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Abstract

We define here the Montgomery Exponent of or-
der s, modulo the odd integerN , by MEXP =
MEXP(A,X,N, s) = AX2−s(X−1) (mod N), and il-
lustrate some properties and usage of this operator.
We show howAX (mod N) can be obtained from
MEXP(A,X,N, s) by one Montgomery multiplication.
This provides a new modular exponentiation algorithm that
uses one Montgomery multiplication less than the number
required with the standard method. The resulting reduction
in the computation time and code size is significant when
the exponentX is short (e.g., modular squaring andRSA
verification). We also illustrate the potential advantage in
performance and code size when known cryptographic ap-
plications are modified to allow for usingMEXP as the
analogue of modular exponentiation.

Keywords: Montgomery multiplication, modular expo-
nentiation, efficient implementations.

1 Introduction

The Montgomery multiplication ([9]), defined as
MMUL(A,B,N) = AB2−n (mod N), wheren is the
bitlength of the odd modulusN , is considered to be one
of the most efficient methods for implementing modular
arithmetic operations. It is therefore widely used in hard-
ware implementations of public key cryptosystems, such as
smartcards.

The Montgomery multiplication method has attracted
substantial attention in attempts to improve the algorithm,
or to efficiently use it as a building block for long opera-
tions (e.g., [14] [7]). Attacks that exploit the final (con-
ditional) reduction step of the Montgomery multiplications
have been proposed (e.g., [12]). Of particular interest were
methods for chaining Montgomery multiplications in a way

that the output and input share the same bounds, and meth-
ods for avoiding the final reduction step. Few examples are
[1], [2], [13], [10], [5]. In a different context, the Mont-
gomery inverse,a−12n (mod N), was defined in [4], and
later revisited in [6]. This operator has some applications,
and can also be viewed as the analogue of modular inver-
sion, performed in the Montgomery domain.

The advantage of using Montgomery multiplication is
greatly appreciated in real applications that compute mod-
ular exponents. The related procedure (details are given
in Section 2) involves an initial conversion to the Mont-
gomery domain and a final conversion to the real domain
after the computations are carried out. It also requires pre-
computation and storage for a particular conversion con-
stant. For long exponents (e.g.,RSA private key opera-
tions), the overhead is negligible, but in other situations
(e.g.,RSA public key operations) it may not be the case.

The purpose of this paper is (a) to define the Mont-
gomery Exponent operator which is analogous to modu-
lar exponentiation, but carried out completely in the Mont-
gomery domain, (b) to demonstrate the potential applica-
tions of this operator.

2 Preliminaries and Notations

All the discussed quantities in this paper are positive
integers, where the binary representation of an integer
M is denoted by them = 1 + blog2 Mc bits string
[Mm−1...M1M0], with M0 being the least significant bit.
For two integersX, Y , we writeX = Y (+N) if either
X = Y or X = Y + N , and the notationX = Y (−N) is
analogous.N denotes an odd integer (modulus).

Definition 1 (Non Reduced Montgomery Multi-
plication). The Non Reduced Montgomery Mul-
tiplication of order s, of A, B, modulo (odd) N
is NRMM = NRMM(A,B, N, s) =

(
AB +(

−ABN−1 (mod 2sN)
) )/

2s.



Definition 2 (Conversions to/from Montgomery do-
main). The image in the (orders) Montgomery domain,
of an integerX (given in the real domain) is the integer
X ′ = NRMM(X, H,N, s), whereH = 22s (mod N) is
called the conversion constant. The image in the real do-
main, of an integerY ′ (given in the Montgomery domain)
is Y = NRMM(Y ′, 1, N, s)

Property 1 (see [5]). Assume thats ≥ n + 2,
(a) If X < 2N thenX ′ = X2s (mod N) (+N).
(b) If A,B < 2N , thenNRMM(A,B,N, s) < 2N .
(c) If Y ′ < 2N thenY = NRMM(Y ′, 1, N, s) = Y ′2−s

(mod N).

