD]

0.0071 0.014 0.021 0.028 0.035 0.042 fD

fD/E[fD]

Disruptive alleles, µ = 1.7 × 10−6

F
re

q
u
e
n
c
y
 (

in
v
e
rs

e
 c

u
m

u
la

ti
v
e
)

0 5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

0.0071 0.014 0.021 0.028 0.035 0.042 fD

fD/E[fD]

0.0071 0.014 0.021 0.028 0.035 0.042 fD

fD/E[fD]

0.0071 0.014 0.021 0.028 0.035 0.042 fD

fD/E[fD]

0.0071 0.014 0.021 0.028 0.035 0.042 fD

fD/E[fD]

Disruptive alleles, µ = 1.7 × 10−6

F
re

q
u
e
n
c
y
 (

in
v
e
rs

e
 c

u
m

u
la

ti
v
e
)

Figure 22: The inverse cumulative distribution of the Combined Allele Frequency (CAF) for s =

10−3. Similar to Figure S18.
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s 0 10−5 10−4.5 10−4 10−3.5 10−3 10−2.5 10−2 10−1.5 10−1

Mean 0.076 0.068 0.053 0.024 0.0056 0.0015 0.00049 0.00011 6.4e-005 2.2e-005

St.d. 0.2 0.18 0.16 0.086 0.023 0.0065 0.0021 0.00053 0.00024 7.7e-005

1% 0 0 0 0 0 0 0 0 0 0

5% 0 0 0 0 0 0 0 0 0 0

10% 0 0 0 0 0 0 0 0 0 0

25% 0 0 0 0 0 0 0 0 0 0

50% 0 0 0 0 0 0 0 0 0 0

75% 0.019 0.013 0.007 0.0012 0.0002 0 0 0 0 0

90% 0.27 0.23 0.16 0.054 0.0095 0.0021 0.00085 0.00015 0.0002 0.0001

95% 0.55 0.5 0.38 0.15 0.033 0.0082 0.0027 0.00055 0.0004 0.0002

99% 0.93 0.9 0.82 0.47 0.12 0.033 0.01 0.0026 0.0012 0.0004

Table 13: The mean, standard deviation, and different quantiles of the distribution of CAF for

disruptive alleles (µD = 1.7 × 10−6) across different simulations for a population at equilibrium.

Values were obtained by simulating 50, 000 realizations corresponding to 50, 000 different simulated

genes (see Section 1.3).

s 0 10−5 10−4.5 10−4 10−3.5 10−3 10−2.5 10−2 10−1.5 10−1

Mean 0.22 0.19 0.15 0.073 0.018 0.0052 0.0015 0.00065 0.0002 5.7e-005

St.d. 0.33 0.31 0.26 0.15 0.041 0.012 0.0035 0.0013 0.0004 0.00012

1% 0 0 0 0 0 0 0 0 0 0

5% 0 0 0 0 0 0 0 0 0 0

10% 0 0 0 0 0 0 0 0 0 0

25% 0.0013 0.00075 0.00035 0.0001 5e-005 0 0 0 0 0

50% 0.051 0.039 0.025 0.0086 0.0019 0.00045 0.00015 0.0001 5e-005 0

75% 0.32 0.27 0.19 0.071 0.017 0.0048 0.0013 0.0007 0.0002 5e-005

90% 0.73 0.66 0.51 0.23 0.057 0.015 0.0045 0.0019 0.00065 0.0002

95% 0.93 0.88 0.73 0.39 0.091 0.027 0.0083 0.0031 0.001 0.0003

99% 1.4 1.3 1.1 0.74 0.2 0.056 0.017 0.0064 0.002 0.0006

Table 14: The mean, standard deviation, and different quantiles of the distribution of CAF for all

null alleles (µD = 5 × 10−6) across different simulations for a population at equilibrium. Values

were obtained by simulating 50, 000 realizations corresponding to 50, 000 different simulated genes

(see Section 1.3).
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s 0 10−5 10−4.5 10−4 10−3.5 10−3 10−2.5 10−2 10−1.5 10−1

Mean 0.076 0.07 0.054 0.024 0.0054 0.0015 0.00047 0.00016 8.2e-005 1.8e-005

St.d. 0.19 0.18 0.15 0.084 0.018 0.0031 0.00033 7.1e-005 2.4e-005 7.5e-006

1% 0.00019 0.00019 0.00019 0.00018 0.00017 0.00014 9.6e-005 4.9e-005 3.4e-005 6.5e-006

5% 0.00033 0.00032 0.00032 0.0003 0.00028 0.00023 0.00015 6.9e-005 4.6e-005 8.5e-006

10% 0.00044 0.00043 0.00043 0.0004 0.00036 0.00029 0.00018 8.2e-005 5.3e-005 9.5e-006

25% 0.00074 0.00072 0.00071 0.00065 0.00057 0.00044 0.00026 0.00011 6.6e-005 1.2e-005

50% 0.0015 0.0015 0.0014 0.0012 0.00099 0.00072 0.00038 0.00015 8.1e-005 1.6e-005

75% 0.018 0.014 0.0087 0.0036 0.0021 0.0012 0.00057 0.0002 9.7e-005 2.2e-005

90% 0.27 0.23 0.16 0.051 0.0084 0.0025 0.00083 0.00026 0.00011 2.9e-005

95% 0.54 0.5 0.38 0.14 0.026 0.0046 0.001 0.0003 0.00012 3.2e-005

99% 0.92 0.91 0.82 0.46 0.09 0.015 0.0017 0.00038 0.00015 3.8e-005

Table 15: Variation in disruptive alleles combined allele frequency fD for the Expansion1 model.

