Applications of The Montgomery Exponent

Shay Gueron? Or Zuk 23
! Dept. of Mathematics, 2 Dept. of Physics of Complex Systems,
University of Haifa, Israel Weizmann Institute of Science, Israel
(shay@math.haifa.ac.il) (or.zuk@weizmann.ac.il)

3 Discretix Technologies, Israel

Abstract that the output and input share the same bounds, and meth-
ods for avoiding the final reduction step. Few examples are
We define here the Montgomery Exponent of or-[1], [2], [13], [10], [5]. In a different context, the Mont-
der s, modulo the odd integerN, by MEXP = gomery inverseg—!2" (mod N), was defined in [4], and
MEXP(A,X,N,s) = AX27*(X=1 (mod N), and il- later revisited in [6]. This operator has some applications,
lustrate some properties and usage of this operator. and can also be viewed as the analogue of modular inver-
We show howAX (mod N) can be obtained from sion, performed in the Montgomery domain.
MEXP(A, X, N,s) by one Montgomery multiplication. The advantage of using Montgomery multiplication is
This provides a new modular exponentiation algorithm that greatly appreciated in real applications that compute mod-
uses one Montgomery multiplication less than the numberular exponents. The related procedure (details are given
required with the standard method. The resulting reduction in Section 2) involves an initial conversion to the Mont-
in the computation time and code size is significant whengomery domain and a final conversion to the real domain
the exponenf is short (e.g., modular squaring aRISA after the computations are carried out. It also requires pre-
verification). We also illustrate the potential advantage in computation and storage for a particular conversion con-
performance and code size when known cryptographic ap-stant. For long exponents (e.®RSA private key opera-
plications are modified to allow for usin§jI[EXP as the tions), the overhead is negligible, but in other situations
analogue of modular exponentiation. (e.g.,RSA public key operations) it may not be the case.
The purpose of this paper is (a) to define the Mont-
Keywords: Montgomery multiplication, modular expo- gomery Exponent operator which is analogous to modu-
nentiation, efficient implementations. lar exponentiation, but carried out completely in the Mont-
gomery domain, (b) to demonstrate the potential applica-
tions of this operator.
1 Introduction

2 Preliminaries and Notations
The Montgomery multiplication ([9]), defined as

MMUL(A, B, N) = AB2™" (mod N), wheren is the All the discussed quantities in this paper are positive
bitlength of the odd modulusV, is considered to be oné jntegers, where the binary representation of an integer
of the most efficient methods for implementing modular ,/ is denoted by then = 1 + llog, M| bits string

arithmetic operations. It is therefore widely used in hard- (7 . a7, M), with M, being the least significant bit.
ware implementations of public key cryptosystems, such asgq; two integersY, Y, we write X = Y (+N) if either
smartcards. X =YorX =Y + N, and the notatiodk =Y (—N) is

The Montgomery multiplication method has attracted analogousN denotes an odd integer (modulus).
substantial attention in attempts to improve the algorithm,

or to efficiently use it as a building block for long opera- Definition 1 (Non Reduced Montgomery Multi-
tions (e.g., [14] [7]). Attacks that exploit the final (con- plication). The Non Reduced Montgomery Mul-
ditional) reduction step of the Montgomery multiplications tiplication of order s, of A, B, modulo (odd) N
have been proposed (e.g., [12]). Of particular interest wereis NRMM = NRMM(A4,B,N,s) = (AB +
methods for chaining Montgomery multiplications inaway (—ABN~! (mod 2°N))) /25.

Definition 2 (Conversions to/from Montgomery do-
main). The image in the (ordes) Montgomery domain,
of an integerX (given in the real domain) is the integer
X' = NRMM(X, H, N, s), whereH = 2%° (mod N) is
called the conversion constant. The image in the real do-
main, of an integel’”’ (given in the Montgomery domain)
isY = NRMM(Y’, 1, N, s)

Property 1 (see [5]). Assume that > n + 2,

(@) If X < 2N thenX’ = X2% (mod N) (+N).

(b) If A, B < 2N, thenNRMM(A4, B, N, s) < 2N.