From Property 1a, it follows that the conversion to the
Montgomery domain, of inputs that are bounded by2N ,
maintains the same upper bound. Property 1c shows that the
conversion back to the real domain, of inputs that bounded
by 2N , returns a reduced result bounded byN . Using
the fact that(AB)′ = NRMM(A′, B′, N, s), together with
Property 1b it follows that modular exponentiation can be
computed by the following steps:

Algorithm 1: (Modular exponentiation usingNRMM)
Input: A, X, N .
Pre-Calculation: Chooses ≥ n + 2;
computeH = 22s (mod N).
1.1 ConvertA to the Montgomery domain:

A′ = NRMM(A,H, N, s).
1.2 Perform appropriate sequence ofNRMM’s (e.g.,

square-and-multiply).
1.3 Convert back to the real domain:

T = NRMM(result, 1, N, s).
1.4 ReturnT .

The advantage of using Algorithm 1 to computeAX

(mod N) stems from the fact that the bit level algorithm
for computingNRMM involves only additions and divi-
sions by2, and relies only on the least significant bit of
the accumulator (S). This allows for computations using
carry-save (redundant) arithmetic, which makes the imple-
mentation (especially in hardware) very efficient.

Algorithm 2: (A bit level algorithm for computing
NRMM(A,B,N, s))
Input: N (odd),A, B < 2N , s ≥ n + 2

2.1 S = 0

2.2 Fori from 0 to s− 1 do
2.3 S =

(
S + AiB + (S0 + AiB0)N

)/
2

2.4 End For
2.5 ReturnS

Remark 1 (Modular exponentiation via classical
MMUL). The classical way of computing modular expo-
nents by means ofMMUL uses Algorithm 1 withs = n,
and MMUL operations instead ofNRMM. In this case,

theMMUL’s are computed by Algorithm 2 with the inclu-
sion of the following reduction step after step 2.4:if S >
N then S = S − N . This reduction step guarantees
that MMUL(A,B, N) < N if A,B < N , so the result
of MMUL has the same bound as its input, and the ex-
ponentiation algorithm can be applied. The drawback of
this method is the need for repeated (conditional) reduc-
tion steps after each multiplication. These affect the per-
formance and the cost of the related hardware implemen-
tation. Further, the conditional reductions turn out to leak
undesired information which can be used for cryptographic
attacks (e.g., [12]).

3 The Montgomery Exponent

We are interested here in implementations of public key
cryptosystems (performing modular exponentiation) that
operate in environments having extremely limited hardware
and software resources (e.g., smartcards). We note that
although Algorithm 1 is a very efficient approach, it car-
ries the overhead involved with the conversion to and from
the Montgomery domain, at the performance and code size
cost of twoNRMM operations. Further, dedicated code is
needed for computing the conversion constantH, and stor-
age space is required for storing it.

In some situations, particularly when the exponent is
short, and when code size is of major concern, this overhead
is not necessarily negligible. This motivates the definition
and use of an operator which is analogous to modular expo-
nentiation, but carried out completely in the Montgomery
domain, in a way that domain conversions are eliminated.

Definition 3 (The Montgomery Exponent). (a) The Mont-
gomery Exponent of orders, of A to the powerX modulo
N , is

MEXP = MEXP(A,X,N, s) =

AX2−s(X−1) (mod N) = (A2−s)X2s (mod N).
(1)

(b) An algorithm for computing the Montgomery Exponent
is the following:

Algorithm 3: (ComputingMEXP)
Input: N (odd),A < 2N , X, x = 1+blog2 Xc, s ≥ n+2.
Output:MEXP(A, X, N, s)

3.1 T = A

For i fromx− 2 to 0 do
3.2 T = NRMM(T, T, N, s)

3.3 If Xi = 1 thenT = NRMM(T, A, N, s)

End For
3.4 If (T > N ) T = T −N (Final reduction step)
3.5 ReturnT

(c) The Nonreduced Montgomery ExponentNRMEXP =
NRMEXP(A,X,N, s) is the result of Algorithm 3, when



the final reduction step (3.4) is omitted. It follows that
NRMEXP(A,X,N, s) = MEXP(A,X,N, s) (+N).