Similar to Table S13.

s 0 10−5 10−4.5 10−4 10−3.5 10−3 10−2.5 10−2 10−1.5 10−1

Mean 0.22 0.2 0.16 0.07 0.017 0.0052 0.0016 0.00049 0.00015 4.9e-005

St.d. 0.33 0.31 0.26 0.14 0.032 0.0057 0.00062 0.00012 2.9e-005 1.1e-005

1% 0.0017 0.0017 0.0016 0.0016 0.0015 0.0012 0.00068 0.00026 9e-005 2.7e-005

5% 0.0024 0.0024 0.0023 0.0022 0.0019 0.0015 0.00086 0.00031 0.0001 3.2e-005

10% 0.003 0.003 0.0029 0.0026 0.0023 0.0018 0.00096 0.00034 0.00011 3.5e-005

25% 0.0057 0.0054 0.0049 0.0039 0.0032 0.0023 0.0012 0.0004 0.00012 4.1e-005

50% 0.052 0.041 0.029 0.011 0.0054 0.0033 0.0015 0.00048 0.00014 4.9e-005

75% 0.32 0.29 0.2 0.064 0.016 0.0055 0.0019 0.00056 0.00016 5.6e-005

90% 0.73 0.68 0.53 0.21 0.044 0.011 0.0024 0.00065 0.00018 6.3e-005

95% 0.95 0.9 0.75 0.36 0.073 0.016 0.0027 0.00071 0.0002 6.8e-005

99% 1.4 1.3 1.1 0.7 0.15 0.031 0.0038 0.00082 0.00022 7.7e-005

Table 16: Variation in null alleles combined allele frequency fnull for the Expansion1 model. Similar

to Table S14.
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s 0 10−5 10−4.5 10−4 10−3.5 10−3 10−2.5 10−2 10−1.5 10−1

Mean 0.076 0.068 0.054 0.023 0.0052 0.0014 0.00045 0.00019 6.3e-005 1.8e-005

St.d. 0.2 0.18 0.16 0.083 0.018 0.0032 0.00055 0.00014 2.5e-005 2e-006

1% 7.1e-005 7.2e-005 7.2e-005 6.9e-005 6.7e-005 6.3e-005 5.2e-005 5.1e-005 3.2e-005 1.4e-005

5% 0.00011 0.00011 0.00011 0.00011 9.9e-005 8.9e-005 6.9e-005 6.4e-005 3.6e-005 1.5e-005

10% 0.00016 0.00016 0.00016 0.00015 0.00013 0.00012 8.5e-005 7.4e-005 3.9e-005 1.6e-005

25% 0.00039 0.00038 0.00036 0.00032 0.00027 0.00021 0.00013 9.7e-005 4.5e-005 1.7e-005

50% 0.0014 0.0014 0.0012 0.00099 0.00072 0.0005 0.00026 0.00015 5.6e-005 1.8e-005

75% 0.018 0.014 0.0093 0.0043 0.0023 0.0013 0.00053 0.00024 7.3e-005 2e-005

90% 0.27 0.23 0.16 0.047 0.0089 0.0031 0.001 0.00038 9.5e-005 2.1e-005

95% 0.55 0.49 0.38 0.14 0.024 0.0055 0.0015 0.00048 0.00011 2.2e-005

99% 0.93 0.9 0.83 0.45 0.088 0.015 0.0027 0.00073 0.00015 2.3e-005

Table 17: Variation in disruptive alleles combined allele frequency fD for the Expansion2 model.

Similar to Table S13.

s 0 10−5 10−4.5 10−4 10−3.5 10−3 10−2.5 10−2 10−1.5 10−1

Mean 0.23 0.19 0.15 0.072 0.017 0.0048 0.0016 0.00057 0.00017 5e-005

St.d. 0.33 0.3 0.25 0.14 0.03 0.006 0.0011 0.00028 3.5e-005 3.3e-006

1% 0.00064 0.00063 0.00059 0.00054 0.00045 0.00035 0.00027 0.00019 0.00011 4.3e-005

5% 0.0013 0.0013 0.0011 0.001 0.00079 0.00059 0.0004 0.00024 0.00013 4.5e-005

10% 0.002 0.002 0.0018 0.0015 0.0011 0.00082 0.00051 0.00028 0.00013 4.6e-005

25% 0.0057 0.0051 0.0043 0.0032 0.0022 0.0014 0.00079 0.00037 0.00015 4.8e-005

50% 0.051 0.04 0.028 0.012 0.0052 0.0027 0.0013 0.00051 0.00017 5e-005

75% 0.34 0.27 0.19 0.067 0.016 0.0056 0.002 0.00072 0.00019 5.2e-005

90% 0.74 0.64 0.52 0.22 0.045 0.011 0.003 0.00095 0.00022 5.4e-005

95% 0.95 0.85 0.72 0.37 0.074 0.016 0.0037 0.0011 0.00024 5.6e-005

99% 1.4 1.2 1.1 0.73 0.15 0.03 0.0057 0.0015 0.00028 5.8e-005

Table 18: Variation in null alleles combined allele frequency fnull for the Expansion2 model. Similar

to Table S14.
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s 0 10−5 10−4.5 10−4 10−3.5 10−3 10−2.5 10−2 10−1.5 10−1

Mean 0.071 0.064 0.051 0.023 0.0055 0.0014 0.00041 0.00016 7.4e-005 1.7e-005

St.d. 0.19 0.18 0.16 0.091 0.028 0.0069 0.00082 0.00014 2.7e-005 2.1e-006

1% 5.3e-005 5.3e-005 5.3e-005 5.2e-005 5e-005 4.7e-005 4.4e-005 4.4e-005 3.3e-005 1.2e-005

5% 7.1e-005 7.2e-005 7.2e-005 7e-005 6.5e-005 6e-005 5.2e-005 5.3e-005 4e-005 1.4e-005

10% 9.2e-005 9.2e-005 9.2e-005 8.8e-005 8e-005 7.3e-005 6e-005 6e-005 4.5e-005 1.5e-005

25% 0.00018 0.00017 0.00017 0.00016 0.00014 0.00012 8.4e-005 7.7e-005 5.5e-005 1.6e-005

50% 0.00058 0.00056 0.00052 0.00043 0.00034 0.00026 0.00017 0.00011 6.9e-005 1.7e-005

75% 0.005 0.0039 0.003 0.0017 0.0011 0.00072 0.00041 0.00019 8.7e-005 1.8e-005

90% 0.26 0.22 0.15 0.029 0.0044 0.0021 0.00095 0.00032 0.00011 2e-005

95% 0.54 0.49 0.38 0.15 0.016 0.0043 0.0015 0.00044 0.00012 2.1e-005

99% 0.93 0.91 0.84 0.5 0.14 0.026 0.0037 0.00073 0.00016 2.2e-005

Table 19: Variation in disruptive alleles combined allele frequency fD for the European model.