(c) f Y’ < 2N thenY = NRMM(Y’,1,N,s) = Y’'2™%
(mod N).

From Property 1a, it follows that the conversion to the
Montgomery domain, of inputs that are bounded 23y,

the MMUL'’s are computed by Algorithm 2 with the inclu-
sion of the following reduction step after step 2i4:.5 >

N then S = S — N. This reduction step guarantees
that MMUL(A,B,N) < N if A,B < N, so the result

of MMUL has the same bound as its input, and the ex-
ponentiation algorithm can be applied. The drawback of
this method is the need for repeated (conditional) reduc-
tion steps after each multiplication. These affect the per-
formance and the cost of the related hardware implemen-
tation. Further, the conditional reductions turn out to leak
undesired information which can be used for cryptographic
attacks (e.g., [12]).

3 The Montgomery Exponent

maintains the same upper bound. Property 1c shows thatthe e are interested here in implementations of public key
conversion back to the real doma|n, of InputS that boundedcryptosystems (performing modular exponentiation) that

by 2N, returns a reduced result bounded by Using
the fact thaf AB)’ = NRMM(A’, B’, N, s), together with
Property 1b it follows that modular exponentiation can be
computed by the following steps:

Algorithm 1: (Modular exponentiation usil§yRMM)

Input: A, X, N.

Pre-Calculation: Choose> n + 2;

computeH = 22 (mod N).

1.1 ConvertA to the Montgomery domain:
A’ =NRMM(A4, H, N, s).

1.2 Perform appropriate sequenceN&®&MM'’s (e.g.,
square-and-multiply).

1.3 Convert back to the real domain:
T = NRMM(result,1, N, s).

1.4 Returrl.

The advantage of using Algorithm 1 to compute’
(mod N) stems from the fact that the bit level algorithm
for computingNRMM involves only additions and divi-
sions by2, and relies only on the least significant bit of
the accumulatorf). This allows for computations using
carry-save (redundant) arithmetic, which makes the imple-
mentation (especially in hardware) very efficient.

Algorithm 2: (A bit level algorithm for computing
NRMM(A, B, N, s))
Input: N (odd),A, B < 2N,s >n+2
215=0
2.2 Forifrom0Otos —1do
23 S=(S+AiB+(So+ AiBo)N)/2
2.4 End For
2.5 ReturnS

Remark 1 (Modular exponentiation via classical
MMUL). The classical way of computing modular expo-
nents by means dffMUL uses Algorithm 1 witlsy = n,
and MMUL operations instead cNRRMM. In this case,

operate in environments having extremely limited hardware
and software resources (e.g., smartcards). We note that
although Algorithm 1 is a very efficient approach, it car-
ries the overhead involved with the conversion to and from
the Montgomery domain, at the performance and code size
cost of twoNRMM operations. Further, dedicated code is
needed for computing the conversion constédngand stor-

age space is required for storing it.

In some situations, particularly when the exponent is
short, and when code size is of major concern, this overhead
is not necessarily negligible. This motivates the definition
and use of an operator which is analogous to modular expo-
nentiation, but carried out completely in the Montgomery
domain, in a way that domain conversions are eliminated.

Definition 3 (The Montgomery Exponent). (a) The Mont-
gomery Exponent of ordey, of A to the powerX modulo
N,is

MEXP = MEXP(4, X, N, s) =

AX27s(X=D (mod N) = (427°)%2° (mod N).
1)
(b) An algorithm for computing the Montgomery Exponent
is the following:
Algorithm 3: (ComputingMEXP)

Input: N (odd),A < 2N, X,z = 1+4|log, X |, s > n+2.

Output: MEXP(A, X, N, s)

31T=A

For i fromax — 2 to 0 do

3.2 T =NRMM(T,T,N,s)

3.3 IfX; =1thenT = NRMM(T, A, N, s)

End For

3.4 If(T' > N)T =T — N (Final reduction step)

3.5 Returdl’
(c) The Nonreduced Montgomery ExpondiRMEXP =
NRMEXP(A, X, N, s) is the result of Algorithm 3, when

the final reduction step (3.4) is omitted. It follows that
NRMEXP(A, X, N, s) = MEXP(4, X, N,s) (+N).