Lemma 1. Algorithm 3 returnsMEXP(A,X,N, s).

Proof. We show the correctness of Algorithm 3 by induc-
tion. From steps 3.2 and 3.3 we conclude

T = T 2+Xi2−s(1+Xi) (mod N) (+N). (2)

Since by definition,Xx−1 = 1, we have, after step(x− 2),

T ≡ A2+Xx−22−s(1+Xx−2) =

A2Xx−1+Xx−22−s(2Xx−1+Xx−2−1) (mod N). (3)

Using 2 we can get by induction, after stepi,

T ≡ A
∑x−1

j=i 2j−iXj 2−s(
∑x−1

j=i 2j−iXj−1) (mod N). (4)

Taking i = 0 givesT ≡ AX2−s(X−1) (mod N). From
Property1b it follows thatT < 2N throughout the compu-
tations, thus the final reduction step 3.4 yields the desired
result.

Remark 2 (A classical definition forMEXP). The choice
s ≥ n + 2 in Algorithm 3 guarantees that the reduction
step is required only once, at the end of theNRMM se-
quence. Clearly, the same result is obtained if a reduc-
tion step is applied at the end of each multiplication (i.e.,
steps 3.2 and 3.3). With repeated reductions one can choose
s = n (and nots ≥ n + 2) and replace allNRMM opera-
tions by standardMMUL’s. We call the result of this com-
putation, namelyAX2−n(X−1) (mod N) = (A2−n)X2n

(mod N), a “classical Montgomery exponent”. For obvi-
ous practical reasons, we use heres ≥ n+2 for computing
MEXP.

Example 1. NRMEXP andMEXP can be different even
whenA < N :

MEXP(111, 34, 119, 9) = 15

NRMEXP(111, 34, 119, 9) = 134 = 15 (+119)

Remark 3 (Comparing Algorithms 1 and 3). Compared
with the cost of computing modular exponents (via Algori-
htm 1),MEXP computation has the following advantages:

1. No need to (pre)compute a conversion constant (H).

2. No need to storeH.

3. No need for conversions to/from the Montgomery do-
main (twoNRMM’s).

4. Code size and HW control are reduced.

4 Modular exponentiation with MEXP

Lemma 2 below, shows how to use theMEXP operator
for modular exponentiation.

Lemma 2. If G = 2sX (mod N) then

AX (mod N) =

NRMM(NRMEXP(A,X,N, s), G) (−N). (5)

Proof. Denote

T = NRMEXP(A,X,N, s) =

AX2−s(X−1) (mod N) (+N). (6)

Using the definition, we have

NRMM(T,G, N, s) =

AX2−s(X−1)2sX2−s (mod N) (+N) =

Ax (mod N) (+N). (7)

Lemma 2 and Algorithm 3 provide an alternative expo-
nentiation algorithm. Compared with Algorithm 1, the new
method requires one lessNRMM operation.

Note that a final reduction step is required because the
result in (7) is not necessarily reduced. For example,N =
119 A = 109 X = 26 gives AX (mod N) = 10926

(mod 119) = 2. UsingNRMEXP, we haves = n+2 = 9,
G = 106, NRMEXP(109, 26, 119, 9) = 86, and finally
NRMM(86, 106, 119, 9) = 121 = 2 (+119). Indeed,
one subtraction is required to obtain the reduced result. We
point out that the cost of the (single) reduction step is much
smaller than the cost of anNRMM operation.

The relative advantage in code size and performance de-
pends on the length of the exponent. For example,RSA
private key operations use long exponents and the saving
is negligible. However, the relatedRSA public key opera-
tions use short exponents (typically216 +1 having17 bits),
and eliminating one multiplication may be significant. The
extreme case is modular squaringA2 (mod N).