Similar to Table S13.

s 0 10−5 10−4.5 10−4 10−3.5 10−3 10−2.5 10−2 10−1.5 10−1

Mean 0.21 0.19 0.15 0.068 0.019 0.0055 0.0016 0.00065 0.00017 4.7e-005

St.d. 0.33 0.3 0.27 0.15 0.051 0.013 0.0015 0.00032 3.7e-005 3.4e-006

1% 0.00029 0.00029 0.00028 0.00027 0.00025 0.00025 0.00027 0.0002 0.00012 3.9e-005

5% 0.0005 0.0005 0.00046 0.00043 0.00038 0.00036 0.00037 0.00027 0.00013 4.1e-005

10% 0.00076 0.00076 0.00069 0.00061 0.00053 0.00048 0.00046 0.00031 0.00013 4.2e-005

25% 0.002 0.0019 0.0017 0.0013 0.001 0.00088 0.00069 0.00042 0.00015 4.4e-005

50% 0.02 0.014 0.0091 0.0039 0.0025 0.0019 0.0012 0.00058 0.00017 4.7e-005

75% 0.31 0.26 0.18 0.046 0.0088 0.0044 0.002 0.0008 0.00019 4.9e-005

90% 0.71 0.64 0.55 0.24 0.048 0.011 0.0032 0.0011 0.00022 5.1e-005

95% 0.93 0.87 0.78 0.4 0.11 0.02 0.0043 0.0013 0.00024 5.2e-005

99% 1.4 1.3 1.1 0.74 0.26 0.064 0.0072 0.0017 0.00029 5.5e-005

Table 20: Variation in null alleles combined allele frequency fnull for the European model. Similar

to Table S14.
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s 0 10−5 10−4.5 10−4 10−3.5 10−3 10−2.5 10−2 10−1.5 10−1

Mean 0.073 0.065 0.053 0.024 0.0052 0.0014 0.00046 0.00016 5.8e-005 1.8e-005

St.d. 0.2 0.18 0.16 0.091 0.027 0.01 0.0051 0.0016 0.00014 3.7e-006

1% 2.7e-005 2.7e-005 2.7e-005 2.7e-005 2.7e-005 2.7e-005 2.6e-005 2e-005 2.1e-005 1.1e-005

5% 3.4e-005 3.4e-005 3.3e-005 3.3e-005 3.3e-005 3.2e-005 3.2e-005 2.5e-005 2.4e-005 1.2e-005

10% 3.8e-005 3.8e-005 3.8e-005 3.7e-005 3.7e-005 3.7e-005 3.6e-005 2.8e-005 2.7e-005 1.3e-005

25% 5e-005 5e-005 5e-005 4.8e-005 4.7e-005 4.6e-005 4.6e-005 3.6e-005 3.2e-005 1.5e-005

50% 7.9e-005 7.7e-005 7.6e-005 7.1e-005 6.6e-005 6.4e-005 6.2e-005 5.2e-005 4.1e-005 1.7e-005

75% 0.00062 0.00035 0.00024 0.00015 0.00011 0.0001 9.5e-005 8.2e-005 5.6e-005 2e-005

90% 0.27 0.22 0.16 0.047 0.00037 0.0002 0.00017 0.00014 8.2e-005 2.2e-005

95% 0.55 0.48 0.39 0.15 0.024 0.0005 0.00032 0.00022 0.00011 2.4e-005

99% 0.93 0.9 0.84 0.49 0.14 0.047 0.0044 0.0009 0.00034 2.9e-005

Table 21: Variation in disruptive alleles combined allele frequency fD for the Finland model. Similar

to Table S13.

s 0 10−5 10−4.5 10−4 10−3.5 10−3 10−2.5 10−2 10−1.5 10−1

Mean 0.21 0.2 0.15 0.069 0.017 0.0055 0.0019 0.00051 0.00016 5.5e-005

St.d. 0.33 0.31 0.27 0.15 0.049 0.022 0.01 0.0032 0.00031 6.1e-006

1% 0.00014 0.00014 0.00014 0.00014 0.00013 0.00013 0.00012 0.0001 7.1e-005 4.3e-005

5% 0.00017 0.00017 0.00017 0.00017 0.00016 0.00015 0.00014 0.00012 8e-005 4.6e-005

10% 0.0002 0.0002 0.0002 0.00019 0.00017 0.00017 0.00016 0.00013 8.7e-005 4.7e-005

25% 0.00029 0.0003 0.00027 0.00024 0.00022 0.00021 0.00019 0.00015 0.0001 5e-005

50% 0.035 0.031 0.0051 0.00049 0.00032 0.00028 0.00025 0.0002 0.00012 5.4e-005

75% 0.3 0.28 0.19 0.064 0.0012 0.0005 0.00039 0.00028 0.00015 5.8e-005

90% 0.71 0.67 0.53 0.23 0.061 0.004 0.00089 0.00047 0.00021 6.2e-005

95% 0.91 0.87 0.76 0.39 0.11 0.038 0.0028 0.00076 0.00027 6.5e-005

99% 1.4 1.3 1.1 0.77 0.24 0.12 0.054 0.0054 0.00071 7.2e-005

Table 22: Variation in null alleles combined allele frequency fnull for the Finland model. Similar to

Table S14.
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s 0 10−5 10−4.5 10−4 10−3.5 10−3 10−2.5 10−2 10−1.5 10−1

Mean 0.077 0.069 0.054 0.024 0.0054 0.0014 0.00044 0.00014 6.3e-005 1.4e-005

St.d. 0.2 0.18 0.16 0.085 0.02 0.0044 0.0017 0.00072 0.00021 2.1e-005

1% 0 0 0 0 0 0 0 0 0 0

5% 0 0 0 0 0 0 0 0 0 0

10% 4e-006 4e-006 4e-006 4e-006 4e-006 2e-006 2e-006 0 2e-006 0

25% 1.8e-005 1.8e-005 1.6e-005 1.4e-005 1.2e-005 1e-005 8e-006 8e-006 8e-006 4e-006

50% 0.00015 0.00012 9.4e-005 6.4e-005 4.4e-005 3e-005 2.2e-005 2e-005 2e-005 8e-006