Lemma 1. Algorithm 3 returnsMEXP (A, X, N, s).

Proof. We show the correctness of Algorithm 3 by induc-
tion. From steps 3.2 and 3.3 we conclude

T =T7*Xi97s0+X) (mod N) (+N). (2)

Since by definitionX,_; = 1, we have, after stefx — 2),

T = A2+Xa—29—s(1+Xe—2) _

A2X171+X1722—5(2X1-71+Xz72—1) (mod N) (3)
Using 2 we can get by induction, after stgp
T = AXI= 2 Xogms(Lim 2o (mod N). (4)

Takingi = 0 givesT = AX27*(X~1D (mod N). From
Propertyl1b it follows thatT < 2N throughout the compu-

tations, thus the final reduction step 3.4 yields the desired

result.]

Remark 2 (A classical definition for MEXP). The choice

s > n + 2 in Algorithm 3 guarantees that the reduction
step is required only once, at the end of tN&RMM se-
guence. Clearly, the same result is obtained if a reduc-
tion step is applied at the end of each multiplication (i.e.,

steps 3.2 and 3.3). With repeated reductions one can choosé19 A = 109 X

s = n (and nots > n + 2) and replace alNRMM opera-
tions by standard MUL’s. We call the result of this com-
putation, namelyAX2=X=1) (mod N) = (42—")X2"
(mod N), a “classical Montgomery exponent”. For obvi-
ous practical reasons, we use hare- n + 2 for computing
MEXP.

Example 1. NRMEXP and MEXP can be different even
whenA < N:
MEXP(111,34,119,9) = 15
NRMEXP(111,34,119,9) = 134 = 15 (+119)

Remark 3 (Comparing Algorithms 1 and 3). Compared
with the cost of computing modular exponents (via Algori-

htm 1), MEXP computation has the following advantages:
1. No need to (pre)compute a conversion constaht (
2. No need to storéf.

. No need for conversions to/from the Montgomery do-
main (twoNRMM'’s).

Code size and HW control are reduced.

4 Modular exponentiation with MEXP
Lemma 2 below, shows how to use thEEXP operator
for modular exponentiation.

Lemma 2. If G = 2% (mod N) then

A% (mod N) =
NRMM(NRMEXP(4, X, N, s),G) (=N). (5)
Proof. Denote
T = NRMEXP(A, X, N,s) =
AX275(X=1" (mod N) (+N). (6)
Using the definition, we have
NRMM(T, G, N, s) =
AN s (XD X9 (mod N) (+N) =
A* (mod N) (+N). @)
|

Lemma 2 and Algorithm 3 provide an alternative expo-
nentiation algorithm. Compared with Algorithm 1, the new
method requires one led&RMM operation.

Note that a final reduction step is required because the
result in (7) is not necessarily reduced. For examples
26 gives AX (mod N) = 109%¢
(mod 119) = 2. UsingNRMEXP, we haves = n+2 =9,

G = 106, NRMEXP(109,26,119,9) = 86, and finally
NRMM(86,106,119,9) = 121 = 2 (+119). Indeed,
one subtraction is required to obtain the reduced result. We
point out that the cost of the (single) reduction step is much
smaller than the cost of &RMM operation.

The relative advantage in code size and performance de-
pends on the length of the exponent. For examBIeA
private key operations use long exponents and the saving
is negligible. However, the relatd®RiSA public key opera-
tions use short exponents (typica§f + 1 having17 bits),
and eliminating one multiplication may be significant. The
extreme case is modular squaridg (mod N).

4.1 Application 1: Modular Multiplication (and
modular squaring)

Using lemma 2, the algorithm for computing mod-
ular multiplication reduces from three multiplications
(Algorithm 1) to only two as follows: a. T
NRMM(A, B, N, s), b. T = NRMM(T,G, N, s). Note
also that in this case, the pre-computed constant 22,
equals to the conversion constaHt associated with the
standard method.