4.1 Application 1: Modular Multiplication (and
modular squaring)

Using lemma 2, the algorithm for computing mod-
ular multiplication reduces from three multiplications
(Algorithm 1) to only two as follows: a. T =
NRMM(A,B,N, s), b. T = NRMM(T,G, N, s). Note
also that in this case, the pre-computed constantG = 22s,
equals to the conversion constantH associated with the
standard method.



The applications: various cryptographic applications use
modular multiplication (typically modular squaring) as a
core operation, and our proposed method can be more effi-
cient. Two such examples are the Fiat-Shamir identification
scheme [3], and the Rabin encryption system [11].

5 UsingMEXP with Appropriately Changed
Protocols

Here we show how theMEXP operator can be used as
the analogue of modular exponentiation in cryptographic
protocols, if these are modified appropriately. This provides
a protocol which is more efficient than the original one.
Also, we show in the examples that the appropriately
changed protocols can be defined in a way that some
of the final reductions of theNRMM operations can be
eliminated.
We use the following lemma:

Lemma 3. ∀A ≤ 2N,X, Y, s, andΦ = Φ(N) being Eu-
ler’s Phi function, we have :
a.

NRMEXP(NRMEXP(A,X,N, s), Y,N, s) =

NRMEXP(A,XY, N, s) (±N)

b.
NRMEXP(A,Φ(N), N, s) = A (+N)

Proof. a.

NRMEXP(NRMEXP(A,X,N, s), Y,N, s) =

NRMEXP(AX2−s(X−1) (mod N), Y,N, s) =

(AX2−s(X−1))Y 2−s(Y −1) (mod N) =

AXY 2−s(XY −1) (mod N) =

NRMEXP(A,XY, N, s) (mod N) (8)

b.

MEXP(A,Φ(N), N, s) = AΦ(N)2s(1−Φ(N)) (mod N) =

(A2−s)φ(N)2s (mod N) = A2−s2s (mod N) =

A (mod N) (9)

Corollary 1.

MEXP(NRMEXP(A,X,N, s), Y,N, s) =

MEXP(NRMEXP(A, Y, N, s), X,N, s) (10)

5.1 Application 2 : Fiat-Shamir Scheme

TheFS identification scheme can be changed as follows.

Scheme 1: (Montgomery-Fiat-Shmair Identification
Scheme)
(Step 0) Public key : N = PQ for some primesP and Q,

andXi = f(I, ji) i = 1, . . . k, whereI represents Alice’s
identity (e.g., biometric signatures), and theji’s are chosen
small numbers such that theXi’s are quadratic residues
modulo N . Private key (known to Alice) isP , Q, and
Si =

√
Xi (mod N), i = 1, . . . k

Repeat the followingt times:
Step 1: Alice chooses (uniformly) a random number

R ∈ [0, N − 1], computesZ = NRMM(R, R, N, s)
and sendsZ to Bob.

Step 2: Bob sends Alicek Bits e1, . . . , ek.
Step 3: Alice sendsα = NRMM(R,

∏
ei=1

Sei
i , N, s) where here∏

denotes a chain ofNRMM(∗, ∗, N, s) operations
Step 4: Upon receiving α, Bob verifies that

NRMM(NRMM(α, α, N, s),
∏

ei=1

Xi, N, s) = Z (+N)

If all t verifications are correct, Bob accepts Alice’s identity.

The computational cost of this proposed scheme is
smaller than that of theFS scheme. Step1 is done using
only one Montgomery multiplications. Further, steps3 and
4 become cheaper (compared with the originalFS scheme)
by using theMEXP algorithm, since these use up tok mul-
tiplications, wherek is typically small. Step4 is the only
instance where (conditional) reduction is needed (i.e., there
is no need for reduction by Alice). The saving in code size
could be significant for Alice, since she does not have to
perform conversions to and from the Montgomery domain.
This could be of major importance, in situations when Alice
has very limited resources (e.g. smartcard).