75% 0.02 0.016 0.011 0.0051 0.0016 0.00016 6.8e-005 5e-005 4.8e-005 1.8e-005

90% 0.28 0.23 0.16 0.048 0.012 0.0042 0.00049 0.00012 0.00011 3.6e-005

95% 0.55 0.49 0.37 0.14 0.028 0.0084 0.0029 0.00031 0.0002 5e-005

99% 0.93 0.9 0.83 0.46 0.098 0.021 0.0089 0.0034 0.00081 9.6e-005

Table 23: Variation in disruptive alleles combined allele frequency fD for the Iceland model. Similar

to Table S13.

s 0 10−5 10−4.5 10−4 10−3.5 10−3 10−2.5 10−2 10−1.5 10−1

Mean 0.22 0.2 0.16 0.073 0.018 0.0054 0.0017 0.00054 0.00013 5.5e-005

St.d. 0.33 0.3 0.27 0.15 0.034 0.0086 0.0034 0.0014 0.00025 3.6e-005

1% 3.9e-005 3.6e-005 3.4e-005 2.8e-005 2.2e-005 1.8e-005 1.4e-005 1.2e-005 1.2e-005 6e-006

5% 0.0001 9.8e-005 9.2e-005 7.6e-005 6e-005 4.6e-005 3.2e-005 2.3e-005 2e-005 1e-005

10% 0.00026 0.00024 0.00018 0.00014 9.6e-005 6.6e-005 4.6e-005 3.2e-005 2.8e-005 1.8e-005

25% 0.0057 0.0052 0.0037 0.0019 0.00042 0.00015 8.2e-005 6.4e-005 4.2e-005 3.2e-005

50% 0.053 0.044 0.028 0.014 0.0058 0.0016 0.0002 0.00013 7e-005 4.8e-005

75% 0.31 0.27 0.2 0.07 0.019 0.0072 0.0015 0.0003 0.00013 7e-005

90% 0.73 0.67 0.55 0.22 0.051 0.015 0.0055 0.0012 0.00022 9.8e-005

95% 0.92 0.88 0.78 0.37 0.084 0.022 0.0087 0.0027 0.00035 0.00012

99% 1.4 1.3 1.2 0.74 0.17 0.041 0.016 0.0076 0.0012 0.00018

Table 24: Variation in null alleles combined allele frequency fnull for the Iceland model. Similar to

Table S14.
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9 RVAS Strategy 5: Using Gene Sets

Another attractive strategy is to move beyond single genes and study gene-sets. By aggregating

signal from multiple genes, we may potentially enhance the association signal and improve power.

Consider a simple approach for testing association with gene-sets, where we test for burden of

disruptive alleles in all genes in the set in cases vs. controls. Consider a set S with m genes,

with disruptive CAF f1, .., fm and effect sizes λ1, .., λm on disease. We define the total cumulative

frequency in the set fS =
∑

i fi, and the average excess effect size for the set is λavg =
∑
i fiλi
fS

.

Then, the sample size required to detect association is similar to eq. (3.6) for one gene, with the

frequency f replaced by
∑

i fi, and with the effect size λ replaced by βλ, where β is the (weighted)

fraction of genes having an effect, β ≡
∑
i fi1{λi=λ}∑

i fi
, giving:

na,b =
νa,b

4[(1 + λavg)fSlog(1 + λavg) + (1− (1 + λavg)fS)log
1−(1+λavg)fS

1−fS ]
. (9.1)

Compared to a single gene with cumulative frequency fC and effect size λ, the ratio of the two

sample sizes is,

na,b(fC , λ)

na,b
=

[(1 + λ)fC log(1 + λ) + (1− (1 + λ)fC)log 1−(1+λ)fC
1−fC ]

[(1 + λavg)fC log(1 + λavg) + (1− (1 + λavg)fS)log
1−(1+λavg)fS

1−fS ]
. (9.2)

Whether a gene set increase or decreases power depends on the extent to which it is enriched with

genes having large effect sizes.

Similarly, the gain in power due to missense alleles can be obtained by modifying eq. (5.3) ac-

cordingly. The study of gene-sets present a tradeoff - including more genes may increase the allele

frequency, but may decrease the average effect size. Using gene-set based on prior biological knowl-

edge (e.g. genes in a certain pathway, sharing a same function, or GWAS-hits) may allow increased

power.

If genes have different selection coefficients, effect sizes, and gene lengths, the situation becomes

more complicated. For example, it will no longer be optimal to filter alleles in different genes by

a single threshold. In this case, it is still possible to use gene-specific thresholds, and combine the

alleles obtained from different genes.
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10 RVAS Strategy 6: De novo Mutations

Another strategy is to study only de novo disruptive mutations. At a first glance, using de novo

alleles might seem counter productive, because their frequency in the population is so low. However,

this strategy may make sense in certain cases - namely when searching for genes with huge effect

sizes.

One advantage of de novo alleles is that we do not need to estimate the allele frequency, fC , from

population surveys: the frequency of de novo alleles depends only on is determined by the mutation

rate (and not the selection coefficient), which can be reliably estimated from genomic parameters,

as discussed above.

Consider a gene with disruptive mutation rate µD, and effect size λ. The sample size needed to

detect de novo alleles is obtained simply by replacing f with µD in eq. (3.7), giving,

na,b(de novo) ≈
νa,b

4µDg(λ)
. (10.1)

The average mutation rate of disruptive alleles in our typical gene is µD ≈ 1.7 × 10−6, although

there is considerable variation in rates between genes. Longer genes with higher overall mutation

rates will tend to have more de novo alleles, and will be slightly easier to detect.

In Figure S23, we plot the sample size needed to detect burden of de novo mutations, for a typical

gene. The sample size is huge unless the effect size is also huge. For our typical gene, more than

100, 000 cases must be studied for de novo mutations to detect a gene in which disruptive alleles

increase risk by 20-fold. In the case cited (autism with several mental disabilities), the effect size is

300-fold.

One benefit of using de novo alleles is that the proportion of null alleles will be higher (compared to

taking all missense alleles), and is insensitive to the selection coefficient - thus using de novo alleles

may be particularly attractive for genes under strong selection.
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Figure 23: The number of samples (cases) required to detect de novo alleles as function of effect

size 1 + λ (shown as different colored curves), and the overall genic mutation rate µD (x-axis).