The applications: various cryptographic applications use5.1 Application 2 : Fiat-Shamir Scheme

modular multiplication (typically modular squaring) as a

core operation, and our proposed method can be more effi- TheFS identification scheme can be changed as follows.
cient. Two such examples are the Fiat-Shamir identification

scheme [3], and the Rabin encryption system [11]. Scheme 1. (Montgomery-Fiat-Shmair Identification
Scheme)

. : : Step 0) Public key : N = P for some primesP and Q),
5 Usmg MEXP with Approprlately Changed (aFr)1d))(1— = f(I,;:) i=1,. Qk wherel r%presents Alige’s
Protocols identity (e.g., biometric signatures), and thi¢s are chosen
small numbers such that th&;’s are quadratic residues
Here we show how th&IEXP operator can be used as modulo N. Private key (known to Alice) isP, @, and
the analogue of modular exponentiation in cryptographic ~ Si = vXi (mod N), i=1,...k
protocols, if these are modified appropriately. This provides Repeat the following times: .
a protocol which is more efficient than the original one. SteP 1 Alice chooses (uniformly) a random number
Also, we show in the examples that the appropriately R € [0,N — 1), computesZ = NRMM(R, R,N,s)
changed protocols can be defined in a way that some and send< to Bob.

) . . Step 2 Bob sends Alicé: Bits ey, . . . , ex.
of the final reductions of th&WNRMM operations can be Step 3 Alice sendsy — NRMM(R, [] S, N, s) where here

eliminated. =1
We use the following lemma: [] denotes a chain GFRMM(x, , N, s) operations
Step 4 Upon receiving «, Bob verifies that
NRMM(NRMM(a, o, N, s), [Xi,N,s) = Z (+N)
Lemma 3. VA < 2N, XY, s, and® = ®(N) being Eu- ei=1
ler's Phi function, we have : If all ¢ verifications are correct, Bob accepts Alice’s identity.
a. The computational cost of this proposed scheme is

smaller than that of th&'S scheme. Step is done using
only one Montgomery multiplications. Further, stefpand
NRMEXP(A, XY, N,s) (£N) 4 becpme cheaper (com.pared yvith the origiRdlscheme)
by using theM EXP algorithm, since these use upkanul-
tiplications, wherek is typically small. Stept is the only
NRMEXP(A, ®(N),N,s) = A (+N) instance where (conditional) reduction is needed (i.e., there
is no need for reduction by Alice). The saving in code size
could be significant for Alice, since she does not have to
Proof. a. perform conversions to and from the Montgomery domain.
This could be of major importance, in situations when Alice
NRMEXP(NRMEXP(4, X, N, s),Y, N, 5) = has very limited resources (e.g. smartcard).

NRMEXP(NRMEXP(A, X, N, s),Y, N, s) =

NRMEXP(AX27*X=Y (mod N),Y, N, s) =
(AXQ*S(X*l))YZ*S(Y*l) (IIlOd N) _

AXY9=s(XY=1 (m6d N) = The Rabin encryption system [11] (used for encryption
and signature) is similar tRSA. Its advantages are: ef-

5.2 Application 3 : Rabin Encryption System

NRMEXP(4, XY, N, s) ~ (mod N) (8) ficient encryption, requiring only one modular square (de-
b. cryption time is similar to that oRSA), and guaranteed se-
curity (i.e., breaking the Rabin system is as hard as factoring
MEXP(A, ®(N), N, 5) = A*M250=*N) " (mod N) = = pQ, a fact that was not proved f®SA). The draw-

back of this system is that decryption is not unique (proper
decryption needs to be chosen out of four results, and this
A (mod N) 9) can be achieved by some additional identification bits).

The Rabin encryption system can be changed to a
Montgomery variant as described below.

(A2—s)¢(N)28 (HlOd N) — A2759% (mod N) _

Corollary 1.
Encryption system 1: (Montgomery-Rabin Encryption)
MEXP(NRMEXP(A4, X, N,s),Y,N,s) =

(Step O)Public key : N = PQ for some primes andQ. Private
MEXP(NRMEXP(A,Y,N,s), X,N,s) (10) key (known to Alice) isP andQ.