5.2 Application 3 : Rabin Encryption System

The Rabin encryption system [11] (used for encryption
and signature) is similar toRSA. Its advantages are: ef-
ficient encryption, requiring only one modular square (de-
cryption time is similar to that ofRSA), and guaranteed se-
curity (i.e., breaking the Rabin system is as hard as factoring
N = PQ, a fact that was not proved forRSA). The draw-
back of this system is that decryption is not unique (proper
decryption needs to be chosen out of four results, and this
can be achieved by some additional identification bits).

The Rabin encryption system can be changed to a
Montgomery variant as described below.

Encryption system 1: (Montgomery-Rabin Encryption)

(Step 0)Public key :N = PQ for some primesP andQ. Private
key (known to Alice) isP andQ.



Step 1 : (Encrypt) : Alice takes her message,M , computes
C = NRMM(M, M, N, s) and sends to Bob.

Step 2: (Decrypt) Bob receivesC and computes :
MP = NRMEXP(C, (P + 1)/4, P, s)

MQ = NRMEXP(C, (Q + 1)/4, Q, s).
Then, Bob solves the four congruence systems:
M = ±MQ (mod P ), M = ±MQ (mod Q),
each one giving a unique solution in the range[0, N − 1]

(according to the Chinese Remainder Theorem). One of these
four solutions is the correctM (and can be identified, for
example, by a sample byte).

Efficiency: the saving obtained by usingNRMEXPs
(instead of modular exponent) is not significant in the de-
cryption phase (Step2). However, the encryption phased
(Step1) is computed using only one Montgomery multipli-
cations. This can be useful in situations, where the verifying
party has limited resources.

6 Conclusion

We have shown here how theMEXP operator can be
applied, and illustrated a few useful examples. It should be
understood that performance is not the only consideration
when comparing between the standard and the proposed
methods. In fact, code size saving may even be more impor-
tant in our context. For example, the use of the shortened
method for modular squaring, can save about one third of
the required code. This can be significant in cases where the
code for performing the necessary steps is stored in ROM.

We point out that in fact, all public key schemes that
are based on modular arithmetic (e.g., DSA, or ECC over
GF (p)) can be implemented in the Montgomery domain in
similar ways, using Lemma 3. However, modified protocol
can be used only with proprietary implementations. Such
protocols not only skip the conversion steps to and from the
Montgomery base, but also do not require storage the con-
version constant (H).Again, code size is significantly re-
duced.

Finally, it is important to note that since there exists
a (simple) one-to-one mapping between the real and the
Montgomery domain, it is often easy to show that the se-
curity of the “Montgomery domain protocols” is equivalent
to that of the original protocols.
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[7] Tenca, A. F., and Koç, Ç. K.: A Scalable Architecture
for Montgomery Multiplication. Lect. Not. Comp. Sci.
(CHES 1999)1717(1999) 94–108.

[8] Menezes, A. J. Oorschot, P.C., and Vanstone,S.A.:
Handbook of Applied Cryptography. CRC Press, New
York (1997).

[9] Montgomery, P. L.: Modular multiplication without
trial division. Mathematics of Computation44 (1985)
519–521.

[10] Hachez, G., and Quisquater J. J.: Montgomery Expo-
nentiation with no Final Subtractions: Improved Re-
sults. Lect. Not. Comp. Sci. (CHES 2000)1965(2000)
293–301.

[11] Rabin M. : Digitalized Signatures and Public-Key
Functions as Intractable as Factorization. Massachus-
sets Institute of Technology, Cambridge, Technical
Report, 1979.

[12] Schindler, F.: A timing attack against RSA with
Chinese Remainder Theorem. Lect. Not. Comp. Sci.
(CHES 2000)1965(2000) 110–124.

[13] Walter, C. D.: Montgomery exponentiation needs no
final subtractions. Electronics Letters35 (1992) 1831
–1832.

[14] Walter, C. D.: Montgomery’s Multiplication Tech-
nique: How to Make It Smaller and Faster.Lect. Not.
Comp. Sci. (CHES 1999)1717(1999) 80–93.