We require 90% power and 0.05/20, 000 p-value cutoff. Power increases with both effect size and

mutation rate. Overall, the sample size is huge, unless effect size is strong and mutation rate is

high. For example, for an average gene (µD = 1.7× 10−6), and with 1 + λ = 20, the sample size is

over 100, 000 cases.
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11 Prospects for RVAS in Non-coding Regions

It is natural to want to extend RVAS to non-coding regions, especially in light of the observation

that the majority of known CVAS hits are non-coding. However, non-coding regions provide a

major challenge for RVAS. The main issue is which alleles to aggregate. The density of functional

alleles in non-coding regions is expected to be lower than in coding regions, and the effect size of

functional alleles is also expected to be lower.

If we let αNC be the fraction of bases encoding functional DNA elements in a non-coding region that

is aggregated for RVAS, the effect size of these functional alleles will be diluted by a factor of αNC .

We can use the same formulations from the two-class model describing missense alleles to study

non-coding alleles as well, including power calculations. If we take all alleles below a threshold T ∗

we get, similarly to eq. (5.3),

E[LLRnon−coding(T ∗)]
E[LLRnon−coding−functional]

∼ αNCΨs(T
∗)[(1 + ρs(T

∗)λ) log(1 + ρs(T
∗)λ)− ρs(T ∗)λ]

ρs(T ∗)[(1 + λ) log(1 + λ)− λ]
(11.1)

where E[LLRnon−coding−functional would be the aggregate effect size in an hypothetical case where

we know precisely the functional non-coding variants, and E[LLRnon−coding(T ∗)] would be the

aggregate effect size we use in practice, where we take all alleles with frequency below T ∗ in an

entire non-coding region. The resulting inflation in sample size will be between 1
αNC

and 1
α2
NC

,

depending on the effect size λ.

11.1 Multiple Hypothesis Burden for Genome-Wide Testing

When performing association tests across the entire genome, the burden of multiple hypothesis

testing is also increased relative to the situation of testing only genes. Suppose that we wish to

achieve an overall type-1 error of a = 0.05. When testing for association across 20, 000 individual

genes, one can simply apply a Bonferroni correction to set the required nominal significance level

at a/20, 000 = 2.5× 106.

When testing for association in overlapping windows across the entire genome, a different approach

is needed to calculate the required nominal significance level. Suppose that we study overlapping

windows Wi, each of length w base-pairs, and calculate for each window a test statistic Xi with a

Normal distribution under the null hypothesis of no association, and we are interested in one-sided

tests, i.e. detecting Xi’s values which are unusually large (Such a statistic arises naturally when

testing for excess of rare alleles observed in cases relative to the expected number based on a large

set of controls). To achieve genome-wide significance, we need to consider the distribution of X =

maxiXi under the null, where the maximum is taken across the entire human genome. The total

number of different tests is thus ∼3× 109 (equal to the number of positions in the human genome,

because a window can start at each nucleotide). Tests corresponding to non-overlapping windows
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can be considered independent (because of linkage disequilibrium among rare variants), while tests

corresponding to overlapping windows are clearly correlated, with the correlation proportional to

the extent of overlap. The effective number of independent tests is thus somewhere between 3×109

w

and 3× 109.

Considering the situation of family-based linkage analysis, Lander and Botstein [49] showed that the

nominal significance level corresponding to a desired genome-wide significance level can be calculated

in terms of the largest deviation of an Orenstein-Uhlenbeck diffusion process [50]. Briefly, an

Orenstein-Uhlenbeck process describes a stationary random process Y (t) for t ∈ [0, T ] such that (i)

Y (t) is a standard normal random variable for all t and (ii) the local correlation of Y (t) and Y (t+x) is

r(x) = e−|x|. According to [51] (Theorem 12.2.9., page 232), the distribution of M(T ) = max
t∈[0,T ]

Y (t),

the maximum value of the process across an interval of length T , is asymptotically

P [M(T ) > u] ∼ Tuφ(u) ∼ Tu2[1− Φ(u)] (11.2)

where φ(u) is the standard Gaussian probability density function, and Φ(u) is the standard Gaussian

cumulative distribution function.

In the case of RVAS, the statistics Xi together approximately follow an Orenstein-Uhlenbeck dis-

tribution (after rescaling the x-axis by a factor of 1
w and ignoring the division of the genome into

23 chromosomes). The local correlation function r(x) = max
(

0, 1 − |x|w
)

is triangular rather than

exponential, but can be reasonably approximated by the exponential e−|x|/w. (One can also directly

study the triangular covariance function; see for example [52].)

With this approximation, the large deviation theory for the Orenstein-Uhlenbeck process implies

that the cumulative distribution of X is given by

P (X > x) ≈ 3× 109

w
x2
(

1− Φ(x)
)
. (11.3)

(This formula follows from eq. (11.2) above. It is equivalent to Proposition 2 in [49], where the for-

mula is expressed in terms of chi-square, rather than Gaussian, test statistics; the two formulations

are equivalent by a simple square transformation).

With w = 4 kilobases and a = 0.05, we have following equation,

0.05 = 750, 000x2
(

1− Φ(x)
)
. (11.4)

The solution (obtained numerically) is x ∼ 5.9. This corresponds to a genome-wide significance

level of (1− Φ(x)) ≈ 1.9× 10−9, which is much more stringent than the value 2.5× 10−6 required

to control for testing 20, 000 genes.
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The sample size when testing using a Gaussian test-statistic (Z-score) is proportional to
(

Φ−1(a) +

Φ−1(b)
)2

, where a is the desired type-1 error, b is the desired type-2 error, and Φ−1 is the inverse

of the standard Gaussian cumulative distribution function (Z-value). For the case of 50% power

(b = 0.5 and Φ−1(b) = 0) and family-wise error rate of 0.05, we have
(

Φ−1(a) + Φ−1(b)
)2
≈

(−4.6 + 0)2 = 20.8 when testing 20, 000 genes and
(

Φ−1(a) + Φ−1(b)
)2
≈ (−5.9 + 0)2 = 34.7 when

scanning the entire genome. Thus, 1.66-fold more samples are required when scanning the genome

in windows of 4 kb than when testing 20, 000 genes. The corresponding numbers for 90% power

(b = 0.1 and Φ−1(b) = −1.3) are 34.2 and 51.4, corresponding to a 1.5-fold increase in sample size.
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12 Estimating the Parameters s and α in the Two-class Model

In our analyses, we have assumed that we know the (gene-specific) parameters s and α in our

two-class model. In practice, these parameters are unknown and must be estimated. We provide

estimators for s and α, and discuss their shortcomings - which are especially serious in the case of

α.