Step 1: (Encrypt) : Alice takes her messag8/, computes [2] Dusse, S. R. and Kaliski, B. S.: A Cryptographic Li-

C = NRMM(M, M, N, s) and sends to Bob. brary for the Motorola DSP56000. Lect. Not. Comp.
Step 2: (Decrypt) Bob receive§’ and computes : Sci. (EUROCRYPT 1990473(1990) 230-244.

Mp = NRMEXP(C, (P +1)/4, P, s) , , ,

Mo = NRMEXP(C, (Q +1)/4,Q, s). [3] FiatA. ar_1d Shamer._:_ Hoyv to Provg Yourself: Practi-

Then, Bob solves the four congruence systems: cal Solutions to Identification and Signature Problems.

M = £Mp (mod P), M = +Mq (mod Q), CRYPTO 1986: 186-194

each one giving a unique solution in the rangeN — 1] 4] Kaliski, B. S.: The Montgomery Inverse and its appli-

(according to the Chinese Remainder Theorem). One of these cations. IEEE Transactions on Computérs(1995)

four solutions is the correcd/ (and can be identified, for 1064-1065.

example, by a sample byte).
[5] Gueron, S. Enhanced Montgomery Multiplication.

Efficiency: the saving obtained by usifgRM E X Ps Lect. Not. Comp. Sci. (CHES 2002523(2002) 46-
(instead of modular exponent) is not significant in the de- 56.
cryption phase (Step). However, the encryption phased
(Stepl) is computed using only one Montgomery multipli- [6] Ko¢, C. K.: The Montgomery modular Inverse - Re-
cations. This can be useful in situations, where the verifying visited. IEEE Transactions on Computet8 (2000)
party has limited resources. 763-766.

[7] Tenca, A. F., and Kog, C. K.: A Scalable Architecture

6 Conclusion for Montgomery Multiplication. Lect. Not. Comp. Sci.

(CHES 1999)1717(1999) 94-108.

We have shown here how tRdEXP operator can be [8] Menezes, A. J. Oorschot, P.C., and Vanstone,S.A.:
applied, and illustrated a few useful examples. It should be Handbook of Applied Cryptography. CRC Press, New
understood that performance is not the only consideration ~ York (1997).
when comparing between the standard and the proposed
methods. In fact, code size saving may even be more impor-
tant in our context. For example, the use of the shortened
method for modular squaring, can save about one third of

the required code. This can be significant in cases where thqlo] Hachez, G., and Quisquater J. J.: Montgomery Expo-

code for performing the necessary steps is stored in ROM. nentiation with no Final Subtractions: Improved Re-
We point out that in fact, all public key schemes that sults. Lect. Not. Comp. Sci. (CHES 2001965(2000)

are based on modular arithmetic (e.g., DSA, or ECC over 293-301.

GF'(p)) can be implemented in the Montgomery domain in) S))

similar ways, using Lemma 3. However, modified protocol [11] Rabin M. : Digitalized Signatures and Public-Key

[9] Montgomery, P. L.: Modular multiplication without
trial division. Mathematics of Computatictd (1985)
519-521.

can be used only with proprietary implementations. Such Functions as Intractable as Factorization. Massachus-
protocols not only skip the conversion steps to and from the sets Institute of Technology, Cambridge, Technical
Montgomery base, but also do not require storage the con- Report, 1979.

version constantH).Again, code size is significantly re- [12] Schindler, F.. A timing attack against RSA with

ducgd. o]] Chinese Remainder Theorem. Lect. Not. Comp. Sci.
Finally, it is important to note that since there exists (CHES 2000)1965(2000) 110-124.
a (simple) one-to-one mapping between the real and the

Montgomery domain, it is often easy to show that the se- [13] Walter, C. D.: Montgomery exponentiation needs no
curity of the “Montgomery domain protocols” is equivalent final subtractions. Electronics Lette35 (1992) 1831
to that of the original protocols. -1832.

[14] Walter, C. D.: Montgomery’s Multiplication Tech-
References nique: How to Make It Smaller and Faster.Lect. Not.
Comp. Sci. (CHES 1999)717(1999) 80-93.

[1] Blum, T., and Paar, C.: Montgomery modular expo-
nentiation on reconfigurable hardware. In Proceedings
of the 14th symposium on computer arithmetic, (1999)
70-77.