12.1 Estimating s

We can estimate s from the frequency fD of disruptive alleles. For strong selection, we can use

equation (1.14) to obtain:

ŝ =
µD
fD

(12.1)

To know if the estimator is useful, we need to understand its variance. There are two sources of

variation:

1. Sampling noise in our estimation of the true value of fD in the population. This variation can

be made arbitrarily small by increasing the sample size.

2. Stochastic noise in the realized value of fD around its expected value (given s), resulting

from random events during population history (e.g., two genes with the same s might reach

different allele frequencies due to stochastic variation in the random births of new alleles).

This variation cannot be reduced by increasing the sample size, but rather is determined by

population history.

Suppose that we use equation (12.1) to infer the selection coefficient s, based on the observed

frequency fD of disruptive alleles. Let s(x, y) be the value of s, such that Prob(ŝ ≥ x) = y. We can

define a 95% confidence interval for s around ŝ to be [s(ŝ, 0.025), s(ŝ, 0.975)] and a ”median” value

to be s(ŝ, 0.50).

Figure S24 shows that confidence interval and median value for various values of ŝ for the European

population. For ŝ > 7×10−3, the confidence interval is acceptably tight for our purposes - a factor of

∼9-fold between the upper and lower bound. By contrast, it is hard to obtain good estimates when

selection is weak: the size of the confidence interval (relative to the median) blows up. Fortunately,

we care primarily about the case of strong selection.

One way to improve the estimator would be to combine estimates from multiple unrelated popula-

tions.
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fC

. Europe

 

 

Median ŝ
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Figure 24: Confidence intervals around estimated value of s. The y-axis shows true values of s,

while the x-axis shows values of ŝ. Given an estimate ŝ, the curves show the upper confidence

limit s(ŝ, 0.975), the lower confidence limit s(ŝ, 0.025), and the median s(ŝ, 0.50). Values obtained

from 8, 000 simulations for the European population model, assuming µG = 1.7 × 10−6. Note:

The estimator ŝ = µD
fD

is biased upwards. Although E[fD] = µD
s , we have s < E[µDfD ] by Jensen’s

inequality applied to the function 1
x , giving E[ 1

x ] > 1
E[x] .

82



12.2 Estimating α

One approach is to estimate α based on population data by comparing fM , the observed CAF for

missense alleles (fM ), to fM∗ , the CAF that would be expected if all missense alleles were neutral.

We have:

fM = fM,neutral + fM,null (12.2)

For a population at equilibrium and strong selection, we can write (by Proposition 2):

E[fM ] ≈ (1− α)fM∗ + α
µM
s

≈ (1− α)4NeqµM + α
µM
s

(12.3)

where Neq is the equilibrium population size for the ancestral human population.

Moreover, this approximation also holds, in expectation, for modern populations (because, as shown

above and in the main text, the CAF is essentially unchanged by recent human demography).

We can neglect the term fM,null ≈ αµMs in eq. (12.3) because

(1− α)4NeqµM
α(µM/s)

=
1− α
α

4Neqs� 1 (12.4)

provided that selection is strong. (For very weak selection, one could include the term.)

We can thus solve eq. (12.3) for α to obtain

α ≈ 1− E[fM ]

4NeqµM
. (12.5)

This provides an estimator α̂:

α̂ = 1− fM
4NeqµM

. (12.6)

The variation in the estimator α̂ depends on the variation in the CAF for neutral missense alleles.

As for s above, there are two sources of variation: (i) sampling noise, which can be decreased by

increasing sample size and (ii) stochastic variation in population history, which cannot be reduced

by increasing sample size.

As shown in Tables S13-S24, the coefficient of variation in the CAF under neutrality is large: the

standard deviation is roughly equal to the mean. This inherently limits the precision in estimates

of α.

Another approach is to estimate α based on evolutionary comparison, using the estimator:

α̂evo. =
dN

dS
(12.7)
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where dN denotes the number of non-synonymous (missense) substitutions per non-synonymous

site, and dS denotes the number of synonymous (silent) substitutions per synonymous site.

If our two-class model is strictly true, this estimator should perform well - because evolution will

largely reject null alleles and allow neutral alleles. Thus, the ”proportional deficit” in missense

alleles (relative to silent alleles) will be an accurate reflection of α.

A problem arises, however, if there are also hypomorphic alleles (between null and neutral). Evo-

lution will reject hypomorphic alleles when s� 1
Neff

, where Neff is the effective population size of

the species. For species with large population sizes, evolution will tend to reject alleles under weak

selection. For example, evolution will tend to reject alleles with s = 10−4 in a population with 105

individuals.

In this case, the estimator based on evolution may overestimate the true proportion α of newborn

mutations that are truly null. Still, it is still useful to have an upper bound on α.

Improved methods for estimating s and α would be useful.
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13 Estimating Variance Explained by Rare Variants

A major open question is the extent to which rare variants contribute to the heritability of complex

diseases. To answer this question, we must be able to estimate the heritability explained by rare

variants found in RVAS. Here, we provide the simple formula for variance explained for dichotomous

trait. We then apply this to two studies of rare variants in two diseases, and calculate the variance

explained by different classes of alleles.

13.1 Calculating Variance Explained

For a disease with prevalence π and an individual allele with frequency fi and effect size λi, the

contribution to heritability for a disease trait is,

Vi =
2fi

1− 2fi

π

1− πλ
2
i . (13.1)

Therefore, for a class of null alleles with CAF fnull and effect size λ, the total variance explained

by the class when fnull is small is,

V ≈ 2fnull
π

1− πλ
2. (13.2)

13.2 Sample Size Required to Detect Loci Explaining a Given Proportion of

the Phenotypic Variance

We can calculate the number of samples needed to detect genes that explain a given proportion

of the phenotypic variance of a dichotomous trait. The power to detect an association of a class

of alleles is directly related to the total phenotypic variance explained by these alleles. Consider a

gene with classes of disruptive (D) and (all) null alleles, with combined frequencies fD and fnull,

respectively, and effect size λ.

By taking eq. (13.2) for the variance explained by all null alleles, and eq. (3.7) for the sample size

required when testing for disruptive alleles we get,

na,b ≈
[
NCP ∗(a, b)

fnull
fD

π

1− π
] λ2

g(λ)

1

V
. (13.3)

Therefore, for a set of alleles with combined variance explained V , the sample size is proportional

to λ2

g(λ) . The function λ2

g(λ) is monotonically increasing with λ. If the effect size λ is small, λ2

g(λ) ≈2

and the sample size is not sensitive to the effect size. For large values of λ, the sample size increases

as we increase λ and keep the variance explained fixed (by decreasing the allele frequencies). The

maximum possible sample size occurs for the largest possible effect size, which corresponds alleles
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causing full penetrance, i.e. π(1+λ) = 1 or λ = 1−π
π . In this case we get g(λ) = g(1−π

π ) = π−1−log(π)
π

and

n
(MAX)
a,b (V ) ≈ NCP ∗(a, b) π − 1

log(π) + 1− π
[
1 + α

µM
µD

] 1

V
(13.4)

where we recall that a fraction α of missense alleles at birth is null, hence fnull
fD

= 1 + αµMµD . For

example, suppose that we want to identify genes explaining at least 1% of the phenotypic variance

(with significance thresholds of a = 0.05/20, 000 and b = 0.1 , and taking α = 0.25 and µM
µD

= 7.3).

We have π−1
log(π)+1−π = 0.27, 0.46 and 0.64 for π = 0.01, 0.05, 0.10. These correspond to sample sizes

of 2775, 4707, and 6503 cases, respectively. Once we attain these sample sizes, we ar thus reasonably

confident that we will have identified all genes explaining at least 1% of the phenotypic variance.

13.3 Estimating heritability explained by rare variants for two traits

For two recent RVAS studies that detected association with candidate genes, we calculate the

proportion of phenotypic variance explained by rare variants in the genes. In each study, the

authors designated the class of alleles that they believe to be deleterious - based on frequency and

either (i) genetic and evolutionary data (in the first case) or (ii) biochemical data (in the second

case). In calculating the proportion of the phenotypic variance explained, we use this class as the

class of null alleles.

13.3.1 Blood Pressure [Ji et al 2008]

Ji et al. [45] studied association between blood pressure and rare variants in three genes (SCL12A3,

SCL12A1, and KCNJ1) in which strong mutations cause Bartter’s or Gittleman’s syndrome, rare

recessive diseases in which patients have extremely low blood pressure.

The authors defined (i) rare variants as being those with population frequency ≤ 1% and (ii)

deleterious rare variants as being the subset of rare variants occurring at sites that are evolutionarily

conserved and/or are known to cause Bartter’s or Gittleman’s syndrome. For deleterious rare

variants, the total counts are 27, 11 and 12 and the allele frequency is 0.43%, 0.17% and 0.19% for

SLC12A3, SLC12A1 and KCNJ1, respectively.

The authors studied 3126 individuals from the general population with respect to blood pressure

and rare variants in the three genes.

We converted blood pressure into a set of dichotomous traits, by considering individuals with

blood pressure in the top 10%, 20%, 30%, 40% and 50% of the sample as well as the bottom

10%, 20%, 30%, 40% and 50% of the sample (based on Table 3 from their paper). Our results

are shown in Table S25.
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Rare variants in the three gene together explain ≈ 0.1%−0.5% of the phenotypic variance in the

dichotomous traits, depending on the percentile chosen. The average proportion explained by each

gene is thus 0.04%−0.17%. The proportion of the phenotypic variance explained is similar if blood

pressure is treated as a quantitative trait.
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Gene Cases Unaffecteds 1 + λ V

n 313 (top 10%) 2813 (bottom 90%)

SLC12A3 (CAF=0.43%) 1 26 1.08 0.051%

SLC12A1 (CAF=0.17%) 0 11 1.13 0.056%

KCNJ1 (CAF=0.19%) 0 12 1.15 0.074%

All 3 Genes (CAF=0.79%) 1 49 1.11 0.17%

n 626 (top 20%) 2500 (bottom 80%)

SLC12A3 3 24 1.12 0.052%

SLC12A1 1 10 1.16 0.035%

KCNJ1 1 11 1.18 0.051%

All 3 Genes 5 45 1.15 0.13%

n 939 (top 30%) 2187 (bottom 70%)

SLC12A3 3 24 1.28 0.16%

SLC12A1 1 10 1.33 0.085%

KCNJ1 1 11 1.35 0.11%

All 3 Genes 5 45 1.31 0.35%

n 1252 (top 40%) 1874 (bottom 60%)

SLC12A3 5 22 1.37 0.18%

SLC12A1 1 10 1.55 0.15%

KCNJ1 1 11 1.58 0.19%

All 3 Genes 7 43 1.46 0.5%

n 1453 (top 50%) 1673 (bottom 50%)

SLC12A3 7 20 1.4 0.14%

SLC12A1 2 9 1.56 0.11%

KCNJ1 1 11 1.77 0.22%

All 3 Genes 10 40 1.52 0.43%

Table 25: Phenotypic variance explained by rare variants in the SCL12A3, SCL12A1, and KCNJ1

genes for various dichotomous traits defined by blood pressure. The table shows the number of

deleterious rare variants in ’cases’, relative risk and proportion of variance explained. This page

shows ’cases’ at the top percentiles of blood pressure levels (hypertension). The next page shows

’cases’ at the bottom percentiles of blood pressure levels (hypotension).
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Gene Cases Unaffecteds 1 + λ V

n 313 (bottom 10%) 2813 (top 90%)

SLC12A3 (CAF=0.43%) 3 24 1.12 0.0014%

SLC12A1 (CAF=0.17%) 2 9 1.85 0.028%

KCNJ1 (CAF=0.19%) 4 8 3.44 0.25%

All 3 Genes (CAF=0.79%) 9 41 1.83 0.12%

n 626 (bottom 20%) 2500 (top 80%)

SLC12A3 6 21 1.12 0.0031%

SLC12A1 2 9 0.926 0.00047%

KCNJ1 5 7 2.15 0.12%

All 3 Genes 13 37 1.32 0.041%

n 939 (bottom 30%) 2187 (top 70%)

SLC12A3 10 17 1.25 0.022%

SLC12A1 3 8 0.926 0.0008%

KCNJ1 6 6 1.72 0.083%

All 3 Genes 19 31 1.29 0.056%

n 1252 (bottom 40%) 1874 (top 60%)

SLC12A3 13 14 1.21 0.026%

SLC12A1 5 6 1.16 0.0057%

KCNJ1 9 3 1.94 0.22%

All 3 Genes 27 23 1.37 0.15%

n 1673 (bottom 50%) 1453 (top 50%)

SLC12A3 20 7 1.4 0.14%

SLC12A1 9 2 1.56 0.11%

KCNJ1 11 1 1.77 0.22%

All 3 Genes 40 10 1.52 0.43%

Table 19: Phenotypic variance explained by rare variants for various dichotomous traits defined by

blood pressure. (cont.)
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13.3.2 Type 2 Diabetes [Bonnenfond et al. 2012]

Bonnefond et al. [41] studied association between Type 2 Diabetes and rare variants in MTNR1B.

By sequencing the genes in 2186 cases and 4804 controls, they found 40 non-synonymous variants

associated with the disease. They performed biochemical assays to study the biochemical conse-

quences of each variant on protein function.

Their strongest signal came from a class of 12 variants that they classified as ”Loss of Function

variants with MAF < 0.1%”. They observed 15 counts in cases and 13 counts in controls.

This corresponds to a frequency fnull = 0.4% and a relative risk of 1 + λ = 2.5. The proportion of

variance explained is 0.2%.

[Note: The authors reported a somewhat higher relative risk, based on using the KBAC method

[30]. The KBAC method gives more weight to lower frequency alleles, based on the notion that

they are more likely to be deleterious. The effect of applying the KBAC method to these data is

to down-weight the influence of one specific missense allele (L60R, which appears in 5 cases and

6 controls). However, the KBAC does not seem appropriate in this case because the authors used

biochemical assays to determine which alleles are non-functional: it is problematic to exclude alleles

determined biochemically to be non-functional simply because they have higher frequency.]
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14 Consequences and Limitations of our Framework

Our simple framework was chosen to maximize insight and intuition. However, it is important to

address the limitations of the framework:

1. Two-class model

We assumed above that missense mutations are either null or neutral. We ignored hypomor-

phic missense alleles, treating them as neutral for the purposes of our analysis. Hypomorphic

missense alleles would be expected to contribute only modestly to the power of RVAS because

(i) population genetic analyses indicate that the selection coefficients for typical hypomorphic

alleles are in the range 10−3−10−4 [15, 53, 54], which corresponds primarily to common rather

than rare variants, and (ii) the effect sizes for hypomorphic alleles are likely to be smaller,

giving rise to smaller enrichment in cases. We tested this expectation by studying a three-class

model involving null, hypomorphic and neutral alleles and confirmed that the contribution of

hypomorphic alleles is indeed small (see Section 5.1). While likely to contribute little power,

hypomorphic missense alleles may seriously skew estimates of effect size based on missense

alleles. This consideration strengthens the case for basing estimates of effect size on disruptive

alleles.

We have also ignored the potential role of countervailing missense alleles, which act in the

opposite direction as null alleles (for example, protective missense alleles in the case that null

alleles are deleterious). While countervailing alleles are known to occur and may be highly

informative, we expect that the most missense alleles will act in the same direction as null

alleles. If desired, our framework could be extended to allow for a proportion of alleles to

have countervailing effects. Countervailing alleles would tend to decrease the power of burden

tests, because they are decrease the imbalance of missense alleles between cases and controls.

”Dispersion tests” have been proposed as a way to simultaneously detect both risk-increasing

and risk-decreasing alleles [27, 40]. While our simple two-class model may be appropriate for

the purpose of discovering gene association, once a gene has been implicated by RVAS it will

be important to consider carefully the possibility of hypomorphic and countervailing alleles.

2. Constancy of selection

We assumed that the selection coefficient s has not changed over time. However, changes

associated with civilization (such as abundant food, population density and differences in

exposure to microorganisms) may have increased the prevalence of certain diseases (such as

diabetes, hypertension and autoimmune diseases). Alleles that were once neutral or advan-

tageous may thus have become deleterious in the past several thousand years. In such cases,

the allele frequency distributions will still largely reflect the ancestral selection regime - un-

less the modern selection is extremely strong. For the median allele in a neutral distribution

(minor allele frequency ∼ 25%) to become rare (< 0.5%) requires nearly 4, 000 generations

(∼ 100, 000 years) if s = 10−3 and nearly 400 generations (∼ 10, 000 years) if s = 10−2, but
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only 40 generations (∼1, 000 years) if s = 10−1.

3. Fixed frequency threshold

We considered burden tests that count alleles with frequency below a pre-specified (although

gene-specific) threshold. Various authors have discussed ways to use frequency-based weights,

to optimize the allele frequency threshold based on data, or to use variable thresholds [28–35].

4. Unrelated individuals

We assumed that cases are unrelated. It may be possible to increase power by studying

affected relatives from families with unusually high disease prevalence, because such families

may harbor alleles with especially high penetrance, corresponding to high values of λ and

greater power. There are two issues with this approach. First, the increase in power from

larger must be balanced against the considerable challenge of ascertaining relatives from a

very large collection of enriched families. Second, familial enrichment may reflect shared

environment rather than shared genetics.

5. Discrete traits

We considered only discrete traits - such as having a disease or being in the top 5% of the

tail of the distribution for a quantitative trait. Most RVAS studies have been of this type.

Various authors have considered the analysis of purely quantitative traits (e.g. [42, 45]).

6. Role of environment

We ignore the role of environment, including genotype x environment interaction. Environ-

mental factors cannot be readily studied in case-control studies. They are best explored in

large prospective cohorts, with extensive information about exposure.
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